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A new master-slave binary grey wolf optimizer (MSBGWO) is introduced. A master-slave learning scheme is introduced to the
grey wolf optimizer (GWO) to improve its ability to explore and get better solutions in a search space. Five high-dimensional
biomedical datasets are used to test the ability of MSBGWO in feature selection. The experimental results of MSBGWO are
superior in terms of classification accuracy, precision, recall, F-measure, and number of features selected when compared to
those of the binary grey wolf optimizer version 2 (BGWO2), binary genetic algorithm (BGA), binary particle swarm
optimization (BPSO), differential evolution (DE) algorithm, and sine-cosine algorithm (SCA).

1. Introduction

A number of datasets especially of biomedical nature are high
dimensional. This means that they have a high number of
features per sample. Most of these features can be described
as either redundant or irrelevant and introduce noise which
affects the performance of a classifier used in medical diagno-
sis. It is therefore important to apply dimensionality reduc-
tion methods that will select the most informative subset of
features. Feature selection is one such method [1].

Depending on the search strategy, the feature selection
methods can be categorized as wrapper, filter, and embedded
methods.Wrapper methods have an underlying learning algo-
rithm used to evaluate the quality of selected features. Filter
methods are efficient in terms of execution time and are inde-
pendent of any learning algorithm. The embedded methods
include both the wrapper and filter methods [2, 3]. This paper
focuses on the wrapper method for feature selection.

Since feature selection is an NP-hard problem, there are
two traditional methods used to solve it. The methods are
the exact method and metaheuristics [2]. Exact methods

are time consuming as they have to consider each and every
subset, and this becomes computationally expensive as the
search space increases. Metaheuristic algorithms which are
nature inspired are generally preferred. They are able to find
optimal solutions without traversing the entire search space
of a given problem. Examples of metaheuristic algorithms
that have been used in feature selection include the genetic
algorithm (GA) [4], particle swarm optimization (PSO) [5],
ant colony optimization (ACO) [6], salp swarm algorithm
(SSA) [7], krill nerd algorithm (KNA) [8], dragonfly algo-
rithm [9], grasshopper optimization algorithm [10], whale
optimization algorithm [11], firefly algorithm [12], ant lion
optimizer [13], emperor penguins algorithm [14], and sine-
cosine algorithm [15].

The grey wolf optimizer (GWO) developed by Mirjalili
et al. [16] in 2014 mimics the social and hunting behavior
of the grey wolves in nature. The GWO is quite popular
for its excellent search capability [17] and has the advan-
tage of having few control parameters and fast convergence
rate. It has been used in a number of fields including
unmanned combat aerial path planning [18], medical diag-
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nosis [19], economic dispatch [20], intrusion detection
[21], EMG signal classification [22], and solving engineer-
ing problems [23]. However, in the presence of a large
search space, the GWO is vulnerable to getting trapped
in the local optima.

Researchers have suggested various methods to help it
improve its global search capability. In [17], variable weights
are used in determining the position of a wolf and an expo-
nential control parameter was also introduced, and the
experimental results showed its dominance over the GWO,
ALO, PSO, and bat algorithms. In [19], the GWO is hybrid-
ized with the genetic algorithm (GA), and using the kernel
extreme learning machine (KELM), it outperformed the
GA and GWO in the performance metrics on the Parkinson
and breast cancer datasets. Also in [24], the particle swarm
optimization (PSO) and GWO are combined, and the results
are superior compared to those of other algorithms. The
concept of competition is introduced among the population
of wolves in [22] and outperformed the binary grey wolf
optimizer, binary genetic algorithm, and binary particle
swarm optimization in classification. The Powell local opti-
mization method is introduced to the GWO for clustering
analysis and compared to some evolutionary algorithms;
the results were better on the benchmark functions and
datasets considered [25].

Despite these improvements, no method has been able to
exhaustively find the optimal solution when it comes to fea-
ture selection. In an effort to improve the exploration ability
of GWO to escape the local optimum, this paper proposes a
master-slave binary grey wolf optimizer (MSBGWO) algo-
rithm. This proposed methodology alters the position of
the wolves during exploration and exploitation and ensures
diversification of the solutions to be considered.

The main contributions of this paper are as follows:

(i) The MSBGWO introduces a master-slave learning
mechanism that makes the bottom half of wolves
in terms of fitness to learn from the top half in a
sequential manner.

(ii) The proposed MSGW is applied to five highly
dimensional datasets. The experimental results show
that it is able to select the fewest set of features and
obtain higher classification accuracy

The rest of the paper is arranged as follows. Section 2
gives the background information of GWO. Section 3 pre-
sents the proposed master-slave binary grey wolf optimizer.
Section 4 outlines the experimental design. Section 5 details
the experimental results and discussion, and finally, Section
6 draws the conclusion.

