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Abstract

Cardiac rhythm is generated locally in the sinoatrial node, but modulated by central neural input. This may provide a

possibility to infer central processes from observed phasic heart period responses (HPR). Currently, operational

methods are used for HPR analysis. These methods embody implicit assumptions on how central states influence heart

period. Here, we build an explicit psychophysiological model (PsPM) for event-related HPR. This phenomenological

PsPM is based on three experiments involving white noise sounds, an auditory oddball task, and emotional picture

viewing. The model is optimized with respect to predictive validity—the ability to separate experimental conditions

from each other. To validate the PsPM, an independent sample of participants is presented with auditory stimuli of

varying intensity and emotional pictures of negative and positive valence, at short intertrial intervals. Our model

discriminates these experimental conditions from each other better than operational approaches. We conclude that our

PsPM is more sensitive to distinguish experimental manipulations based on heart period data than operational

methods, and furnishes a principled approach to analysis of HPR.
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Cardiac rhythm generators form a semiautonomous system, which

is nevertheless modulated by sympathetic and parasympathetic

afferents (Berntson, Quigley, & Lozano, 2007). Consequently,

observing heart rhythm may allow inference on states of the central

nervous system. On a time scale of minutes, such inference is

engendered in algorithms to quantify tonic parasympathetic state

from heart rate variability (Allen, Chambers, & Towers, 2007;

Berntson, Cacioppo, & Quigley, 1993; Berntson et al., 2007). On

the other hand, phasic autonomic input can be inferred from heart

period responses (HPR) over seconds (Bradley, Codispoti, Cuth-

bert, & Lang, 2001; Hodes, Cook, & Lang, 1985). Operational

analysis methods for such phasic responses compare peaks and

troughs of an interpolated heart period time series with a prestimu-

lus baseline (e.g., Hodes et al., 1985). Studies using such methods

have suggested various HPR patterns, depending on the type of

stimulus. Arousing pictures elicit a triphasic HPR, comprising two

decelerations and an acceleration in alternating order (Bradley

et al., 2001; Hodes et al., 1985). Amplitudes of primary decelera-

tion and subsequent acceleration appear influenced by stimulus

valence when pictures are presented for 6 s (Bradley et al., 2001),

but not for short presentations (i.e.,< 1 s; Codispoti, Bradley, &

Lang, 2001; Ruiz-Padial, Vila, & Thayer, 2011). An inverted

response pattern was identified for aversive auditory stimuli with

two accelerations and a deceleration in alternating order (Reyes del

Paso, Godoy, & Vila, 1993). In an auditory oddball task, partici-

pants showed cardiac deceleration while listening to standard tones.

The presentation of an oddball tone elicited cardiac acceleration

(Weber, Van der Molen, & Molenaar, 1994).

To relate such responses to central neural input, pharmacologi-

cal studies suggest particular time courses of sympathetic and para-

sympathetic influence. Specifically, primary acceleration and

deceleration are not affected by the drug metoprolol, which blocks

sympathetic input (Reyes del Paso et al., 1993). On the other hand,

later response components appear to result from an interplay of

both branches of the autonomic nervous system, but still with a

major parasympathetic influence (Berntson et al., 2007; Reyes del

Paso et al., 1993).

Currently used operational peak-scoring approaches embody

implicit causal models of how precisely central states cause cardiac

responses, as apparent, for example, in the choice of time windows

to be analyzed (Bach & Friston, 2013). However, there is no con-

sensus on these implicit models—partly because they are never

explicitly tested— and their application often appears to be driven

by experiment-specific considerations. Here, we take a more
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principled approach to overcome these limitations. We seek to cre-

ate an explicit psychophysiological model (PsPM) that describes,

in mathematical form, how autonomic input generates cardiac

responses. This model can then be inverted to retrieve experiment-

specific estimates of this autonomic input. This parallels a previ-

ously developed, model-based method for analyzing skin conduct-

ance responses, which has been shown to outperform operational

approaches in recovering a known central state (Bach, 2014; Bach,

Daunizeau, Friston, & Dolan, 2010; Bach, Flandin, Friston, &

Dolan, 2009; Bach & Friston, 2013; Bach et al., 2013) and has

been used in various experimental contexts (Fan et al., 2012; Hayes

et al., 2013; Nicolle, Fleming, Bach, Driver, & Dolan, 2011; Sulzer

et al., 2013; Talmi, Dayan, Kiebel, Frith, & Dolan, 2009).

Given relatively sparse knowledge on the precise biophysics of

heart rate modulation, our PsPM remains phenomenological as in

our previous approach to skin conductance responses (Bach, Fris-

ton, & Dolan, 2010). Hence, it departs from other cardiac modeling

work that provided more biophysical realism (Riedl et al., 2008;

Somsen, Molenaar, Molen, & Jennings, 1991; _Zebrowski et al.,

2007) but did not as yet allow inference on autonomic input, possi-

bly due to the complexity of these models apparent in the number

of free parameters.

To quantify phasic changes in cardiac chronotropy, two measures

are common: heart rate (beats per minute) or heart period (millisec-

onds). Heart period appears to relate to autonomic input linearly, as

revealed in experiments in which autonomic nerves in rodents were

electrically stimulated with varying frequencies to elicit heart period

changes (Berntson, Cacioppo, & Quigley, 1995). Since our PsPM is

developed to quantify autonomic input, it is parsimonious to base

this inference on heart period. As in previous work, we interpolate

discrete heart period values to create continuous time series (cf.

Allen et al., 2007; Hodes et al., 1985; Koers, Mulder, & van der

Veen, 1999). We note that this strategy produces time series almost

identical to those derived with alternative approaches proposed in

the literature (Graham, 1978; Koers et al., 1999).

Crucially, the aim of our model is not to explain all variance in

the heart period time series but to estimate autonomic input from the

data. We evaluate this by assessing the model’s predictive validity.

Because ground truth (i.e., the true autonomic input into the heart)

cannot be concurrently measured, we take the approach to experi-

mentally create categorically different situations, which we then seek

to correctly identify from the model’s parameter estimates (Bach &

Friston, 2013). To develop the model, we elicit different sympathetic

and parasympathetic activation patterns in three experimental tasks,

which are based on previous operational research. We then evaluate

the model’s predictive validity in an independent experiment.

In summary, we hypothesized that sensory and attentional proc-

essing of auditory and visual material elicits a general increase in

parasympathetic input leading to cardiac deceleration, followed by

an increase in sympathetic input to the heart, which is responsible

for an acceleration. For the aversive white noise sounds, we expect

to replicate the patterns found by Reyes del Paso et al. (1993) that

comprised two accelerations and decelerations in alternating order.

Hence, we expect categorically different response patterns both on

a descriptive and on a statistical level.

