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Abstract

Rapid eye movement sleep (REMS) is generated in the brainstem by a distributed network of neurochemically distinct
neurons. In the pons, the main subtypes are cholinergic and glutamatergic REMS-on cells and aminergic REMS-off cells.
Pontine REMS-on cells send axons to the ventrolateral medulla (VLM), but little is known about REMS-related activity of VLM
cells. In urethane-anesthetized rats, dorsomedial pontine injections of carbachol trigger REMS-like episodes that include
cortical and hippocampal activation and suppression of motoneuronal activity; the episodes last 4–8 min and can be
elicited repeatedly. We used this model to determine whether VLM catecholaminergic cells are silenced during REMS, as is
typical of most aminergic neurons studied to date, and to investigate other REMS-related cells in this region. In 18
anesthetized, paralyzed and artificially ventilated rats, we obtained extracellular recordings from VLM cells when REMS-like
episodes were elicited by pontine carbachol injections (10 mM, 10 nl). One major group were the cells that were activated
during the episodes (n = 10). Their baseline firing rate of 3.762.1 (SD) Hz increased to 9.762.1 Hz. Most were found in the
adrenergic C1 region and at sites located less than 50 mm from dopamine b-hydroxylase-positive (DBH+) neurons. Another
major group were the silenced or suppressed cells (n = 35). Most were localized in the lateral reticular nucleus (LRN) and
distantly from any DBH+ cells. Their baseline firing rates were 6.864.4 Hz and 15.867.1 Hz, respectively, with the activity of
the latter reduced to 7.463.8 Hz. We conclude that, in contrast to the pontine noradrenergic cells that are silenced during
REMS, medullary adrenergic C1 neurons, many of which drive the sympathetic output, are activated. Our data also show
that afferent input transmitted to the cerebellum through the LRN is attenuated during REMS. This may distort the spatial
representation of body position during REMS.
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Introduction

Rapid eye movement sleep (REMS) is a state characterized by

wake-like activation of the cortex and hippocampus accompanied

by a loss of activity in postural muscles (atonia) and a host of phasic

phenomena, such as rapid eye movements, twitches of the distal

limb and orofacial muscles, and variable breathing and arterial

blood pressure [1]. REMS is the state when dreams occur and it

plays an important role in brain development and processing of

memories acquired during the waking states [2,3,4]. It is also a

state whose expression characteristically changes with aging and

neurodegenerative disorders [5,6,7,8]. For all of these reasons,

extensive efforts have been invested in studies of the neural

mechanisms and networks responsible for the generation and

modulation of this phase of sleep.

Although expression of REMS is dependent on modulatory

influences exerted by the forebrain, the brainstem is the principal

site of origin of the state [9,10]. Single cell recordings obtained

from the pons indicated the presence of two major cell types likely

to play a key role in the generation of REMS: the REMS-on cells

that are tonically activated in association with the occurrence of

REMS episodes and REMS-off cells that are suppressed or

silenced in a reciprocal manner relative to the activity of the

REMS-on neurons. The pontine REMS-on cells include cholin-

ergic and glutamatergic neurons, whereas the best identified

pontine REMS-off cells are those containing serotonin (dorsal

raphe nucleus) and norepinephrine (locus coeruleus (LC)), also

designated as the A6 noradrenergic group)

[11,12,13,14,15,16,17,18,19]. Based on these findings, a reciprocal

cholinergic-aminergic network model has been proposed to

explain the generation of REMS [20], and it was subsequently

modified to include pontine excitatory glutamatergic and inhib-

itory (GABA-ergic) neurons [21]. However, further tests and

refinements of the existing models are needed to advance our

understanding of the mechanisms responsible for the generation of

REMS and, ultimately, to understand its physiologic role.

Pontine REMS-related cells interact with many locally and

remotely located targets and this interaction determines the timing

of REMS occurrence within the sleep-wake cycle, and presumably

also the impact of REMS on brain functions (reviewed in

[20,21,22,23,24]). In particular, the connections between

PLOS ONE | www.plosone.org 1 April 2013 | Volume 8 | Issue 4 | e62410



REMS-related cells in the pons and those located in the medullary

reticular formation [25,26,27,28] appear to be very important

because REMS is severely curtailed or abolished following certain

medullary lesions or when the connections between the pons and

medulla are interrupted [29,30]. Thus, the interactions between

the pontine and medullary reticular formation cells with REMS-

related activity need to be elucidated to fully understand the key

elements of the brainstem network responsible for the generation

of REMS and its characteristic phenomena.

To date, studies of REMS-related cells in the medulla lag

behind the corresponding studies in the pons. This is due, in part,

to historically greater attention paid to the pontine mechanisms

but the progress is also hampered by the technical difficulty to

record cell activities across the sleep-wake cycle at sites located

close to the highly mobile spino-medullary junction. Nevertheless,

cell recordings in chronically instrumented cats demonstrated that

the medial reticular formation of the rostral medulla contains

appreciable numbers of REMS-on neurons [31,32,33,34,35] and

that serotonergic cells located along the medullary midline have

REMS-off firing patterns [36,37,38]. However, the studies in

chronically instrumented, behaving animals are limited in that the

locations of the recording sites often cannot be precisely

determined and the neurochemical identity of the recorded

neurons is difficult to ascertain. In addition, no recordings were

conducted to date from more caudal regions of the ventrolateral

medulla (VLM) due to accessibility problems in behaving animals.

Consequently, inferences about the specific role of medullary

REMS-related cells have been often based on juxtaposition of

results collected from behaving animals with anatomical data

separately obtained by means of tract tracing and immunohisto-

chemistry. Thus, with the exception of caudal medullary

serotonergic neurons [36,37,38,39] and rostromedial medullary

reticular neurons [34], comprehensive evidence associating

REMS-related cellular activity in the medulla to the neurochem-

ical identity of the recorded cells and/or their functions is not

available. Nevertheless, compelling suggestions have been made

based on indirect evidence. For example, it has been proposed that

VLM REMS-on neurons are inhibitory, possibly GABA-ergic,

whereas the catecholaminergic A1 and C1 neurons are of the

REMS-off type [40,41].

Within the caudal and intermediate VLM, there are three

major groups of cells whose functions and connectivity have been

well characterized but whose behavior during REMS is unknown.

At relatively rostral levels, there are the adrenergic cells of the C1

group, many of which drive the sympathetic output and have

extensive connections within the brainstem

[42,43,44,45,46,47,48,49,50]. Further caudal, the VLM contains

noradrenergic cells (A1 group) that may contribute to cardiovas-

cular and pain regulations [51,52,53,54,55] through their axonal

projections to the brainstem and spinal cord [56,57]. They mainly

aggregate just dorsal and dorsomedial to the lateral reticular

nucleus (LRN), a major precerebellar structure that integrates

descending motor commands with vestibular information and

flexor reflex afferents ascending from the spinal cord

[58,59,60,61,62,63,64].