2. Grey Wolf Optimizer

It is part of the swarm intelligence family. It mimics the
social and hunting behavior of the grey wolf as stated before
[16]. Grey wolves generally move in groups of 5-12 mem-
bers. The social structure shown in Figure 1 comprises
alphas that are the top most, betas that rank just below the

alphas, omegas that lie at the bottom, and finally deltas that
are neither omegas nor the top two.

The hunting behavior involves finding prey, encircle-
ment and harassment of the prey to restrict its movement,
and then finally attacking the prey.

The process of encircling the prey can be modeled math-
ematically as in the equations below:

X
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vector coefficients.
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can be determined as follows:

A
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!
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where r1 and r2 are random numbers uniformly distrib-
uted between ½0, 1� and a is the encircling coefficient which is
linearly decreased from 2 to 0 as the iterations increase
according to the equation below:

a = 2 − 2
t
T

� �
, ð5Þ

where t is the number of iterations and T is the maxi-
mum number of iterations.

Hunting is usually led by the alpha. Beta and delta can
occasionally participate in hunting. Since we have no idea
of the position of the optimum prey, we assume that alpha,
beta, and delta have a better knowledge of the position and
thus can lead the rest of the pack. Mathematically, this is
achieved by selecting the top three fittest solutions which
are then used to update the other positional vectors of the
grey wolves.

The new position of the wolf is updated as follows:
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Figure 1: Social hierarchy.
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For continuous optimization problems, the GWO is
used. However, feature selection is a binary optimization
problem; thus, the GWO is modified to a binary version
which has already been developed [4].

3. Master-Slave Binary Grey Wolf
Optimizer (MSBGWO)

In each generation or iteration of the grey wolf optimizer,
the best three solutions are used in updating the position
of each wolf. The omega wolves constitute a larger percent-
age of the population and have lower fitness in relation with
the alpha, beta, and delta wolves. By repositioning the
weaker wolves in a guided approach, we can improve the
diversification ability of GWO in search of better solutions.

A master-slave learning scheme is hereby introduced. In
each generation, the wolves are sorted in ascending order of

fitness. The top half are then termed master wolves, and the
remaining half become slave wolves. Each slave wolf is
assigned a master wolf from whom they will learn.

The slaves will learn from the master using the following
equations:

DL = ω: C4: XM −XSð Þj j, ð13Þ

where DL is the fraction of distance between a master
and slave wolf, ω ϵ ½0 1� is the learning coefficient, C4 is
determined by equation (4), XM is a master wolf, XS is a
slave wolf, and S and M are evaluated using equation (14).

For a population of N wolves,

S =M + N
2
M = 1, 2, 3⋯ : ð14Þ

Following the principles of equation, the new continuous
position of the slave wolves is calculated as follows:

Xn =XM −A4:DL, ð15Þ

where Xn is the continuous solution and A4 is deter-
mined as in equation (3).

Since feature selection is a binary problem, the continu-
ous solutions are forced to be binary [26].

XSd t + 1ð Þ =
1, if S Xnð Þ > rand,
0, otherwise,

(
ð16Þ

where XSd is the new binary solution for a slave wolf

Begin
Randomly initialize the position of the wolves.
Sort the wolves in ascending order of fitness
Xα = fittest
Xβ =2nd fittest
Xδ =3rd fittest
While the number of iterations is not exceeded

Determine a as in Equation(18)
Sort the wolves in ascending order of fitness

Masters = top half of the pack(fitness)
Slave = remaining half of the pack
Slaves update their positions using Equations (13), (15) and (16)

for each wolf
Determine A,C using Equation (3) and (4)
Determine D for Xα, Xβ , and Xδ using Equations (10), (11) and (12)
Determine X1,X2,X3 using Equations (7), (8) and (9)
Determine the position using Equation (6) and (16)

End
Determine the fitness of each wolf
Update the positions of Xα, Xβ , and Xδ

End
Return Xα as solution
End

Algorithm 1: Pseudocode for MSBGWO.
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in dimension d, rand ϵ ½0 1�, and S is a sigmoid function
given by

S xð Þ = 1
1 + exp −10 ∗ x − 0:5ð Þð Þ : ð17Þ

Equation (16) is also applied when the positions of all
wolves are updated but rand is now set as 0.5.

The slave wolves can now be integrated with the master
grey wolves in the population and can now move to the next
generation.