Method

Design and Participants

For Experiment 1 and 2, we recruited 61 healthy unmedicated par-

ticipants from the general population (32 female, 29 male, mean

age 6 SD: 26 6 4.6 years, range 18–36 years). Average tempera-

ture of the testing room was 25.78C (range 24.5–26.78C), and aver-

age humidity was 43% (range 27%–66%). Experiment 1 elicited

HPR by repeated presentation of aversive auditory stimuli. We

excluded four participants due to technical failures and one because

muscle artifacts made QRS detection impossible. The same 61 par-

ticipants then underwent an auditory oddball task. Two participants

did not complete this Experiment 2, and a single different partici-

pant was excluded because muscle artifacts made QRS detection

impossible. Average temperature of the testing room was 25.78C

(range 24.6–26.88C), and average humidity was 42.6% (range

27%–67%). The order of the two experiments was fixed for all par-

ticipants. Experiment 3 followed a one-way factorial design with

three levels (neutral pictures, positive pictures, negative pictures),

and we included an independent sample of 23 healthy unmedicated

participants (13 female, 10 male, mean age 6 SD: 26 6 4.6 years,

range 18–36 years) from the general population. Average tempera-

ture of the testing room was 24.88C (range 23.3–26.88C), and aver-

age humidity was 32.6% (range 25%–38%). Finally, Experiment 4

utilized a one-way factorial design with four levels (negative pic-

tures, positive pictures, intense auditory simulation, mild auditory

stimulation). Nineteen healthy unmedicated participants were

recruited from the general population (11 female, 8 male, mean

age 6 SD: 26 6 5.4 years, range 18–38 years). One participant was

excluded due to the incidental finding of a possible cardiac condi-

tion. Average temperature of the testing room was 25.08C (range

23.5–26.28C), and average humidity was 37.5% (range 35%–41%).

All participants gave written informed consent and received mone-

tary compensation for their participation. All experimental proto-

cols, including the form of taking consent, were approved by ethics

committees (Experiments 1, 2: Ethikkommission der Charit�e Uni-

versit€atsmedizin, Berlin, Germany; Experiments 3, 4: Kantonale

Ethikkommission, Zurich, Switzerland).

Stimuli and Procedure

Experiment 1. Twenty broadband white noise sounds of 1-s dura-

tion (10-ms onset and offset ramp, �85 dB sound pressure level)

were delivered via headphones (PX-660 Pro Luxe, Fujikon, Hong

Kong, China). The intertrial interval (ITI) was randomly chosen to

be 29 s, 34 s, or 39 s. A fixation cross was visible on the screen all

the time, and participants were instructed to press a key on a stand-

ard computer keyboard as soon as they heard the sound. All stimuli

were presented in one block.

Experiment 2. After finishing Experiment 1, the same participants

heard, every second, one of two sine tones (50-ms length, 10-ms

onset and offset ramp, �75 dB, 440 Hz or 460 Hz) via headphones.

The participants were instructed to press a key on a standard com-

puter keyboard on hearing one of the 10 oddball tones, the pitch of

which was balanced across participants. A fixation cross was visi-

ble on the screen all the time. The number of standard tones was

arranged to realize a random ITI between the oddball tones of 29 s,

34 s, or 39 s. All stimuli were presented in one block.

Experiment 3. Participants were presented with the 16 least arous-

ing neutral, 16 most arousing negative, and 16 most arousing posi-

tive (excluding explicit nude) pictures from the International

Affective Picture System (IAPS; Lang, Bradley, & Cuthbert,

2005). The selected pictures were the same as in previous studies

(Bach, 2014; Bach et al., 2013; Bach, Seifritz, & Dolan, 2015). Par-

ticipants were instructed to press the cursor up or down key on a
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standard computer keyboard to indicate whether they liked the

stimulus or not. Stimuli were presented for 1 s with a random ITI

of 43 s, 45 s, or 47 s. All pictures were presented in one block, and

a fixation cross was visible between two consecutive pictures.

Experiment 4. A total of 120 white noise sounds with a sound

pressure level of �85 dB or �65 dB (1-s length, 10-ms onset and

offset ramp) were delivered via headphones, and the 60 most arous-

ing negative and 60 most arousing positive (excluding explicit

nude) pictures from the IAPS were presented for 1 s, all in random-

ized order. Before and after picture presentation, as well as during

the white noise trials, a fixation cross was visible on the computer

screen. Participants were instructed to press the cursor up or down

key on a standard computer keyboard to indicate whether they

liked the sound or picture. The stimuli were presented with a vari-

able ITI of 10 s 6 6 s in three blocks with a pause of 90 s between

two consecutive blocks.

Common settings. All experiments were programmed in Cogent

(Version 2000 v1.25; www.vislab.ucl.ac.uk/Cogent) in MATLAB

(MathWorks, Natick, MA). Experiments took place in dimly lit

and sound-insulated testing rooms. Participants were placed in a

comfortable chair with armrests and were asked not to move during

the experimental sessions to minimize movement artifacts.

Remaining movement and muscle artifacts were manually cor-

rected by visual inspection of all IBIs larger or shorter than the

mean IBI 6 2 SD.

Apparatus

Electrocardiogram (ECG) was recorded using four electrodes

attached to the limbs. The lead (I, II, III) or augmented lead (aVR,

aVL, aVF) configuration with the highest R spike was visually

identified by the experimenter and recorded. Data were preampli-

fied and 50 Hz notch-filtered using a Coulbourn isolated five-lead

amplifier (Model V75-11, Coulbourn Instruments, Allentown, PA),

digitized at 1000 Hz using a Dataq card (Model DI-149 A/D, Dataq

Inc., Akron, OH), and recorded with Windaq (Dataq Inc.).

Data Preprocessing

Preprocessing was carried out in MATLAB 8.3 (MathWorks).

ECG data was first filtered with an antialias Butterworth low-pass

filter (second-order, cutoff 100 Hz) and down sampled to 200 Hz.

A modified offline implementation of the Pan and Tompkins

(1985) real-time QRS detection algorithm was then used to identify

QRS complexes (see Appendix for changes from the original algo-

rithm and detection accuracy). A visual correction of all interbeat

intervals (IBIs) longer or shorter than the average IBI 6 2 SD per

dataset was performed to further increase detection accuracy. The

correction was performed on the continuous ECG dataset, and the

rater was blind to event timing and types. Each IBI was assigned to

its following heartbeat. The time series was then linearly interpo-

lated to achieve a sampling rate of 10 Hz. To remove slow drifts,

smooth the angles introduced by the interpolation, and reduce the

influence of potentially remaining misdetections, the time series

was filtered with a second-order Butterworth band-pass filter with

cutoff frequencies of .01 and 2 Hz, respectively. The QRS detec-

tion algorithm (scr_ecg2hb), the interpolation function (scr_hb2hp),

the graphic user interface for visual inspection of the data (scr_dis-

play), and the tool to manually correct falsely detected QRS com-

plexes (scr_ecg2hb_qc) are included in the MATLAB toolbox

Psychophysiological Modelling (PsPM), which can be obtained

under the GNU General Public License from http://pspm.source-

forge.net

Peak Scoring

Operational analysis was conducted according to the protocol of

Hodes et al. (1985). We selected this approach because it uses time

windows that well resemble those of primary deceleration, acceler-

ation, and secondary deceleration to briefly presented stimuli (cf.