REMS is associated with a major reconfiguration of both

cardiorespiratory control and central processing of sensorymotor

information and yet, the effects of REMS on activity of C1, A1

and LRN neurons have not been characterized. Thus, our goal

was to determine the effect of REMS on the activity of cells in the

VLM in relation to their neurochemical and/or functional

phenotypes. To achieve this, we used a pharmacological model

of REMS that allows one to effectively sample single cell activity

and unimpeded access to the caudal VLM. We used urethane-

anesthetized rats in which dorsomedial pontine injections of

carbachol trigger REMS-like episodes that include cortical and

hippocampal activation and suppression of activity in hypoglossal

motoneurons [65,66]. The REMS-like episodes elicited in this

model last 4–8 min and can be triggered repeatedly, thus making

the model particularly suitable for observation of electrophysio-

logical activity of single cells in a well-controlled experimental

setting. We have previously validated this model as adequately

representing multiple tonic features of natural REMS. This

included a demonstration that the effective regions for microin-

jections of both carbachol and the GABAA receptor antagonist,

bicuculline, into the dorsal pontine tegmentum are well defined

[67] and correspond to the effective regions in behaving rats

[68,69,70,71]. We determined that the pontine noradrenergic LC

neurons and caudal medullary serotonergic neurons are silenced

during the REMS-like episodes elicited by pontine microinjections

of carbachol [39,65], as they are during natural REMS [13,37].

Furthermore, we determined that activation of neurons in the

wake-related posterior, lateral hypothalamus suppresses the ability

of pontine carbachol to trigger REMS-like episodes [66].

Similarly, in behaving animals, activation of cells in this

hypothalamic region suppresses sleep and awakens the animal

[72,73]. Thus, while the model is limited in that it does not

generate phasic events of REMS (see [74,65,75] for discussion), it

otherwise mimics at many levels the processes underlying the

initiation and maintenance of REMS.

Our present extracellular recordings from caudal VLM neurons

combined with immunohistochemistry and complemented with

analysis of cell action potentials characteristics and firing patterns

reveal that adrenergic VLM cells (C1 group) are activated whereas

the precerebellar LRN neurons are silenced or suppressed during

REMS-like episodes. These findings extend our understanding of

the mechanisms underlying the medullary contribution to the

generation of REMS and the impact of REMS on the

cardiovascular and somatosensory systems. They also prompt a

reinterpretation of prior cellular studies of REMS-related cells in

the VLM. A preliminary report has been published [76].

Materials and Methods

Ethics Statement
All animal procedures followed the guidelines of the Guide for the

Care and Use of Laboratory Animals of the National Institutes of Health

and were approved by the Institutional Animal Care and Use

Committee of the University of Pennsylvania (Protocol

no. 803882). All experimental procedures were performed under

anesthesia and with continuous monitoring of electroencephalo-

gram (EEG), respiratory activity and blood pressure to ensure

stable and pain-free conditions.

Animal Preparation, Microinjection and Recording
Techniques

Experiments were performed on 18 adult, male Sprague-

Dawley rats (390619 (SD) g body weight) obtained from Charles

River Laboratories (Wilmington, MA).

Rats were pre-anesthetized with isoflurane (3%) followed by

urethane (1.0 g/kg i.v. via a tail vein catheter). They were

tracheotomized and had a femoral artery and vein catheterized for

arterial blood pressure monitoring and fluid/drug administration,

respectively. The medial branch of the right XII nerve was

dissected, cut and its central end was placed in a cuff-type

recording electrode (modified after [77]). Both cervical vagi were

cut to enhance XII nerve activity and make it independent of lung

volume feedback. The animal’s head was placed in a stereotaxic

REM Sleep-On and REM Sleep-Off Cells in VLM
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holder and openings were made in the parietal bone on the left

side for inserting a carbachol-containing pipette into the dorso-

medial pons and on the right side for inserting a bipolar recording

electrode into the hippocampus. The atlanto-occipital membrane

was exposed, the caudal edge of the occipital bone was removed,

and the dura and pia matters overlying the cerebellar vermis and

medulla were cut and retracted laterally to allow for insertion of a

recording pipette into the VLM. Two screws were attached to the

skull (2 mm anterior and 2 mm left/right from bregma) to record

cortical EEG. Hippocampal activity was recorded using an

electrode constructed from two Teflon-insulated platinum wires

(Model 771000; A-M Systems, Sequim, WA) with tips separated

by 0.8 mm. The electrode was inserted 3.7 mm posterior to

bregma, 2.2 mm right from the midline and 2.4 mm below the

cortical surface.

The animals were paralyzed with pancuronium bromide (1 mg/

kg i.v., Sigma, St. Louis, MO) and artificially ventilated with an

air-oxygen mixture (30–60% O2). The central respiratory drive

was set by first ventilating the animal to the apneic threshold and

then gradually reducing the tidal volume of the ventilator until a

steady respiratory modulation of XII nerve activity was estab-

lished. Subsequently, the rate and volume of artificial ventilation

were kept constant. Adequate level of anesthesia was verified based

on stability of the amplitude and constant rate of inspiratory bursts

recorded from the XII nerve, stable heart rate and arterial blood

pressure, and stable cortical EEG and hippocampal activities. If

needed, supplemental doses of urethane were administered in 0.2–

0.3 mg/kg increments. Adequate paralysis was maintained by

continuous infusion of pancuronium bromide (0.6 mgkg21 h21,

i.v.). Rectal temperature was maintained at 37.0uC with a servo-

controlled heating pad.

The microinjection pipettes were made from single-barrel glass

pipettes with tip diameters of 25–30 mm (Catalog no. 626800; A-

M Systems). They were filled with carbachol, a cholinergic agonist

(carbamyl choline HCl, Sigma, St. Louis, MO) dissolved in 0.9%

NaCl to 10 mM concentration with 2% of Pontamine sky blue dye

(ICN Biomedicals, Aurora, OH) added to mark the injection sites.

They were inserted into the dorsomedial pontine tegmentum

aiming at the following stereotaxic coordinates: 3.1 mm caudal to

bregma, 1.3 mm lateral from midline, and 8.2 mm below the

cortical surface. The microinjections had a volume of 10 nl and

were made over a period of 15–30 s by applying pressure to the

fluid in the pipette while monitoring the movement of the

meniscus with a calibrated microscope with 1 nl resolution. One

pipette was used in each experiment and, once the site was verified

to be effective at the beginning of the recording session, all

subsequent injections were made at this one site. The pipettes for

extracellular single cell recording were made from aluminosilicate

glass (Catalog no. AF100-68-10, Sutter Instruments, Novato, CA)

and had tips broken to a diameter of 2.5–3.0 mm. They were filled

with 0.5 M Na acetate with 2% of Pontamine sky blue dye added

to iontophoretically mark the recording sites. They were moved

vertically using a digitally-controlled hydraulic microdrive (F. Haer

and Co., Brunswick, ME).

The single cell recording pipette and the XII nerve, hippocam-

pal and cortical EEG recording electrodes were connected to

differential pre-amplifiers and amplifiers (NeuroLog modules 104

and 126, Digitimer Ltd., Hertfordshire, England). The signals

were amplified and filtered at 100–3,000 Hz for single cell and XII

nerve activity; 1–20 Hz for hippocampal activity; and 0.8–100 Hz

for the cortical EEG. Arterial blood pressure was measured using a

pressure transducer (P23 Db, Statham, Hato Rey, Puerto Rico).

The raw and integrated XII nerve activity (time constant 100 ms;

moving averager MA-821RSP, CWE Inc., Ardmore, PA), arterial

blood pressure, inspiratory-expiratory CO2 difference (Micro

Capnometer, Columbus Instruments, Columbus, OH) and event

markers were digitized (Micro1401-3 data acquisition unit;

Cambridge Electronic Design Ltd., Cambridge, England) and

stored on a computer (Spike-2 software version 7; Cambridge

Electronic Design Ltd.) using a sampling rate of 20,000 Hz for

single cell recording, 5,000 Hz for the raw XII nerve activity, and

100 Hz for all other signals. The power of hippocampal activity in

the theta frequency range (2.8–4 Hz in urethane-anesthetized rats

[78]) was calculated offline in successive 10 s intervals (Spike-2

software).