To increase the number of iterations in the exploration
stage, the nonlinear control parameter a adopted in [17] is
used in place of

a = 2 1 −
t2

T2

� �
: ð18Þ

The pseudocode of MSBGWO is presented in Algo-
rithm 1, and the flowchart is shown in Figure 2.

4. Experimental Design

4.1. Datasets. A total of five high-dimensional biomedical
datasets obtained from [4] were used for validation. Each
dataset has two labels. The datasets are shown in Table 1.

Table 2: Parameter values for each algorithm.

Algorithm Parameters

MSBGWO ω = 0:1
BGA MR = 0:01, CR = 0:8
BPSO C1 = 1, C2 = 2, Vmax = 6, Wmax = 0:9, Wmin = 0:4
DE CR = 0:9, F = 0:5
SCA Alpha = 2

Table 1: Datasets.

Dataset Instances Features

Colon cancer 2000 62

Central nervous system (CNS) 7129 60

DLBCL 7129 77

Leukemia 7129 72

Ovarian cancer 15154 253

Start

Determine the fitness of each wolf and the best 3
solutions are saved as X

𝛼
X

𝛽
X

𝛿

Sort the wolves in ascending order of fitness and
make the bottom half learn from the top half

Update the position of each wolf

Update X
𝛼
X

𝛽
X

𝛿

Iterations over?

X
𝛼
 is the optimal solution for the feature set

Randomly initialize the position of the wolves

No

Yes

Figure 2: Flowchart for the proposed MSBGWO.
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4.2. Evaluation Measures. Using the 10-fold cross-validation
method, the prediction models are evaluated based on
accuracy, precision, recall, and F-measure:

Accuracy = TP + TN
TP + FP + TN + FN

, ð19Þ

Precision = TP
TP + FP

, ð20Þ

Recall = TP
TP + FN

, ð21Þ

F‐measure = 2 ∗ Precision ∗ Recall
Precision + Recall

, ð22Þ

where true positive (TP) is the number of positive sam-
ples that are correctly identified as positive, true negative
(TN) is the number of negative samples correctly identified
as negative, false positive (FP) is the number of negative
samples identified as positive, and false negative (FN) is
the number of positive samples identified as negative.

Each algorithm is run k times, and the results are aver-
aged as follows:

AvgAcc = 1
k
〠
k

i=1
Accuracyi, ð23Þ

AvgPre = 1
k
〠
k

i=1
Precisioni, ð24Þ

AvgRec = 1
k
〠
k

i=1
Recalli, ð25Þ

AvgF= 1
k
〠
k

i=1
F‐measurei, ð26Þ

AvgSF= 1
k

〠
k

i=1
Selected − featuresi: ð27Þ

4.3. Fitness Function. Feature selection is a biobjective prob-

lem concerned with minimizing misclassification errors and
minimizing the number of features selected.

Thus, the fitness function is determined by the following
equation which is from [27].

fit = 1 − αð Þ: SD − α:AvgAcc, ð28Þ

where AvgAcc is the average accuracy determined by the
KNN classifier, S is the number of selected features, D is the
total number of features, and α is set to 0.8 in this paper.

4.4. Parameter Setting. The performance of the proposed
MSGWO is compared to that of the binary grey wolf opti-
mizer version 2 (BGWO2), binary genetic algorithm
(BGA), binary particle swarm optimization (BPSO), differ-
ential evolution (DE) algorithm, and sine-cosine algorithm
(SCA). The parameter values for the algorithms are listed
in Table 2.

The value of ω was selected as 0.1 after values ranging
0.1–1 were considered.

The population size is set to 10 in each of the algorithms,
and the number of iterations is set at 100. To complete the
wrapper-based approach, a KNN classifier with Euclidean
distance, k = 5, is also used. A KNN classifier performs opti-
mally when dealing with normalized data, and therefore, all
datasets were normalized in the preprocessing step.

Each algorithm is run 10 times on an Intel® Core™ i5
CPU M 520 @ 2.40GHz to provide a good measure of the
results. The implementation is in MATLAB.

5. Experimental Results and Discussion

Experimental results of the proposed MSGWO were com-
pared to those of BGWO2, BGA, BPSO, DE, and SCA.
The classification accuracy, precision, sensitivity, and F
-measure over 10 runs using 10-fold CV have been aver-
aged using equations (23)–(27) in Section 4.2 to provide
the final results. Box plots have also been used to probe
the variations.

5.1. Colon Cancer Dataset Results. Table 3 presents the
detailed results on the colon cancer dataset. In the table,
we see that the proposed MSBGWO was able to achieve
the highest classification accuracy of 0.957. The minimum
accuracy of 0.919 when MSBGWO was used to select

Table 3: Experimental results of the algorithms on the colon cancer dataset.