Codispoti et al., 2001). We computed the baseline value as mean

over a 1-s baseline interval (B, 21 – 0 s) and performed peak scor-

ing in the respective time windows to obtain primary deceleration

(D1, 0 – 2 s), acceleration (A, 2 – 5 s), and secondary deceleration

(D2, 5 – 8 s). Time windows are specified in relation to the occur-

rence of the stimuli. We then computed the values for the primary

deceleration (B-D1), acceleration (A-B), secondary deceleration

(B-D2), acceleration relative to primary deceleration (A-D1), and

secondary deceleration in relation to acceleration (A-D2). Further-

more, we computed peak deceleration and peak acceleration from

baseline over the complete trial duration.

Model Development and Statistical Analysis

To keep the model simple, we treated the heart period time series

as output of a set of linear time invariant (LTI) systems. This type

of system is an approximation to biophysical reality with two main

features: (1) the response of the system to the same input is always

the same (i.e., the output depends on the input only), and (2) the

response to two inputs is the sum of the responses to the individual

inputs. An LTI system is unambiguously specified by its response

function (RF). Inputs into these LTI systems are specified by a neu-

ral model. Here, we assume that short stimuli elicit very brief neu-

ral inputs into the systems. This provides for a simple inversion

scheme. By convolving the RF with a vector of impulse functions

at the onsets of each event type, we obtain predicted time series,

which are then combined into one design matrix to specify a gen-

eral linear model (GLM). Inverting this GLM yields estimates for

the amplitude of HPR components (Bach et al., 2009; Friston, Jez-

zard, & Turner, 1994), each of which can be interpreted as ampli-

tude of an autonomic input component. While this is one of the

simplest approaches to PsPM, we note that assumption 2 of the LTI

properties of the cardiovascular system may be unrealistic since the

range of physiologically possible heart periods is limited, and the

system will therefore quickly saturate. This is why, in contrast to

models for skin conductance responses (Bach et al., 2009), we do

not aim at estimating overlapping responses. Hence, a possible vio-

lation of the linearity assumption is relatively unproblematic for

the present work.

In our phenomenological approach, we sought to determine a

basis set of RFs from experimental data, to define a set of LTI

systems. This was conducted in a sequential procedure. The data

were epoched from 2 s before stimulus onset to 29 s after stimu-

lus onset and mean centered, to compute a principal component

analysis (PCA) over all epochs from all participants of Experi-

ments 1–3. By inspection of the scree plot, the first three princi-

pal components (PCs) were identified as relevant and extracted.

We then modeled shapes and latencies of all individual peaks

within these three PCs by fitting Gaussian functions to the

peaks. Because of the interpolation, the cardiac response can

appear to start before stimulus onset. To account for this, the

RFs also included a prestimulus interval of 5 s.
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To test whether a modeled peak qualified as a RF, we subjected

it to a testing procedure in which we started with a single RF and

included further RFs. Specifically, we created a first-level GLM for

each participant by convolving the event onsets with the specific

subset of RFs, and extracted estimates of the response amplitudes

for each RF and condition from the continuous heart period data. In

order to qualify as RF, parameter estimates for this RF were either

required to depict a stable response (i.e., acceleration or decelera-

tion) across all experiments, tested by a one-sample t test, or to add

to the predictive validity of the model. This second criterion was

evaluated by subjecting the parameter estimates to a between-

subjects analysis of variance (ANOVA) testing for a main effect of

experimental condition. Hence, the following steps were taken:

Step 1. Test all potential RFs modeled from PCs individually

and retain each single RF if it depicts a stable acceleration or decel-

eration across all experiments or if it allows separation of at least

two of the three experiments. All potential RFs fulfilled one of

these criteria.

Step 2. Take the chronologically first RF from Step 1 and com-

bine it with the chronologically second RF from Step 1, or with

any other RF that overlaps with this second RF. Orthogonalize

each set in temporal order, using a Gram-Schmidt algorithm.

Retain the best set if additional RFs allow the separation of the

three experiments.

Step 3–5. Take the current set, and add the chronologically

next untested RF from Step 1, or any other RF that overlaps in time

with this second RF. Repeat the strategy of Step 2, and retain the

best set if additional RFs allow the separation of the three

experiments.

Trials from Experiments 1 and 2 that came from the same par-

ticipants were treated as independent to reduce complexity of

exploratory tests. All analyses were performed using PsPM and in-

built MATLAB functions.

Model Evaluation

For model evaluation, we set up one GLM per participant and

extracted parameter estimates for each condition and RF. Further

analysis was carried out in SPSS 21.0 (IBM, Armonk, NY). In order

to compare our novel method with a standard peak scoring approach,

we computed Akaike’s information criterion (AIC) as an approxima-

tion to model evidence with the MATLAB function scr_predval that

is part of the PsPM toolbox. Note that our approach here is to predict

experimental conditions from the parameter estimates of the model,

or from peak amplitudes obtained by peak scoring. Hence, the

dependent variable in this context are the experimental conditions

and our independent variable are estimates of HPR amplitude

obtained by the respective methods. This procedure is similar to

approaches used to evaluate predictive validity in the context of

other model-based methods (e.g., Bach, 2014). AIC is the negative

log likelihood of the model, plus a complexity term that was the

same for all tested predictive models (Burnham, 2004). An absolute

AIC difference of > 3 is often regarded as decisive, by analogy to a

classic p value. If a classic test statistic falls into the rejection region,

the probability of the data given the null hypothesis is p< .05.

Unlike p values, AIC scores allow quantification of evidence in

favor of a null hypothesis. For an AIC difference > 3, the probabil-

ity of the null hypothesis given the data is 1=exp 3ð Þ � :05 (Penny,

Stephan, Mechelli, & Friston, 2004; Raftery, 1995). We also com-

puted t values for illustration of our results.