Experimental Protocol and Data Analysis
Our main goal was to explore catecholaminergic A1 and C1

cells of the VLM during REMS-like episodes. Most C1 cells are

located in the lateral part of the lateral paragigantocellular

region (LPGi), ventral to respiratory-modulated cells of the

ventral respiratory group, and at antero-posterior levels between

the rostral end of the LRN and the caudal margin of the facial

nucleus (Mo7) [79,80,81,82]. Further caudally, they are

intermixed with noradrenergic A1 cells, which then predominate

at more caudal levels where the LRN is the main cytoarchi-

tectonically distinct structure. Accordingly, we searched for cells

having spontaneous activity prior to carbachol injection at

antero-posterior levels extending from 212.8 mm to 214.8 mm

caudal relative to bregma according to a rat brain atlas [82],

from 1.6 mm to 2.2 mm lateral from midline, and at depths

below those at which we encountered respiratory-modulated

neurons.

Once a stable recording from a single cell was established, we

acquired a ,1 min-long segment of minimally filtered record (1–

3,000 Hz) for subsequent analysis of undistorted shape of action

potentials and then, after at least 5 min of undisturbed baseline

recording, we injected carbachol into the pons. Cell activity was

monitored throughout the carbachol-induced REMS-like episode

and for at least 5 min thereafter. The recording site was then

marked with Pontamine blue deposit from the recording pipette

(10 mA, 10 min, tip negative) and the pipette was withdrawn and

placed in a different track. Up to 5 distinct recording sites were

marked per experiment (mean: 2.561.2 (SD)), with a distance of at

least 300 mm between the marked sites to allow for an unequivocal

association of each site with the recorded cell.

At the end of the recording session, the animal received an

additional dose of urethane (1.0 g/kg) and was intra-arterially

perfused with 0.9% saline followed by 10% formalin. The brain

was extracted, postfixed, cryoprotected in 30% sucrose, and the

medulla and pons were cut into 25 mm coronal sections and

those containing Pontamine blue deposit were collected. Pontine

sections were sequentially mounted, stained with Neutral red,

dehydrated, de-fatted and coverslipped, whereas medullary

sections were subjected to immunohistochemistry for dopamine

b-hydroxylase (DBH), a marker for catecholaminergic neurons.

Immunohistochemical processing has been described previously

[57]. In brief, free-floating sections were initially incubated in

1% borohydrate and then 70% ethyl alcohol mixed with 0.3%

hydrogen peroxide to deactivate any residual formaldehyde and

neutralize endogenous peroxidases. They were then incubated

with DBH antibodies at 1:500 concentration (catalog symbol:

MAB308; Millipore, Billerica, MA) and the binding was

visualized using biotinylated secondary antibodies tagged with

horseradish peroxidase (Vectastatin Elite ABC reagent; Vector,

Burlingame, CA). Horseradish peroxidase was reacted with 3 3’

diaminobenzidine tetrahydrochloride resulting in a brown

staining of DBH-positive (DBH+) neurons. The sections were

REM Sleep-On and REM Sleep-Off Cells in VLM
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then serially mounted and the one representing the center of

each recording site was used to measure the distance between

the center of the marked spot and the closest catecholaminergic

cell bodies.

Changes in cell firing rate associated with each REMS-like

episode and other ancillary features of each cell’s activity were

analyzed off-line in relation to the carbachol-induced changes in

cortical and hippocampal activity and cardiorespiratory param-

eters. The changes in cortical EEG, hippocampal activity, XII

nerve activity and respiratory rate that characterize REMS-like

episodes triggered by pontine carbachol have been described in

our earlier publications [65,66,67,83,84]. These changes were

continuously monitored and used to determine whether

carbachol injections were effective, which was a necessary

prerequisite for subjecting the recorded single cell activity to off-

line analysis. The amplitude of integrated XII nerve activity,

instantaneous central respiratory rate, heart rate and mean

arterial blood pressure were automatically derived from

integrated XII nerve activity and arterial blood pressure records,

respectively. For simplicity, our illustrations of cell activities

during REMS-like episodes (Figs. 1 and 2) show only integrated

XII nerve activity and respiratory rate or arterial blood pressure

because their changes sufficiently delineate the onset of each

episode and the subsequent recovery.

Action potentials were converted to standard pulses using

threshold discrimination and peak detection features that are a

part of the Spike-2 software. Mean cell firing rate was then

calculated in successive 10 s intervals to determine the time

course and pattern of firing rate changes over the entire

duration of each REMS-like episode. The latencies to the onset

of carbachol effect were measured between the onset of

carbachol injection and the point when integrated XII nerve

activity declined from the baseline by at least 10%. The

durations of REMS-like episodes were measured between the

point of the 10% decline and the point when XII nerve activity

subsequently increased during the recovery by at least 10% of

the total baseline amplitude. To characterize the effects of

pontine carbachol on cell firing rate in a standardized way, the

mean firing rate was calculated over a 1-min interval centered

on the peak of the effect, during 5-min period prior to

carbachol injection and another 5-min period after the recovery

occurred. For the analysis of action potential durations, 5

successive action potentials recorded with broad-band filtering

were averaged using the action potential peaks as triggers and

then the durations of the negative deflection (main action

potential) and positive deflection (afterpotential) were measured

at the level of the half of the corresponding maximal amplitude

relative to the isoelectric baseline ("half-widths"). The purpose of

this analysis was to relate the action potential indices to the

proximity of the recording site to DBH+ neurons in consider-

ation of prior data showing that catecholaminergic cells have

relatively longer action potentials and afterpotentials than most

other cells recorded in the pontomedullary reticular formation

[83,85,86,87,88,89].

Cardiac modulation of cell activity was assessed by construct-

ing cycle-triggered histograms of spike occurrence relative to the

peak of the arterial blood pressure waveform. The histograms

were constructed using 5 min of undisturbed recording of cell

activity prior to carbachol injection. They had a bin width of

10 ms and a time base that covered approximately 63 cardiac

cycles relative to the triggering event. For cells whose

histograms revealed the presence of a cardiac rhythm, the

Figure 1. Example of a cell that was activated during a REMS-like episode. A: a 21 min-long record covering a period of baseline activity,
carbachol-triggered REMS-like episode and recovery. The REMS-like episode is marked by the steep decline of integrated XII nerve activity (#XIIa),
ultimately leading to a transient disappearance of its inspiratory-modulated bursts, with a concurrent decline of the central respiratory rate and an
increase of arterial blood pressure. The cell firing rate is more than doubled at the peak of the effect. Subsequently, both XII nerve activity and arterial
blood pressure gradually recover, roughly in parallel to the decline of the firing rate of the cell. Carbachol was injected into the dorsomedial pontine
tegmentum at the arrow (10 nl, 10 mM). B and C: expanded portions of the main record during the baseline period and at the peak of the effect, as
indicated by the grey lines in A. The records show individual action potentials together with details of integrated XII nerve activity and blood pressure
waveforms.
doi:10.1371/journal.pone.0062410.g001

REM Sleep-On and REM Sleep-Off Cells in VLM
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amplitude of modulation was measured as the difference in

firing rate between the maximum and the minimum and its

angular phase was determined between the peak of arterial

blood pressure and the bin in the histogram that contained the

lowest firing rate. With the average cardiac cycle length being

about 130 ms, the histogram bin length of 10 ms allowed for

the angular phase determination with a resolution of approx-

imately 614 degrees.