Algorithm
Accuracy

AvgSF AvgPre AvgRec AvgF
Max Min AvgAcc

BGWO2 0.917 0.857 0:896 ± 0:016 447.1 0.881 0.995 0.934

BGA 0.893 0.857 0:877 ± 0:013 980.9 0.861 0.993 0.922

BPSO 0.874 0.855 0:866 ± 0:008 993.9 0.851 0.990 0.915

DE 0.886 0.821 0:859 ± 0:016 1217.2 0.840 0.993 0.910

SCA 0.933 0.860 0:898 ± 0:021 88.6 0.899 0.960 0.932

MSBGWO 0.957 0.919 0:936 ± 0:011 70 0.930 0.988 0.958
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features was higher than that of BGWO2, BGA, BPSO, and
DE. It was only lower than that of SCA. The average classi-
fication accuracy, average precision, and average F-measure
were also the best for MSBGWO among the algorithms con-
sidered having selected the fewest features. However,
BGWO2 was able to achieve the highest average sensitivity.
BPSO was more stable as it had the lowest standard devia-
tion in the average classification accuracy (lower than that
of MSBGWO). The box plot in Figure 3 also shows that

the median values for accuracy, precision, sensitivity, and
F-measure are way above those of the other algorithms.
The overall superiority of MSBGWO can be attributed to
its ability to diversify its solution and minimize being
trapped in the local optima.

5.2. Central Nervous System (CNS). With the values repre-
sented in bold in Table 4, we see that using MSBGWO, the
values of accuracy, precision, sensitivity, and F-measure
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Figure 3: Box plots on accuracy, precision, sensitivity, and F-measure on the colon cancer dataset.

Table 4: Experimental results of the algorithms on the CNS dataset.

Algorithm
Accuracy

AvgSF AvgPre AvgRec AvgF
Max Min AvgAcc

BGWO2 0.783 0.750 0:760 ± 0:012 1648.2 0.855 0.782 0.816

BGA 0.750 0.733 0:740 ± 0:009 3525.5 0.845 0.763 0.801

BPSO 0.733 0.700 0:723 ± 0:011 3518.9 0.827 0.741 0.781

DE 0.733 0.700 0:712 ± 0:011 4251.3 0.843 0.708 0.769

SCA 0.817 0.717 0:760 ± 0:030 458.1 0.844 0.804 0.822

MSBGWO 0.850 0.800 0:825 ± 0:020 290.9 0.885 0.863 0.873
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were the best compared to those of the other algorithms. It
also selected the fewest features. Figure 4 shows the box plots
and the median values for accuracy, precision, sensitivity,
and F-measure which are above those of other algorithms
considered. This shows that MSBGWO was more explor-
ative in the search space than the other algorithms ensuring
that it selected the most informative features.

5.3. Leukemia Dataset Results. In Table 5, it is noted that a
sensitivity of 100% was obtained when BGWO2, DE, and

MSGWO were used for feature selection. We again see
that MSBGWO selected the fewest number of features in
comparison with the other algorithms. The average values
of classification accuracy, precision, and F-measure using
the proposed MSBGWO are also the best among the algo-
rithms. In fact, the minimum accuracy obtained using
MSBGWO betters the maximum achieved by the other
algorithms. In the pictorial representation using a box plot
in Figure 5, we note that the median values are way supe-
rior. The ability of MSBGWO to avoid the local optima by

Table 5: Experimental results of the algorithms on the leukemia dataset.

Algorithm
Accuracy

AvgSF AvgPre AvgRec AvgF
Max Min AvgAcc

BGWO2 0.959 0.907 0:925 ± 0:015 1330.8 0.910 1.000 0.953

BGA 0.916 0.893 0:903 ± 0:007 3516.1 0.885 0.998 0.938

BPSO 0.918 0.889 0:897 ± 0:010 3509.9 0.878 0.996 0.933

DE 0.891 0.861 0:884 ± 0:010 4051.0 0.860 1.000 0.925

SCA 0.971 0.918 0:940 ± 0:017 244.7 0.934 0.990 0.961

MSBGWO 1.000 0.975 0:991 ± 0:010 98.2 0.989 1.000 0.995
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Figure 4: Box plots on accuracy, precision, sensitivity, and F-measure on the CNS dataset.
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increasing the exploration in the less fit wolves is validated
by its superior results.