Results

Manipulation Check

On the basis of operational measures obtained with the protocol by

Hodes et al. (1985), we found a statistically significant main effect

of experimental condition for secondary deceleration (B-D2;

F(2,134) 5 7.735, p 5 .001) and secondary deceleration in relation

to acceleration (A-D2; F(2,134) 5 7.104, p 5 .001). In a different

analysis scheme, the same effect was observed in the peak deceler-

ation from baseline, F(2,134) 5 5.302, p 5 .015. Table 1 contains a

summary of average parameters for the individual experiments and

shows that accelerations and decelerations were present across all

experiments. In conjunction with descriptive statistics (see Figure

1, upper panels), the results suggest that we were able to provoke

categorically different responses in each of the three experiments.

To rule out potential biasing effects of serial dependency due to the

fixed order of Experiment 1 and 2, we compared average heart

periods from the first trials of both experiments and found no evi-

dence for serial dependency, t(112) 5 20.317, p 5 .752.

Model Development

The first three PCs of 2,804 phasic responses from 84 participants

and three experiments explained 37.4% of total variance. Explora-

tory ANOVAs on the PC loadings yielded a statistically significant

main effect of experimental condition for PC 3, F(2,134) 5 8.63,

p< .001. There were no statistically significant main effects of

experimental condition for PC 1, F(2,134) 5 2.21, p 5 .114, and

PC 2, F(2,134) 5 0.01, p 5 .986. Descriptive and PCA results are

depicted in Figure 1.

Physiological considerations suggest a relative dominance of

parasympathetic influences in the dataset that might be coupled

over all three experiments and therefore load on the same PC,

although in theory be physiologically independent. To identify

individual physiological response functions rather than their combi-

nation, we modeled and tested all individual peaks within the PCs

as potential RFs. The complete procedure is summarized in the

Appendix. In short, six RFs were retained in the final model, each

of which allowed differentiation of at least two of the three experi-

ments. The resulting model is depicted in Table 2.

To determine the extent to which the operational method and

the model were able to recover the hidden states from the data, we

computed AIC for all three linear contrasts between the experi-

ments. AIC scores of relative model evidence for operational and

model-based analyses are depicted in the left panels of Figure 2.

Model Validation

Finally, we tested the predictive validity of the model in an inde-

pendent experiment with shorter ITI. We presented white noise

sounds with two intensities (65 dB and 85 dB), and arousing IAPS

pictures (negative and positive). To avoid estimation of overlap-

ping responses, we discarded RF5 and 6 from the model. A first

linear contrast was planned to replicate the comparison between

Experiment 1 and Experiment 3. From model development, we

expected to observe statistically significant larger parameter esti-

mates for IAPS pictures as compared to loud sounds for RF1, and

statistically significant larger estimates for loud sounds as com-

pared to IAPS pictures for RF3. A second linear contrast tested the

intensity effect in the auditory white noise conditions (85 dB vs. 65

dB). We had no directional hypothesis for Contrast 2, but predicted

from operational literature a difference of the two conditions due to
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the averseness of 85 dB sounds as compared to 65 dB sounds.

Finally, a third contrast tested the valence effect in the IAPS pic-

tures (negative vs. positive). In Experiment 3, we had observed a

trend for RF1 in the contrast comparing negative and positive IAPS

pictures, t(22) 5 1.952, p 5 .064, and expected that, due to the

increased number of trials in the validation experiment, we would

retain statistically significant larger parameter estimates for nega-

tive as compared to positive pictures in RF1. The results of the

planned contrasts are depicted in Table 3. Our hypothesis for Con-

trast 1 was confirmed for RF1: IAPS pictures elicited statistically

significant larger early responses in RF1 than loud sounds, while

the test for RF3 only showed a trend toward significance. Results

for Contrast 2 showed a statistically significant averseness effect

for RF2 and a trend toward statistical significance for RF3. The

results for Contrast 3 show statistically significant larger parameter

estimates for RF1 for negative pictures than for positive pictures,

as hypothesized. Furthermore, in this contrast, we observed statisti-

cally significant differences for RF2 and RF3, as well as a trend

toward statistical significance for RF4. On the other hand, opera-

tional indices yielded a statistically significant difference only for

the comparison of negative and positive IAPS pictures in the pri-

mary deceleration in relation to baseline, and the secondary decel-

eration in relation to the acceleration. A trend toward statistical

significance was also apparent for acceleration in relation to base-

line. Parameter estimates from our model yielded statistically sig-

nificant differences for all three contrasts in at least one RF, and

operational parameters only yielded statistically significant differ-

ences for Contrast 3. To directly compare operational and model-

based analysis, we computed estimates of predictive validity for

the planned contrasts. The results are depicted in Figure 2 (right

panels) and show similar or lower AIC (i.e., higher predictive

validity) for model-based analysis as compared to operational anal-

ysis in all three comparisons and for all tested parameters.

Discussion

In this article, we present a novel method to analyze event-related

HPR. This method is built on a phenomenological PsPM of how

autonomic input influences heart period. Three experiments with

long ITIs are analyzed to develop the model, and show that both

operational approaches and the new model can recover experimen-

tal conditions from the data. This result is confirmed in an inde-

pendent validation experiment with fewer participants and shorter

ITIs. Here, parameter estimates of the novel model-based approach

successfully separate experimental conditions in all three planned

contrasts. In contrast, indices from classic analysis show statisti-

cally significant differences only in one out of three linear con-

trasts. Indeed, for all three contrasts and all parameters/indices,

predictive validity is higher for the model-based method. In

Table 1. Mean Accelerations and Decelerations in the Three
Experiments

Experiment 1 Experiment 2 Experiment 3

Parameter M (ms) p M (ms) p M (ms) p

Peak deceleration 86.1 < .001 87.9 < .001 115.1 < .001
Peak acceleration 2112.9 < .001 2103.3 < .001 2110.7 < .001
B-D1 215.0 < .001 214.7 < .001 218.2 < .001
A-B 20.4 .739 21.5 .474 20.3 .858
B-D2 7.8 .035 9.2 .009 31.3 < .001
A-D1 15.4 < .001 16.1 < .001 18.4 < .001
A-D2 8.3 .022 210.7 .051 231.5 < .001
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Figure 1. Heart period responses. Upper: Mean phasic response over all participants of each experiment. Lower: Results of PCA over all participants of

Experiments 1–3. Principal components are weighed by their mean factor loading per experiment.
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conjunction, these results indicate that our model is more sensitive

than a standard method for analyzing event-related HPR.