Each marked recording site was re-plotted onto the most

appropriate standard cross-section of the medulla derived from a

rat brain atlas [82]. The sites whose centers were less than 50 mm

away from the nearest DBH+ cell (or a cluster of such cells) were

operationally defined as those at which the recorded cell could be

a catecholaminergic neuron and were designated as DBH+. All

sites that did not fulfill this criterion were regarded as representing

recordings from cells that were unlikely to be catecholaminergic

and were operationally designated as DBH-negative (DBH-).

Statistical Analysis
Statistical analysis was performed using SigmaPlot 12.0 software

(Systat Software Inc., San Jose, CA). Normality of the distributions

was tested using the Shapiro-Wilk test. Cell firing rates and other

cardiorespiratory parameters at the baseline, the peak of carbachol

effects and at the time of recovery were analyzed using repeated

measures ANOVA with Holm-Sidak post-hoc comparisons. The

results are presented as the mean 6 standard deviation (SD). A P

value less than 0.05 was considered significant. When data sets

were not normally distributed, Mann-Whitney rank sum test was

used for comparisons between two groups. Fisher-Exact test was

used to compare proportions of cells expressing different features

in different groups.

Results

Characteristics of Carbachol-induced REMS-like Episodes
While collecting data for the present study, we elicited

38 REMS-like episodes by injecting carbachol into the dorsome-

dial pons. The effective injection sites were localized within the

dorsomedial pontine area that we described and illustrated in our

earlier publications [65,66,67,84]. Based on the time course of the

decline of inspiratory modulation of XII nerve activity, the

episodes occurred with a latency of 87654 s after the onset of

carbachol injection and lasted 3806220 s. In 25 of the 38

episodes, XII nerve activity was transiently abolished at the peak

of the effect and in the remaining ones some respiratory-

modulated activity was maintained throughout the episodes. The

mean arterial blood pressure prior to carbachol injections was

62612 mmHg, it increased during the episodes to 67613 mmHg

(P,0.000005, paired t-test re. baseline), and then returned to

61612 mmHg after the recovery. The mean heart rate at baseline

was 459622 min21, it decreased to 455622 min21 during the

episodes (P,0.007, paired t-test re. baseline), and increased to

457622 min21 after the recovery.

Cellular Behaviors During REMS-like Episodes: Cell
Categories and Locations Relative to DBH Cells and LRN

We recorded from 50 VLM cells during one or more REMS-

like episodes elicited by pontine carbachol. Twenty six recordings

were from single cells and 12 from two adjacent cells that had

sufficiently different amplitudes and configurations of their action

potentials to allow for a reliable separation of their activities into

distinct single-cell spike trains. Four single cell recordings and one

two-cell recording were collected twice, with two pontine

carbachol injections made successively at an interval of about

Figure 2. Example of a simultaneous recording from two cells that were silenced during a REMS-like episode. A: a 17 min-long record,
with the period of REMS-like episode marked by a profound depression of XII nerve activity (#XIIa) and a reduction of central respiratory rate that
included a transient arrest of the central respiratory rhythm. During the episode, both cells are transiently silenced. Carbachol was injected into the
dorsomedial pontine tegmentum at the arrow (10 nl, 10 mM). B: a segment of baseline activity at an expanded time scale showing different
amplitudes and configurations of the action potentials generated by the two cells. C and D: expanded portions of the main record covering the
periods when the two cells became silent and then resumed activity, as indicated by the grey areas superimposed on the cell activity trace in A.
Arrows of the corresponding colors mark the offsets and onsets of firing for cells 1 and 2, as designated in A and B. The cell with a smaller action
potential (cell 1) was silenced later than the larger cell (cell 2) at the beginning of the REMS-like episode and then resumed firing earlier than the cell
with the larger action potential during the recovery.
doi:10.1371/journal.pone.0062410.g002

REM Sleep-On and REM Sleep-Off Cells in VLM
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1 h. For all the 6 cells that were tested twice, the changes in cell

activity during REMS-like episodes were qualitatively and

quantitatively similar between the first and second test. The

remaining 44 cells were recorded during one REMS-like episode

each. To maintain a balanced design, the firing rates before,

during and after the REMS-like episode collected from each of the

6 cells that were tested twice were averaged and then treated as

one observation.

Our primary classification of cell behaviors during REMS-like

episodes comprised four categories: (1) activated cells (n = 10); (2)

silenced cells (n = 26); (3) suppressed, but not silenced, cells (n = 9);

and (4) cells whose activity did not change in relation to the time

course of the other characteristic effects despite otherwise clear

evidence from observation of XII nerve activity, respiratory rate,

cortical EEG and hippocampal activity that carbachol injections

were effective (n = 5). Figure 1 shows an example of a cell that was

activated. The cell firing rate begins to accelerate coincidentally

with the onset of suppression of XII nerve activity and blood

pressure increase. The peak firing rate coincides with the period of

maximal suppression of XII nerve activity (transiently abolished)

and then the firing rate gradually declines during the recovery of

XII nerve activity and decline of arterial blood pressure. In

contrast to this case, Fig. 2 shows an example of a simultaneous

recording from two cells, both of which became silent during the

REMS-like episode. The silencing occurred in temporal associa-

tion with the suppression (transient abolition) of XII nerve activity.

The cell with a smaller action potential stopped firing about 20 s

later than the cell with the larger action potential (Fig. 2C) and

then was the first one to resume firing during the recovery

(Fig. 2D).

Figure 3A–D shows the firing rates of each of the 50 studied

cells and Fig. 3E–H the average firing rates before, during and

after the REMS-like episode grouped by the nature of the cellular

response. The three responsive cell groups had different baseline

firing rates, the lowest for the activated cells, significantly higher

for the silenced cells (6.864.4 Hz vs. 3.762.1 Hz; p = 0.038,

unpaired t-test) and highest for the suppressed cells (15.967.1 Hz;

p = 0.00009 vs. silenced cells). The average baseline firing rate of

the 5 not affected cells was similar to that of the activated cells

(3.760.9 Hz). Given that the silenced and suppressed groups were

dominated by a relatively homogenous subset of cells that were

recorded from the LRN (at least 26 out of 35 that were silenced or

suppressed; see below), it is likely that the cells that were only

suppressed during REMS-like episode were not entirely silenced as

result of their baseline firing rates being higher than for the

silenced cells.

The cell groups initially classified on the basis of their behavior

during the REMS-like episodes were differentially distributed

within the explored region of the VLM and in relation to the

presence of DBH+ cells near the recording site. Figure 4A shows

the anatomical distribution of all 50 recording sites superimposed

onto selected standard cross-sections through the lower medulla

derived from a rat brain atlas [82]. Most of the activated cells, 9

out of 10, were recorded at relatively rostral levels of the explored

region. Furthermore, 8 out of the 10 were located at sites adjacent

to DBH+ neurons (Fig. 4B). Indeed, all these 8 cells were recorded

at sites located within the area designated in our reference brain

atlas as the C1 or A1/C1 region and no such a cell was found at

more caudal levels where noradrenergic A1 cells predominate

(Fig. 4C and D). The remaining two activated cells were recorded

at the rostralmost part of the explored VLM and relatively

medially. These two recording sites were localized in the LPGi

region (Fig. 4A), as designated in our reference brain atlas [82].