5.4. DLBCL Dataset Results. In Table 6, we note that using
MSBGWO, we attained the highest classification accuracy.
The minimum classification accuracy for MSBGWO also
matched the maximum classification accuracies for BGWO2
and SCA. The average values for accuracy, precision, sensi-
tivity, and F-measure for MSBGWO were highest among

the algorithms. This is shown as well in the box plots in
Figure 6 where the median values obtained using MSGWO
are superior.

5.5. Ovarian Cancer Results. From Table 7, the MSBGWO
proves to be superior as it selected the fewest features on
average and had the highest classification accuracy and
its minimum classification accuracy was not bettered by
maximum accuracy of the remaining algorithms. Average

Table 6: Experimental results of the algorithms on the DLBCL dataset.

Algorithm
Accuracy

AvgSF AvgPre AvgRec AvgF
Max Min AvgAcc

BGWO2 0.975 0.955 0:969 ± 0:009 1470.8 0.978 0.983 0.981

BGA 0.963 0.948 0:956 ± 0:006 3541.3 0.968 0.978 0.973

BPSO 0.973 0.936 0:951 ± 0:011 3532.0 0.971 0.969 0.970

DE 0.938 0.909 0:923 ± 0:010 3999.3 0.895 0.835 0.860

SCA 0.975 0.936 0:957 ± 0:015 359.6 0.945 0.900 0.917

MSBGWO 1.000 0.975 0:992 ± 0:008 182.3 0.993 0.997 0.996
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Figure 5: Box plots on accuracy, precision, sensitivity, and F-measure on the leukemia dataset.
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values for precision, sensitivity, and F-measure were high-
est among the algorithms considered. The box plots in
Figure 7 also represent this as we see that the median
values for those metrics are highest.

5.6. Wilcoxon Rank Sum Test. We use this nonparametric
statistical test to evaluate if the median values for
MSGBWO against BGWO2, BGA, BPSO, DE, and SCA
are equal at 5% significance level as shown in Table 8.
The null hypothesis is that the median values of two

samples will be equal, and the alternative hypothesis is
unequal median values. h = 0 represents the null hypothe-
sis, and h = 1 rejects the null hypothesis.

In summary, we see that the proposed MSBGWO
selected the fewest features which proved to be most infor-
mative as the accuracy, precision, sensitivity, and F-mea-
sure were better than those of BGWO2, BGA, BPSO,
DE, and SCA in the datasets in Table 1. This demonstrates
the superiority of the algorithmwhen it comes to feature selec-
tion, and the modification of GWO helped in diversification.
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Figure 6: Box plots on accuracy, precision, sensitivity, and F-measure on the DLBCL dataset.

Table 7: Experimental results of the algorithms on the ovarian cancer dataset.

Algorithm
Accuracy

AvgSF AvgPre AvgRec AvgF
Max Min AvgAcc

BGWO2 0.964 0.956 0:960 ± 0:003 2706.6 0.994 0.895 0.942

BGA 0.957 0.956 0:957 ± 0:001 7457.6 0.988 0.891 0.937

BPSO 0.957 0.949 0:953 ± 0:002 7501.6 0.983 0.886 0.932

DE 0.953 0.940 0:946 ± 0:005 7777.5 0.981 0.869 0.921

SCA 0.980 0.953 0:966 ± 0:007 422.4 0.993 0.913 0.951

MSBGWO 0.996 0.972 0.988± 0.007 167.9 0.996 0.973 0.984
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Table 8: Wilcoxon rank sum test at 5% significance level.

Dataset
Wilcoxon rank sum

test
BGWO2 vs.
MSBGWO

BGA vs.
MSBGWO

BPSO vs.
MSBGWO

DE vs.
MSBGWO

SCA vs.
MSBGWO

Colon cancer

p value 1:4590e − 04 1:4677e − 04 1:4332e − 04 1:4764e − 04 4:8358e − 04
h value 1 1 1 1 1

z value 3.7979 3.7965 3.8024 3.7950 3.4897

Central nervous
system
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Figure 7: Box plots on accuracy, precision, sensitivity, and F-measure on the ovarian cancer dataset.
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6. Conclusion

Amaster-slave binary grey wolf optimizer is proposed in this
paper. A master-slave learning scheme is introduced to
improve the exploration ability of the grey wolf optimizer.
Five biomedical datasets are used to test the strength of the
proposed MSBGWO. The experimental results show that
the proposed algorithm outperforms the BGWO2, BGA,
BPSO, DE, and SCA in the performance metrics considered
in this paper. In future work, the proposed algorithm can be
used in noncontinuous optimization problems. From the
results, we see that BGA was the most stable; thus, hybridiz-
ing BGA and MSGBWO should be a consideration.
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