The final model contains six RFs, for each of which an

amplitude parameter is estimated. Descriptively, each of these

parameters quantifies the magnitude of the respective response

component. However, we can interpret their values as amplitude

of an autonomic input component, in line with previous opera-

tional approaches. How these autonomic components map onto

the known physiology of the sympathetic and parasympathetic

nervous system cannot yet be unambiguously answered from the

present work. One may tentatively link the first two RFs to para-

sympathetic input (Reyes del Paso et al., 1993), while later

response components may represent input from either or both of

the two branches of the autonomic nervous system, in line with

operational indices at similar poststimulus times. In order to

investigate the causes of these responses more closely, one

would ideally use pharmacological manipulations. It might then

be possible to distinctly assign the respective RFs to underlying

parasympathetic or sympathetic input. Also, the first RF appears

to start before stimulus onset. While this may be a result of the

interpolation procedure, it could also reflect anticipatory proc-

esses. Experiments with more varied ITIs may be able to resolve

this question.

The model in its present form is a first attempt to apply the

framework of psychophysiological modeling (Bach & Friston,

2013) to event-related HPR. It emerges that some aspects need to

be reviewed more closely in the future. First, the model was devel-

oped to infer central states from observed data. It has been demon-

strated that methods optimized to accurately describe observed data

often do not achieve this inference (Bach, 2014; Bach et al., 2013).

However, our approach leaves a major proportion of variance in

the observed signal unexplained. In particular, the heart period

time series may be dominated by respiratory sinus arrhythmia

(RSA, Berntson et al., 1993). With many repetitions of an event as

in the present experiments, one is able to effectively average out

such variance. However, an explicit model of RSA could make the

method more powerful in analyzing data from experiments with

few trials. Hence, PsPMs of the interaction between respiration and

heart period may be advantageous.

Further, the model has been developed on stimuli of a fixed

duration of 1 s. As the shape of the cardiac response depends

strongly on the duration of the input (cf. Bradley et al., 2001;

Codispoti et al., 2001), our method in its current form is only appli-

cable to experiments with brief stimulus presentation durations.

Future work will address whether the model also generalizes to

experiments with longer stimulus durations. Also, the two central

assumptions, linearity and time invariance, will have to be firmly

tested. As demonstrated for other methods, the linearity assumption

strongly depends on the duration of the ITI (Bach, Flandin, Friston,
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Figure 2. Predictive validity expressed as AIC for model-based analysis and operational analysis. Smaller AIC values indicate higher predictive valid-

ity of the respective parameter. Operational parameters are peak deceleration from baseline (Parameter 1), peak acceleration from baseline (Parameter

2), primary deceleration (B-D1, Parameter 3), acceleration (A-B, Parameter 4), secondary deceleration (B-D2, Parameter 5), acceleration in relation to

primary deceleration (A-D1, Parameter 6), and secondary deceleration in relation to acceleration (A-D2, Parameter 7). Model-based parameters are

parameter estimates for RFs 1 to 6. Left: AIC for linear contrasts of model development. Right: AIC for linear contrasts of model validation.

Table 2. Results of the T Tests and ANOVA on the Resulting
Final Model from Model Development

t test ANOVA

RF t(136) p
Direction of

response F(2,134) p
Post-hoc
contrasts

1 2.81 .006 1 5.43 .005 (E1 5 E2)<E3
2 27.88 < .001 2 14.18 < .001 (E1 5 E3)<E2
3 23.56 .001 2 30.47 < .001 E1> (E2 5 E3)
4 27.73 < .001 2 6.87 .001 E1<E2
5 26.92 < .001 2 6.75 .002 (E1 5 E3)>E2
6 1.19 .237 n.s. 7.66 .001 E1> (E2 5 E3)

Note. Experiment 1: auditory white noise experiment; Experiment 2:
auditory oddball experiment; Experiment 3: IAPS pictures. RF 5 res-
ponse function; t test 5 test for the general direction of the response
across experiments; direction of response 5 direction of the general
response (minus signs indicate accelerations, plus signs indicate deceler-
ations); ANOVA 5 analysis of variance testing for a main effect of
experimental condition.
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& Dolan, 2010). Indeed, in the case of responses very close in

time, the system might saturate, thus making the linearity assump-

tion unrealistic.

In the present implementation of the model, parameters are

directly estimated from the interpolated IBI time series that

might be corrupted by faulty detected QRS complexes. While

the automatic version of our offline implementation of the QRS

detection algorithm achieved 99.66% detection accuracy, the

proportion of faulty detected QRS complexes was as high as

2% for one dataset. This is why we used a graphic user inter-

face to allow visual correction of all IBIs that fall outside the

average IBI 6 2 SD. Furthermore, we introduced liberal filter-

ing of the data at cutoff frequencies of .01 and 2 Hz. To further

enhance data quality and eliminate the necessity for visual

inspection, future work should also aim at the optimization of

the filter settings. For skin conductance data, optimizing filter

parameters has been shown to increase predictive validity of

model-based analysis (Bach et al., 2013; Staib, Castegnetti, &

Table 3. Results of the Linear Contrasts for the Validation Experiment

Planned contrast Parameter

Operational analysis Model-based analysis
Mean parameter

estimates

t(17) p t(17) p �x1 �x2

Sound 85 vs. IAPS 1 0.13 .901 23.06 .007* 7.99 68.28
2 0.18 .857 21.54 .143 259.66 240.85
3 21.88 .078 1.99 .063 74.47 7.67
4 1.75 .098 22.10 .051 23.12 155.77
5 20.03 .979 – – – –
6 21.15 .267 – – – –
7 1.10 .287 – – – –

Sound 85 vs. Sound 65 1 0.34 .738 0.80 .438 7.99 27.05
2 1.29 .215 2.27 .036* 259.66 296.54
3 21.34 .199 1.88 .077 74.47 24.26
4 1.31 .207 0.77 .453 23.12 214.97
5 1.48 .156 – – – –
6 21.36 .193 – – – –
7 20.43 .672 – – – –

IAPS negative vs. IAPS positive 1 0.49 .631 2.88 .010* 83.07 53.49
2 0.62 .543 3.59 .002* 217.32 264.38
3 22.32 .033* 23.12 .006* 218.18 33.53
4 2.09 .052 1.95 .068 203.18 108.37
5 21.39 .182 – – – –
6 20.87 .395 – – – –
7 2.60 .019* – – – –

Note. Operational analysis: Parameter 1 5 peak deceleration; Parameter 2 5 peak acceleration; Parameter 3 5 B-D1; Parameter 4 5 A-B; Parameter
5 5 B-D2; Parameter 6 5 A-D1; Parameter 7 5 A-D2. Model-based analysis: Parameter 1–5 5 parameter estimates for RF 1–5.
*p< .05.
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Figure 3. Principal components and fitted Gaussian functions. Top: First three principal components. Bottom: RFs 1–8 plotted with the principal com-
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Bach, 2015). An additional technical limitation imposed by the

current implementation of the QRS detection algorithm is the

temporal resolution of 5 ms.