The silenced and suppressed cells collectively represented the

largest group in our study, with the suppressed cells interspersed

among the silenced ones. Of particular note about this group is

that 26 of the 35 cells of this combined category were localized

clearly within the LRN and at a considerable distance from any

DBH+ neurons. Thus, there was high level of certainty that they

belonged to the precerebellar LRN. Most of the remaining 9 cells

were recorded at sites surrounding the LRN. Seven were located

near one or more DBH+ neurons (5 of those were silenced), one at

a distance from such cells and near the border between the LPGi

region and the inferior olive, and another one also away from

DBH+ neurons and near the ventral border of the LRN. Thus,

these 9 cells were probably a mixed group; some could still belong

to the LRN but we have not classified them as such because of

their peripheral location relative to the nucleus. Some could be

noradrenergic cells of the A1 group. However, considering that

many A1 neurons occur in clusters located dorsal to the LRN

(Fig. 4C), we were surprised to have found only 3 spontaneously

active cells located at the levels appropriate for the A1 group that

were recorded near DBH+ neurons (2 were silenced and 1 was

suppressed). Indeed, we believe that our population of cells that we

studied was relatively "enriched" with LRN neurons because our

other target, the noradrenergic A1 neurons, must have been silent

under our baseline conditions. Should they be active, many

electrode tracks would end with a recording from one of these cells

and then marking of the site, which would result in relatively fewer

neurons recorded in the LRN.

The anatomical distribution of the activated cells recorded at

DBH+ sites and the silenced or suppressed cells recorded within

the LRN is shown in Fig. 4D in relation to the levels

corresponding to the LRN, A1, A1/C1 and C1 groups. The

antero-posterior location of each recording site is assigned the

closest level selected from the 17 standard plates spaced by

approximately 120 mm that cover the VLM region that we

explored and are included in our reference brain atlas [82]. All

these silenced and suppressed neurons were found at the levels

corresponding to the LRN. In contrast, the close proximity to

DBH+ neurons of most activated cells and the location of such sites

at the rostral end of the explored region support the conclusion

that the activated cells were adrenergic neurons of the C1 group.

Our findings also suggest that noradrenergic A1 cells were

silenced, but the population of putative A1 cells tested was too

small to draw a firm conclusion.

It is of note that in none of the 12 instances when we recorded

simultaneously from two cells during the REMS-like episodes did

we observed a case when the behavior of one cell would be

opposite to that of the other, such as one cell being activated and

the other suppressed or silenced. Nor have we observed at any

recording site cases when a cell silent under the baseline condition

would be recruited following carbachol injections while the

originally investigated cell became suppressed or silenced. In 10

of the 12 cases with two cells recorded simultaneously, both were

suppressed or silenced (as in Fig. 2), in one case the cell originally

selected for the test was activated and then another initially silent

one became active during the episode, and in one case one cell was

suppressed and the other was not affected. The absence of

evidence for adjacent location of cells having opposite changes in

firing rate during REMS-like episodes suggests that, in the part of

the VLM that we explored, mutually inhibitory interactions

among local cells were not common. Rather, it appears that the

suppressed/silenced and activated cells aggregated in clusters, with

the changes of activity during the episodes being imparted on them

through afferent projections from regions located elsewhere.
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Figure 3. Individual and average firing rates within each cell category under the baseline conditions, during the REMS-like
episodes, and following recovery. A–D: Firing rates of each of the 50 studied cells measured before, during and after REMS-like episode grouped
by their different behaviors during the episode. The cells recorded at sites located closer than 50 mm from one or more DBH-positive (DBH+) neurons
are marked by red lines. The lines representing firing rates of different cells end with different symbols to allow for tracking of each cell firing rate
across the three conditions. The percentage of cells recorded near DBH+ neurons was significantly higher among the activated cells (80%) than
among either the silenced (19%) or suppressed (22%) cells (P = 0.001 and P = 0.023 by Fisher-Exact test, with the odds ratios of 16 and 14,
respectively). E-H: Mean firing rates before, during and after the REMS-like episodes for each of the four groups of cells. On the average, the firing rate
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Relationship of Cell Behavior Characteristics and Location
to Action Potential and Afterpotential Durations

Aminergic and cholinergic brainstem cells have relatively

longer-lasting action potentials and afterpotentials than most

other cells in the pontomedullary reticular formation

[83,85,86,87,88,89]. Analysis of the half-widths of the spike

waveforms of all recorded cells was undertaken to further test

whether the activated cells and/or the cells recorded at sites where

we found DBH+ neurons were likely to be aminergic. The

measurements were taken using the approach explained in Fig. 5A

and were derived from minimally filtered records of cell activity

(see Methods) to minimize the distortion of the waveforms. Out of

the 50 cells recorded during the REMS-like episodes, 5 could not

changes between the baseline and maximal effect during the REMS-like episode were statistically significant for each of the affected groups, and the
firing rate after the episode was not different from that during the baseline period. Activated cells had lower baseline firing rates than the silenced
cells (P,0.038, unpaired t-test). The baseline firing rate of the latter was about twice lower than that of the suppressed cells (6.864.4 Hz vs.
15.867.1 Hz, P,0.0001), suggesting that the baseline firing rate determined whether a cell was silenced or only suppressed during the REMS-like
episode.
doi:10.1371/journal.pone.0062410.g003

Figure 4. Cell behavior during the REMS-like episodes was related to the anatomical location of the recording site and its proximity
to DBH-positive (DBH+) neurons. A: distribution of all recording sites superimposed onto a series of standard medullary sections from a rat brain
atlas [82]. Different symbols indicate activated, silenced, suppressed and not affected cells and mark their relative proximity to one or more DBH+

neurons. Most activated cells (8 out of 10) were found adjacent to DBH+ cells in the C1 region, and the remaining 2 in the LPGi region. Most of the
silenced or suppressed cells were located within the LRN (26 out of 35). The remaining 14 cells were a mixed group; some located near the edges of
the LRN may have still belonged to the nucleus and some could be spontaneously active cells of the A1 group or other reticular formation neurons
that became silenced or suppressed during REMS-like episodes. B and C: examples of marked recording sites (arrows) in sections
immunohistochemically labeled for DBH. The recording site in B was localized in the rostral part of the explored VLM region and within less than
50 mm from several DBH+ neurons (arrowhead points to a DBH-labeled cell located closest to the center of the recording site marked by Pontamine
blue deposit). The two recording sites in C were localized more caudally, within or near the LRN, and clearly away from more dorsally located DBH+

neurons (noradrenergic A1 group). D: distribution of the activated, silenced and suppressed cells, as assigned to one of the 17 different antero-
posterior levels represented in the rat brain atlas that we used as reference [82]. The lines under the abscissa mark the levels corresponding to the C1,
A1/C1 and LPGi regions and the LRN, as marked in the same atlas. The diagram shows the antero-posterio range of the VLM that we explored and its
rostral extension up to the facial motor nucleus (Mo7) that contains the rostral part of the adrenergic C1 group but was not explored in our study.
Abbreviations: Amb - nucleus ambiguous; Gi – gigantocellular reticular region; GiV – gigantocellular ventral reticular region; MdV – ventral medullary
reticular region; RAmb - retroambiguus nucleus; Sp5C – spinal trigeminal nucleus, caudal division; Sp5I - spinal trigeminal nucleus, interpolar division.
doi:10.1371/journal.pone.0062410.g004
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be subjected to this analysis; 2 because unfiltered records were not

available and 3 because their action potentials were too complex.

In a comparison between the cells recorded near DBH+ neurons

and those recorded at a distance from any such cells, the former

had both significantly longer actions potentials and afterpotentials

(Table 1). Indeed, despite the limitations of inferring about the

neurochemical phenotype of the studied cell from the phenotype

of cells present near the recording site, both indices had bimodal

distributions, with two distinct peaks made up mainly of the cells

recorded at DBH+ and DBH- sites, respectively (Fig. 5B and C).

Similarly, when activated cells were compared to the silenced/

suppressed cells irrespectively of the proximity of the recording site

to DBH+ neurons, activated cells had significantly longer action

potentials and afterpotentials than the silenced and suppressed

cells combined (Table 1). This reflected the high preponderance of

cells recorded at DBH+ sites among the activated cells (8 out of 9

subjected to spike shape analysis) and the relative scarcity of cells

recorded at DBH+ sites among those that were silenced,

suppressed or not affected (6 out of the 33 analyzed). Thus, both

ways of grouping the cells yielded results supporting the conclusion

that most of the activated cells and most of those recorded at sites

containing DBH+ neurons were likely to be aminergic.

Cardiac Modulation of Cell Activity
Most adrenergic C1 neurons are inhibited when arterial blood

pressure is increased and, as a reflection of this inhibition, their

spontaneous activity exhibits cardiac modulation

[79,90,91,92,93,94]. Therefore, to further assess whether our

population of cells activated during REMS-like episodes had this

property expected of C1 neurons, we examined cardiac modula-

tion of the baseline firing rate of 48 out of the 50 cells that we

recorded in this study (for 2 cells, the baseline firing rate was too

low to allow for conclusive analysis).

Owing to the peak arterial blood pressure being maintained

around 100 mmHg, none of the studied cells had an overt cardiac

modulation that would be noticeable by direct observation (cf.

[79,94]). However, cycle-triggered averaging revealed that 7 out of

9 activated cells, 14 out of 24 silenced cells, 3 out of 9 suppressed

cells, and none out of 5 not affected cells had cardiac modulation.

Thus, the presence of cardiac modulation was not a unique feature

associated with any one type of behavior during REMS-like

episodes, but there was a trend towards a higher proportion of cells

with cardiac modulation among the activated cells. Furthermore, 5

out of the 7 cells that were activated during REMS-like episodes

and were recorded at DBH+ sites had the angular phase of the

minimum of their firing rate closely aligned with the peak of

arterial blood pressure, whereas all the remaining cells in which

cardiac modulation was detected had widely scattered phase

Figure 5. Cells recorded near DBH-positive (DBH+) neurons had significantly longer action potentials and afterpotentials than
those recorded at a distance from DBH+ cells. A: the scheme explaining how the half-widths of action potentials and afterpotentials were
measured. Two spike waveforms are superimposed, one typical of a cell with a fast action potential and another for a cell with a slow action potential.
The histograms in B and C show that both the action potentials and afterpotentials had longer half-widths for the cells recorded at sites containing
DBH+ neurons than for the cells located at a distance from such sites. Since the majority of cells that were activated were found in the rostral part of
the explored region of the VLM and adjacent to DBH+ neurons, the spike duration data support the conclusion that most of the cells activated during
REMS-like episodes were the adrenergic cells of the C1 group.
doi:10.1371/journal.pone.0062410.g005

Table 1. Relationship between action potential and afterpotential half-width durations and the proximity of the recording site to
DBH+ neurons and cell behavior during the REMS-like episodes.

Cell category
Near DBH+

neurons
No DBH+ neurons
nearby P level* Activated cells

Silenced or
suppressed cells P level*

Number of cells 16 29 8 32

Action potential (mean 6SD; ms) 0.2260.04 0.1860.05 0.008 0.2360.03 0.1960.05 0.019

Afterpotential (mean 6SD; ms) 0.4960.10 0.3860.12 0.001 0.4960.10 0.4060.13 0.029

*-All significance levels determined by Mann-Whitney rank sum test.
doi:10.1371/journal.pone.0062410.t001

REM Sleep-On and REM Sleep-Off Cells in VLM

PLOS ONE | www.plosone.org 9 April 2013 | Volume 8 | Issue 4 | e62410



angles (this group includes the two activated cells that were

recorded in the LPGi region, 14 silenced and 3 suppressed cells).

Figure 6A shows an example of a cell that had reduced firing rate

in association with the rising slope of arterial blood pressure, and

Fig. 6B shows the polar plot with the amplitudes and phases of

cardiac modulation for all cells in which such a modulation was

detected. The cell in Fig. 6A was activated during the REMS-like

episode and was recorded at a site containing DBH+ neurons.

Thus, the analysis of cardiac modulation yielded results consistent

with an inhibitory effect of arterial baroreceptors on cells that were

activated during the REMS-like episodes. For all other cell

categories, the incidence of cardiac modulation tended to be lower

and the angular phase of the modulation, when present, suggested

that the input related to pulse pressure reached them through

more complex pathways.

Discussion

We characterized the behavior of two major cell groups located

in the caudal and intermediate VLM during pharmacologically

induced REM sleep-like episodes, the adrenergic cells of the C1

group and the precerebellar cells of the LRN. We determined that

C1 cells are activated, whereas LRN cells are silenced or

suppressed during the episodes. To our knowledge, our study

provides the first ever direct insight into the behavior of C1 and

LRN neurons during REMS.

Adrenergic C1 neurons play an important role in driving

sympathetic output and, through their ascending projections may

control the generation of REMS. Our finding that they are

activated during REMS-like state provides a mechanistic expla-

nation for arterial blood pressure increases that occur during

transitions from non-REMS to REMS. The LRN neurons are a

part of an important spino-reticulo-cerebellar pathway in which

the intended and actual movement trajectories are compared and

corrective signals are generated to ensure a smooth and precise

execution of motor tasks. We suggest that the REMS-related

suppression of activity in LRN neurons may be of particular

relevance in the condition known as the REMS behavior disorder

(RBD) in which patients can execute complex motor task while

they are in REMS based on all other electrophysiologic criteria.

Before we discuss our findings and their implications, we briefly

discuss the features of the model of REMS that we used when

compared to natural REMS.

Advantages and Limitations of the Anesthetized Rat
Carbachol Model of REMS

The REMS-like state elicited by pontine carbachol injections in

anesthetized, paralyzed and artificially ventilated rats does not

fully replicate all features of natural REMS but the two bear many

important similarities. The location of the effective sites for

eliciting the REMS-like state by pontine carbachol (or bicuculline)

in urethane-anesthetized rats [65,67,95] corresponds well to the

location of effective sites in chronically instrumented rats

[68,69,70,71] (injections volumes in behaving rats are by necessity

relatively larger, which limits their spatial resolution). Activation of

cells in the wake-promoting region of the posterior, lateral

hypothalamus abolishes the ability of pontine carbachol to elicit

REMS-like state in urethane-anesthetized rats [66] and optoge-

netic or pharmacological activation of cells in the same

hypothalamic region suppresses generation of sleep, including

REMS, in behaving rats [72,73]. Carbachol-induced REMS-like

state in anesthetized rats is characterized by activation of cortical

EEG and the appearance of theta-like rhythm in the hippocampus

[66,78], as is also typical of natural REMS. The frequency of the

theta-like rhythm elicited in urethane-anesthetized rats (2.8–

4.0 Hz) is slower than the REMS-related or sensory-evoked theta

rhythm in unanesthetized, behaving rats (6–9 Hz) but both

rhythms are generated within the same ponto-septo-hippocampal

network and similarly respond to pharmacological manipulations

and sensory stimulation [96,97].