A further important aspect is model complexity. In its current

form, the model comprises six RFs. We deliberately separated

response components to allow their independent investigation.

Table 4. Results of Model Development

t-test ANOVA

Step RF t(136) p
Direction of

response F(2,134) p Post-hoc contrasts

1 1 3.23 .002 1 9.97 < .001 (E1 5 E2)<E3
2 26.01 < .001 – 25.72 < .001 (E1 5 E3)<E2
3 25.10 < .001 – 15.37 < .001 E3<E1<E2
4 27.41 < .001 – 29.13 < .001 (E1 5 E3)<E2
5 25.60 < .001 – 4.36 .015 E1<E2
6 25.77 < .001 – 6.84 .001 E1<E2
7 25.56 < .001 – 6.51 .002 E1<E2
8 4.98 < .001 1 33.03 < .001 E1> (E2 5 E3)

2 1 3.07 .003 1 8.11 < .001 (E1 5 E2)<E3
2 27.78 < .001 – 13.80 < .001 (E1 5 E3)<E2

1 3.04 .003 1 7.76 .001 (E1 5 E2)<E3
3 26.78 < .001 – 5.11 .007 E2>E3

1 3.03 .003 1 7.58 .001 (E1 5 E2) < E3

2 27.80 < .001 – 13.88 < .001 (E1 5 E3) < E2

3 23.48 .001 – 30.90 < .001 E1 > E3 > E2

3 1 2.88 .005 1 6.18 .003 (E1 5 E2) < E3

2 27.85 < .001 – 14.05 < .001 (E1 5 E3) < E2

3 23.53 .001 – 30.81 < .001 E1 > (E2 5 E3)

4 27.71 < .001 – 7.16 .001 E1 < E2

4 1 2.87 .005 1 6.11 .003 (E1 5 E2)<E3
2 27.86 < .001 – 14.05 < .001 (E1 5 E3)<E2
3 23.53 .001 – 30.80 < .001 E1> (E2 5 E3)
4 27.71 < .001 – 7.13 .001 E1<E2
5 25.43 < .001 – 6.82 .002 (E1 5 E3)>E2

1 2.85 .005 1 5.90 .004 (E1 5 E2) < E3

2 27.87 < .001 – 14.10 < .001 (E1 5 E3) < E2

3 23.54 .001 – 30.82 < .001 E1 > (E2 5 E3)

4 27.73 < .001 – 7.09 .001 E1 < E2

6 26.89 < .001 – 6.91 .001 (E1 5 E3) > E2

1 2.82 .005 1 5.66 .004 (E1 5 E2)<E3
2 27.88 < .001 – 14.17 < .001 (E1 5 E3)<E2
3 23.56 .001 – 30.86 < .001 E1> (E2 5 E3)
4 27.76 < .001 – 7.05 .001 E1<E2
5 25.44 < .001 – 6.75 .002 (E1 5 E3)>E2
6 25.89 < .001 – 2.29 .105 n.s.

5 1 2.75 .007 1 5.84 .004 (E1 5 E2)<E3
2 27.92 < .001 – 14.10 < .001 (E1 5 E3)<E2
3 23.59 < .001 – 30.85 < .001 E1> (E2 5 E3)
4 27.82 < .001 – 7.08 .001 E1<E2
6 26.95 < .001 – 6.90 .002 (E1 5 E3)>E2
7 24.88 < .001 – 2.80 .064 n.s.

1 2.81 .006 1 5.43 .005 (E1 5 E2) < E3

2 27.88 < .001 – 14.18 < .001 (E1 5 E3) < E2

3 23.56 .001 – 30.47 < .001 E1 > (E2 5 E3)

4 27.73 < .001 – 6.87 .001 E1 < E2

6 26.92 < .001 – 6.75 .002 (E1 5 E3) > E2

8 1.19 .237 n.s. 7.66 .001 E1 > (E2 5 E3)

1 2.80 .006 1 5.35 .006 (E1 5 E2)<E3
2 27.88 < .001 – 14.18 < .001 (E1 5 E3)<E2
3 23.56 .001 – 30.50 < .001 E1> (E2 5 E3)
4 27.73 < .001 – 6.86 .001 E1<E2
6 26.92 < .001 – 6.73 .002 (E1 5 E3)>E2
7 5.69 < .001 – 2.65 .074 n.s.
8 0.48 .634 n.s. 4.92 .009 E1>E2

Note. Multiple comparisons: E1: auditory white noise experiment; E2: auditory oddball experiment; E3: IAPS pictures. The best model of each step is
marked in bold. RF 5 response function; t test 5 test for the general direction of the response across experiments; direction of response 5 direction of
the general response across all experiments (minus signs indicate accelerations, plus signs indicate decelerations); ANOVA 5 analysis of variance test-
ing for a main effect of experimental condition.
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However, it might well be the case that some of them are in fact

physiologically inseparable and relate to the same autonomic

input component. To reduce the number of RFs, future work

should test for inseparable coupling between RFs. Physiologi-

cally coupled responses could then be combined into one regres-

sor to reduce model complexity.

As a practical recommendation, before such issues are resolved,

we would like to suggest two points for analyzing experimental

data. First, because the linearity assumption of the model is brittle,

one may prefer using only RFs that peak within the minimum ITI

of an experiment. Secondly, to avoid correcting for multiple com-

parison when using more than one RF, it may be advisable to form

clear hypotheses in which of the six RFs to expect an effect of an

experimental manipulation, for example, based on operational liter-

ature. If clear hypotheses can be formulated, it may also be possible

to only include the respective RF into the model.

To summarize, we present a PsPM for event-related heart period

responses, based on a set of linear time invariant systems. Inversion

of this model yields parameter estimates that better separate known

psychological states than an operational approach. With this work,

we hope to have inspired renewed interest in the use of heart beat

data to infer central, neural, or psychological states.

Appendix

1. Pan and Tompkins (1985) QRS Detection Algorithm

Pan and Tompkins (1985) published an online algorithm to

identify QRS complexes in ECG signals. The algorithm ana-

lyzes slope, amplitude, and width of QRS complexes. It uses a

digital band-pass filter to reduce noise. Thresholds are periodi-

cally adjusted to low values. For an offline implementation, we

made some adjustments to this algorithm. In the original algo-

rithm, Pan and Tompkins used cascaded integer filters to realize

an approximation to the pass band from 5 to 15 Hz. The cas-

caded integer filters were replaced by a second-order Butter-

worth filter realizing cutoff frequencies of 5 and 15 Hz. Instead

of real-time derivation, numerical differentiation as imple-

mented in MATLAB was used. To increase the accuracy of

detection, minimal and maximal heart rate values were set to be

20 bpm (IBI of 3,000 ms) and 200 bpm (IBI of 300 ms),

respectively. The marker identifying the QRS complex is posi-

tioned at the rising edge of the integrated waveform signal that

corresponds with the position of the R spike of the ECG.