Noradrenergic cells of the LC and pontine A5 group are

silenced during carbachol-induced REMS-like state in anesthe-

Figure 6. Cardiac modulation was detected in most cells activated during REMS-like episodes and in about a half of those that were
silenced or suppressed. A: example of a histogram of cell firing rate triggered from the peak of arterial blood pressure waveform. The concurrently
averaged blood pressure trace is superimposed over the histogram of cell firing rate. The cell was activated during the REMS-like episode and was
recorded at a site containing DBH+ neurons (amplitude of cardiac modulation: 1.6 Hz, angular phase of the lowest firing rate relative to the peak of
arterial blood pressure: +14 deg). B: polar diagram illustrating the distribution of amplitudes and phases of cardiac modulation of all cells in which
such modulation was detected (7 out of 9 activated cells, 14 out of 24 silenced cells, and 3 out of 9 suppressed cells). Notably, for all 5 cells that were
activated during the REMS-like episodes and recorded at sites containing DBH+ neurons, the angular phase of the minimum of their firing rate was
close to the peak of arterial blood pressure (red symbols in and near the lower right quadrant), whereas the silenced and suppressed cells recorded
from the LRN and the two activated cells that were recorded in the LPGi region had widely scattered phase angles. This is consistent with the first
group being inhibited by stimulation of arterial baroreceptors and the other cells being affected by pulse pressure through more complex pathways.
doi:10.1371/journal.pone.0062410.g006
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tized rats [65,83] and the same is the case during natural REMS

[13,19,98]. Ventral medullary inspiratory cells have unchanged or

increased activity during carbachol-induced REMS-like state in

anesthetized rats and decerebrate cats [99,100] and these cells are

also activated during natural REMS [101,102]. Caudal medullary

serotonergic cells are silenced during carbachol-induced REMS-

like state in decerebrate cats [39] and during natural REMS in

behaving cats [36,37]. Furthermore, the neurochemical mecha-

nisms of REMS-related suppression of activity in orofacial

motoneurons are similar when investigated in carbachol models

of REMS [84,103,104] and during natural REMS [105,106,107];

see [108] for an overview).

Thus, the list of similarities at both the systemic and cellular

levels between natural REMS and carbachol-induced REMS-like

state is long and supportive of the contention that the pontine

carbachol injections activate a major part of the brainstem

network responsible for the generation of natural REMS, but the

two states are not fully equivalent. What the carbachol models of

REMS are consistently lacking is the phasic components of

REMS, such as phasic bursts of motoneuronal activation (muscle

twitches), transient accelerations of respiratory rate and transient

surges of arterial blood pressure. We have previously argued that

the absence of phasic phenomena may be related to the mode of

state initiation and maintenance. In the carbachol models, a

cholinergic agonist is deposited into the REMS triggering zone in

the pons and exerts its action steadily over a certain period of time

whereas natural REMS occurs as a result of natural activation of a

network of neurons responsible for the initiation and maintenance

of this state which may rapidly wax and wane [74]. Generation of

phasic events is probably additionally suppressed by anesthesia, as

is the regulation of the duration of the episodes. In decerebrate,

unanesthetized rats, phasic muscle twitches do not occur during

the carbachol-induced REMS-like episodes of atonia but the

episodes last longer than in urethane-anesthetized rats and often

have abrupt terminations [109]. As with natural REMS, the

duration of the episodes is variable under both anesthetized and

decerebrate conditions and does not obviously depend on the

amount of carbachol injected provided that the drug does not

significantly spread into different reticular regions that exert

opposite effects on the REMS-related pontine network [109,110];

discussed in [65]. Thus, the carbachol-induced REMS-like state

elicited under urethane anesthesia cannot be used to study the

mechanisms of phasic events of REMS, but by all measures

obtained to date well replicates the tonic aspects of network

activation that leads to the generation and maintenance of REMS

episodes.

Additionally, it is important to note that our study was

conducted under neuromuscular paralysis and with artificial

ventilation at a constant rate and volume. Consequently, any

cellular and cardiorespiratory changes observed during the

REMS-like state can be interpreted as resulting from activation

of the central network responsible for the generation of REMS,

rather than being caused by secondary effects due to muscle

relaxation or changes in ventilation that occur during REMS in

behaving animals. We see this as an advantage of our model when

used to study cells that are a part of the REMS network that

controls the cardiorespiratory and motor systems.

Adrenergic C1 Cells are Activated During the REMS-like
State

Most of the cells that were activated during the REMS-like state

were found in the rostral part of the VLM that we explored. This

region contains adrenergic cells of the C1 group, and most of the

sites at which we found activated cells contained DBH+ neurons.

The activated cells had longer action potentials and afterpotentials

than most other cells, as is typical of aminergic neurons

[83,85,86,87,88]. In addition, they had detectable cardiac

rhythmicity with a phase relationship to arterial blood pressure

suggestive of an inhibitory effect of pulse pressure on cell activity,

as is typical of C1 neurons with axonal projections to the spinal

cord or hypothalamus [79,90,91,92,93,94]. Collectively, this

combination of features leads us to conclude that the activated

cells most likely represented adrenergic cells of the C1 group.

To date, most cells tonically activated during REMS have been

recorded from relatively more rostral and more medial regions of

the medullary reticular formation in cats [31,32,33,34,35]. A

recent study in chronically instrumented, REMS-deprived and

head-restrained rats found that the population of REMS-on

medullary reticular neurons extends further caudal and lateral

than in earlier reports [40]. Although the actual recording sites

were not shown, these cells appear to have been recorded from the

LPGi region just caudal to the Mo7, thus at slightly more rostral

levels than those that we explored in our study (cf. Fig. 4D).

However, both levels contain adrenergic C1 neurons [80,94].

Within this region, spinally projecting C1 neurons predominate

immediately caudal to the Mo7, whereas at the levels from

600 mm caudal to the Mo7 to the rostral end of the LRN spinally

projecting C1 neurons decrease in numbers and are replaced by

C1 neurons that have axonal projections to the posterior lateral

hypothalamus [80,94]. Since we explored only the caudal half of

the C1 region (cf. Fig. 4A and D), our population of REMS-like

state-activated cells could include both those with ascending and

those with descending projections. It is of note that, despite

different axonal projections, both groups are inhibited by

stimulation of arterial baroreceptors [94]. The region also contains

a third sub-population of neurons that are likely to be adrenergic

and have axonal projections to the LC [44,93,111]. However, in

contrast to the C1 cells with either spinal or hypothalamic

projections, these cells do not have cardiac modulation and are

only weakly inhibited by experimentally increased arterial blood

pressure [93]. In our study, among the 8 REMS-like state-

activated cells that were recorded at DBH+ sites, two had no

cardiac modulation. Thus, it is possible that our group of activated

cells included LC-projecting C1 neurons. Collectively, our findings

identify the adrenergic C1 cells as a major population of neurons

in the region between the Mo7 and LRN that has a REMS-on

pattern of activity.

Based on our data, many REMS-on cells recorded by Sirieix

et al. [40] could be adrenergic C1 neurons, and predominantly

those with spinal projections to preganglionic sympathetic

neurons. However, these authors proposed that their REMS-on

neurons represented a population of inhibitory (GABA-ergic or

glycinergic) interneurons whose function would be to inhibit

motoneurons or noradrenergic LC neurons during REMS. This

interpretation was based on juxtaposition of cell recording data

with results from separate tract-tracing and immunohistochemical

experiments in which the LPGi region located caudal to the Mo7

was found to contain GABA-ergic cells and cells that had axonal

projections to either the Mo7 or LC. Furthermore, in the same

study, the authors suggested that adrenergic C1 neurons may

belong to the REMS-off category on the basis of extrapolation

from electrophysiological studies of pontine noradrenergic neurons

that have well established REMS-off patterns [13,83,98]. Howev-

er, the exact location of the recording sites relative to the location

of cells with any of these distinct phenotypes was not determined

and an attempt to classify the cells based on the shapes and

durations of their action potentials did not yield conclusive results.