Approximately 20% (24) of datasets of Experiments 1–3, con-

taining 24,398 heartbeats, were randomly selected and visually

inspected. The algorithm yielded 82 detection errors of which

45 were false positive and 37 were false negative beats. This

leads to a sensitivity of 99.85%, a total accuracy of 99.66%,

and a positive predictive value of 99.82%.

2. Model Development

The potential RFs were modeled from the first three principal

components obtained by PCA (cf. Figure 3). In Step 1, parame-

ter estimates for each RF were estimated individually. This was

done to test whether the RFs were generally carrying predictive

information or depicted a stable acceleration or deceleration

across the three experiments. Since at least one of the two crite-

ria was fulfilled for all response functions, we tested all RFs in

the following steps. In each of these steps, RFs with similar

timing—suggesting that they depict similar physiologic response

components—were included into the model and tested against

each other. Only those RFs that qualified in the individual steps

(i.e., had a larger F value in the ANOVA testing for a main

effect of experimental condition) were retained. In order to

achieve uncorrelated regressors, the models in Steps 2–5 were

orthogonalized in temporal order of the modeled peaks. Results

of model development are depicted in Table 4.

3. Model Constants

Model constants are depicted in Table 5.

References

Allen, J. J. B., Chambers, A. S., & Towers, D. N. (2007). The many metrics
of cardiac chronotropy: A pragmatic primer and a brief comparison of
metrics. Biological Psychology, 74, 243–262. doi: 10.1016/
j.biopsycho.2006.08.005

Bach, D. R. (2014). A head-to-head comparison of SCRalyze and Ledalab,
two model-based methods for skin conductance analysis. Biological
Psychology, 103, 6–11. doi: 10.1016/j.biopsycho.2014.08.006

Bach, D. R., Daunizeau, J., Friston, K. J., & Dolan, R. J. (2010). Dynamic
causal modelling of anticipatory skin conductance responses. Biologi-
cal Psychology, 85, 163–170. doi: 10.1016/j.biopsycho.2010.06.007

Bach, D. R., Flandin, G., Friston, K. J., & Dolan, R. J. (2009). Time-series anal-
ysis for rapid event-related skin conductance responses. Journal of Neuro-
science Methods, 184, 224–234. doi: 10.1016/j.jneumeth.2009.08.005

Bach, D. R., Flandin, G., Friston, K. J., & Dolan, R. J. (2010). Modelling
event-related skin conductance responses. International Journal of Psy-
chophysiology, 75, 349–356. doi: 10.1016/j.ijpsycho.2010.01.005

Bach, D. R., & Friston, K. J. (2013). Model-based analysis of skin conduct-
ance responses: Towards causal models in psychophysiology. Psycho-
physiology, 50, 15–22. doi: 10.1111/j.1469-8986.2012.01483.x

Bach, D. R., Friston, K. J., & Dolan, R. J. (2010). Analytic measures for
quantification of arousal from spontaneous skin conductance fluctua-
tions. International Journal of Psychophysiology, 76, 52–55. doi:
10.1016/j.ijpsycho.2010.01.011

Bach, D. R., Friston, K. J., & Dolan, R. J. (2013). An improved algorithm
for model-based analysis of evoked skin conductance responses. Biolog-
ical Psychology, 94, 490–497. doi: 10.1016/j.biopsycho.2013.09.010

Bach, D. R., Seifritz, E., & Dolan, R. J. (2015). Temporally unpredictable
sounds exert a context-dependent influence on evaluation of unrelated
images. PLoS ONE, 10, e0131065. doi: 10.1371/journal.pone.0131065

Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1993). Respiratory
sinus arrhythmia: Autonomic origins, physiological mechanisms, and
psychophysiological implications. Psychophysiology, 30, 183–196. doi:
10.1111/j.1469-8986.1993.tb01731.x

Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1995). The metrics of
cardiac chronotropism: Biometric perspectives. Psychophysiology, 32,
162–171. doi: 10.1111/j.1469-8986.1995.tb03308.x

Berntson, G. G., Quigley, K. S., & Lozano, D. (2007). Cardiovascular psycho-
physiology. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.),

Table 5. Model constants

Response function

Parameters of Gaussian
function

l r

1 1 1.9
2 5.2 1.9
3 7.2 1.5
4 7.2 4
5 12.6 2
6 18.85 1.8

Note. l 5 mean; r 5 standard deviation.

Modeling event-related heart period responses 845

info:doi/10.1016/j.biopsycho.2006.08.005
info:doi/10.1016/j.biopsycho.2006.08.005
info:doi/10.1016/j.biopsycho.2014.08.006
info:doi/10.1016/j.biopsycho.2010.06.007
info:doi/10.1016/j.jneumeth.2009.08.005
info:doi/10.1016/j.ijpsycho.2010.01.005
info:doi/10.1111/j.1469-8986.2012.01483.x
info:doi/10.1016/j.ijpsycho.2010.01.011
info:doi/10.1016/j.biopsycho.2013.09.010
info:doi/10.1371/journal.pone.0131065
info:doi/10.1111/j.1469-8986.1993.tb01731.x
info:doi/10.1111/j.1469-8986.1995.tb03308.x


Cambridge handbook of psychophysiology (3rd ed., pp. 182–210). Cambridge,
UK: Cambridge University Press. doi: 10.1017/CBO9780511546396.008

Bradley, M. M., Codispoti, M., Cuthbert, B. N., & Lang, P. J. (2001). Emo-
tion and motivation I: Defensive and appetitive reactions in picture
processing. Emotion, 1, 276–298. doi: 10.1037/1528-3542.1.3.276

Burnham, K. P. (2004). Multimodel inference: Understanding AIC and
BIC in model selection. Sociological Methods & Research, 33, 261–
304. doi: 10.1177/0049124104268644

Codispoti, M., Bradley, M. M., & Lang, P. J. (2001). Affective reactions to
briefly presented pictures. Psychophysiology, 38, 474–478. doi:
10.1111/1469-8986.3830474

Fan, J., Xu, P., Van Dam, N. T., Eilam-Stock, T., Gu, X., Luo, Y.-J., &
Hof, P. R. (2012). Spontaneous brain activity relates to autonomic
arousal. Journal of Neuroscience, 32, 11176–11186. doi: 10.1523/
JNEUROSCI.1172-12.2012

Friston, K. J., Jezzard, P., & Turner, R. (1994). Analysis of functional MRI time-
series. Human Brain Mapping, 1, 153–171. doi: 10.1002/hbm.460010207

Graham, F. K. (1978). Constraints on measuring heart rate and period
sequentially through real and cardiac time. Psychophysiology, 15, 492–
495. doi: 10.1111/j.1469-8986.1978.tb01422.x

Hayes, D. J., Duncan, N. W., Wiebking, C., Pietruska, K., Qin, P., Lang,
S., . . . Northoff, G. (2013). GABAA receptors predict aversion-related
brain responses: An fMRI-PET investigation in healthy humans. Neuro-
psychopharmacology, 38, 1438–1450. doi: 10.1038/npp.2013.40

Hodes, R. L., Cook, E. W., & Lang, P. J. (1985). Individual differences in
autonomic response: Conditioned association or conditioned fear? Psy-
chophysiology, 22, 545–560. doi: 10.1111/j.1469-8986.1985.tb01649.x

Koers, G., Mulder, L. J. M., & van der Veen, F. M. (1999). The computa-
tion of evoked heart rate and blood pressure. Journal of Psychophysiol-
ogy, 13, 83–91. doi: 10.1027//0269-8803.13.2.83

Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2005). International Affec-
tive Picture System (IAPS): Affective ratings of pictures and instruction
manual. Technical Report A-7. Gainesville, FL: University of Florida.

Nicolle, A., Fleming, S. M., Bach, D. R., Driver, J., & Dolan, R. J. (2011).
A regret-induced status quo bias. Journal of Neuroscience, 31, 3320–
3327. doi: 10.1523/JNEUROSCI.5615-10.2011

Pan, J., & Tompkins, W. J. (1985). A real-time QRS detection algorithm.
IEEE Transactions on Bio-Medical Engineering, 32, 230–236. doi:
10.1109/TBME.1985.325532

Penny, W. D., Stephan, K. E., Mechelli, A., & Friston, K. J. (2004). Com-
paring dynamic causal models. NeuroImage, 22, 1157–1172. doi:
10.1016/j.neuroimage.2004.03.026

Raftery, A. E. (1995). Bayesian model selection in social research. Socio-
logical Methodology, 25, 111–163. doi: 10.2307/271063

Reyes del Paso, G. A., Godoy, J., & Vila, J. (1993). Respiratory sinus
arrhythmia as an index of parasympathetic cardiac control during the
cardiac defense response. Biological Psychology, 35, 17–35. doi:
10.1016/0301-0511(93)90089-Q

Riedl, M., Suhrbier, A., Malberg, H., Penzel, T., Bretthauer, G., Kurths, J.,
& Wessel, N. (2008). Modeling the cardiovascular system using a non-
linear additive autoregressive model with exogenous input. Physical
Review E, 78, 011919. doi: 10.1103/PhysRevE.78.011919

Ruiz-Padial, E., Vila, J., & Thayer, J. F. (2011). The effect of conscious
and non-conscious presentation of biologically relevant emotion pic-
tures on emotion modulated startle and phasic heart rate. International
Journal of Psychophysiology, 79, 341–346. doi: 10.1016/
j.ijpsycho.2010.12.001

Somsen, R. J. M., Molenaar, P. C. M., Molen, M. W., & Jennings, J. R.
(1991). Behavioral modulation patterns fit an animal model of vagus-
cardiac pacemaker interactions. Psychophysiology, 28, 383–399. doi:
10.1111/j.1469-8986.1991.tb00722.x

Staib, M., Castegnetti, G., & Bach, D. R. (2015). Optimising a model-
based approach to inferring fear learning from skin conductance
responses. Journal of Neuroscience Methods, 255, 131–138. doi:
10.1016/j.jneumeth.2015.08.009

Sulzer, J., Sitaram, R., Blefari, M. L., Kollias, S., Birbaumer, N., Stephan,
K. E., . . . Gassert, R. (2013). Neurofeedback-mediated self-regulation
of the dopaminergic midbrain. NeuroImage, 83, 817–825. doi: 10.1016/
j.neuroimage.2013.05.115

Talmi, D., Dayan, P., Kiebel, S. J., Frith, C. D., & Dolan, R. J. (2009).
How humans integrate the prospects of pain and reward during choice.
Journal of Neuroscience, 29, 14617–14626. doi: 10.1523/JNEURO-
SCI.2026-09.2009

Weber, E. J. M., Van der Molen, M. W., & Molenaar, P. C. M. (1994).
Heart rate and sustained attention during childhood: Age changes in
anticipatory heart rate, primary bradycardia, and respiratory sinus
arrhythmia. Psychophysiology, 31, 164–174. doi: 10.1111/j.1469-
8986.1994.tb01036.x

_Zebrowski, J. J., Grudzi�nski, K., Buchner, T., Kuklik, P., Gac, J., Gielerak,
G., . . . Baranowski, R. (2007). Nonlinear oscillator model reproducing
various phenomena in the dynamics of the conduction system of the
heart. Chaos: An Interdisciplinary Journal of Nonlinear Science, 17,
015121. doi: 10.1063/1.2405128

(RECEIVED August 19, 2015; ACCEPTED January 3, 2016)

846 P.C. Paulus, G. Castegnetti, and D.R. Bach

info:doi/10.1017/CBO9780511546396.008
info:doi/10.1037/1528-3542.1.3.276
info:doi/10.1177/0049124104268644
info:doi/10.1111/1469-8986.3830474
info:doi/10.1523/JNEUROSCI.1172-12.2012
info:doi/10.1523/JNEUROSCI.1172-12.2012
info:doi/10.1002/hbm.460010207
info:doi/10.1111/j.1469-8986.1978.tb01422.x
info:doi/10.1038/npp.2013.40
info:doi/10.1111/j.1469-8986.1985.tb01649.x
info:doi/10.1027//0269-8803.13.2.83
info:doi/10.1523/JNEUROSCI.5615-10.2011
info:doi/10.1109/TBME.1985.325532
info:doi/10.1016/j.neuroimage.2004.03.026
info:doi/10.2307/271063
info:doi/10.1016/0301-0511(93)90089-Q
info:doi/10.1103/PhysRevE.78.011919
info:doi/10.1016/j.ijpsycho.2010.12.001
info:doi/10.1016/j.ijpsycho.2010.12.001
info:doi/10.1111/j.1469-8986.1991.tb00722.x
info:doi/10.1016/j.jneumeth.2015.08.009
info:doi/10.1016/j.neuroimage.2013.05.115
info:doi/10.1016/j.neuroimage.2013.05.115
info:doi/10.1523/JNEUROSCI.2026-09.2009
info:doi/10.1523/JNEUROSCI.2026-09.2009
info:doi/10.1111/j.1469-8986.1994.tb01036.x
info:doi/10.1111/j.1469-8986.1994.tb01036.x
info:doi/10.1063/1.2405128