Furthermore, none of the two prior attempts to use c-Fos
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expression to indirectly assess the impact of REMS of C1 cell

activity was supportive of C1 cells being suppressed during REMS.

One of these studies indicated that the C1 region contains a

population of cells that have axonal projections to the LC and are

activated following a prolonged period of REMS [112]. The other

study found insignificant decline of c-Fos expression in rostral

VLM neurons containing tyrosine hydroxylase following pro-

longed periods of REMS-like state elicited by pontine carbachol

which was in contrast to significant c-Fos declines detected in

noradrenergic neurons of the pontine A5, A7 and sub-coeruleus

groups [110]. Accordingly, in consideration of these earlier results

and those from our present study, we propose that C1 neurons are

a major group of REMS-on neurons in the part of the LPGi region

that contains adrenergic cells.

Our finding that adrenergic C1 neurons are activated during

REMS-like state provides a mechanistic explanation for the mean

arterial blood pressure increases that occur during transitions from

slow-wave sleep to REMS [113,114,115]. Indeed, the average

blood pressure increases that we observed during REMS-like

episodes were significant and of a similar magnitude as those

observed on the average during REMS [113,114,115] (as

discussed in the preceding section, the model that we used does

not generate phasic events of REMS; accordingly, we cannot

comment on blood pressure variability that is another character-

istic feature of natural REMS but is absent from the carbachol

models). Blood pressure increases occurring concurrently with

activation of adrenergic C1 neurons are consistent with our

interpretation that the population of adrenergic C1 neurons that

are activated during REMS-like state includes the spinally

projecting presympathetic neurons in addition to those with

ascending projections to the hypothalamus and LC. This

interpretation is consistent with two recent studies showing that

selective optogenetic stimulation of C1 neurons elicits glutama-

tergic activation of LC neurons and increases arterial blood

pressure [47,111]. Since activation of LC neurons suppresses

generation of REMS [116,117], we suggest that VLM adrenergic

REMS-on cells may contribute to the termination of REMS

episodes, rather than to their maintenance.

LRN Cells are Silenced or Suppressed During REMS-like
State

Our interpretation that a substantial proportion of cells that

were silenced or suppressed were the cells of the precerebellar

LRN was conservative in that we included in this category only

those suppressed and silenced cells that were recorded clearly

within the nucleus and away from any DBH+ neurons. Still such

cells represented a majority, 26 out of 35 silenced or suppressed

neurons, with the remaining 9 recorded near the edges of the LRN

and of those 7 at DBH+ sites. These proportions convincingly

indicate that LRN cells are suppressed or silenced during the

REMS-like episodes. They also suggest that some noradrenergic

A1 neurons are suppressed or silenced, although we regard this

conclusion as a tentative one because 3 out of the 5 not affected

cells were also recorded at levels appropriate for A1 neurons and

at sites adjacent to DBH+ neurons. In addition, our earlier c-Fos

study did not support the conclusion that noradrenergic A1

neurons are suppressed during REMS-like state elicited by pontine

carbachol [110]. Thus, we currently think that many noradren-

ergic A1 neurons are silent in our model, which would explain the

relative scarcity of putative cells of this type in our sample.

Accordingly, the verdict is open as to whether A1 neurons are

suppressed or silenced, as is typical of pontine noradrenergic

neurons.

In contrast to the uncertainty about A1 neurons, our evidence

for suppression of activity in LRN neuron during REMS-like state

is supported by recording from many cells. To our knowledge, this

is the first direct electrophysiological demonstration that LRN

neurons are consistently affected by REMS and that the effect is a

suppression of their activity. To date, REMS-related suppression

of transmission has been reported for trigeminal sensory pathways

and it was explained, at least in part, by a state-dependent primary

afferent depolarization [118,119]. In contrast, activity of dorsal

spinocerebellar and spinoreticular tract neurons was reported to

be suppressed, increased or unchanged [120,121,122,123,124],

and the tactile receptive fields and tactile responsiveness of a

majority of spinal dorsal horn neurons were increased during

REMS [125]. The variability of these results may be caused by a

convergence on these neurons of possibly opposite effects mediated

by central REMS-related pathways and changes in peripheral

inputs associated with the atonia of REMS. Since our study was

conducted in paralyzed and artificially ventilated animals, the

suppression of LRN cell activity that we found can be ascribed

with a high degree of confidence to the central effects of REMS-

like state on the excitability of LRN neurons.

Suppression of LRN cell activity during REMS-like state may

be caused by an active, state-dependent inhibition or a state-

dependent withdrawal of excitatory effects (disfacilitation). Addi-

tional studies will be needed to distinguish between these two

possibilities. Regardless of the underlying mechanism, our findings

provide evidence of suppression of transmission in an important

spino-reticulo-cerebellar pathway that is functionally and anatom-

ically different from the dorsal pathways that have been studied to

date. Specifically, the LRN receives information from flexion-

reflex afferents that is transmitted to the nucleus through the

ventral funiculi of the spinal cord and integrates it with inputs from

the vestibular system and those related to the descending motor

commands [58,59,64,126,127]. This combined information is sent

via axons of LRN neurons (mossy fibers) to the cerebellar cortex,

cerebellar nuclei and pontomedullary reticular formation and is

used to achieve a smooth and precise execution of movements

[128]. Under most physiologic conditions, the REMS-related

suppression of LRN neuronal activity may be relatively unimpor-

tant due to the general suppression of motor activity during

REMS. However, it has been hypothesized that altered transmis-

sion in the pathways that carry information about the gravitational

forces may impact brain activity during REMS, including the

perception and interpretation of body position [129]. Thus, it is

possible that suppressed transmission through the LRN contrib-

utes to the often ‘‘bizarre’’ perception of movements during

dreams and facilitates the occurrence of phasic body movements

during natural REMS that are occasionally very large. The

REMS-related suppression of transmission through the LRN also

may play a significant role in RBD. In RBD patients, suppression

of motor activity during REMS is impaired due to degenerative

processes within the REMS-generating network and the patients

move in a manner suggesting that they act-out their dreams

[130,131,132]. However, the movements are imprecise, often

exaggerated, suggesting that they lack the proper feedback control

through the cerebellar circuits. Thus, our finding that LRN

neurons are suppressed during REMS may be of particular

relevance for the pathophysiology of RBD.

Conclusions
We determined the behavior of two major cell groups located in

the intermediate and caudal part of the VLM, the adrenergic cells

of the C1 group and the precerebellar cells of the LRN, during

pharmacologically induced REMS-like episodes. The C1 neurons
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play a major role in the regulation of sympathetic output and may

also be an important part of the central network responsible for the

generation of REMS. Our data suggest that activation of these

cells is, on the one hand, responsible for sympathetic activation

during REMS and, on the other hand, contributes to the

termination of REMS episodes. Suppression of LRN neuronal

activity during the REMS may alter the spatial representation of

body position. This, in turn, may be an important cause of the

often unusual dream imagery of movements during REMS and

may contribute to the generation of exaggerated movements in

RBD.
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