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The brain functional network extracted from the BOLD signals reveals the correlated

activity of the different brain regions, which is hypothesized to underlie the integration

of the information across functionally specialized areas. Functional networks are not

static and change over time and in different brain states, enabling the nervous system

to engage and disengage different local areas in specific tasks on demand. Due to the

low temporal resolution, however, BOLD signals do not allow the exploration of spectral

properties of the brain dynamics over different frequency bands which are known to be

important in cognitive processes. Recent studies using imaging tools with a high temporal

resolution has made it possible to explore the correlation between the regions at multiple

frequency bands. These studies introduce the frequency as a new dimension over

which the functional networks change, enabling brain networks to transmit multiplex of

information at any time. In this computational study, we explore the functional connectivity

at different frequency ranges and highlight the role of the distance between the nodes

in their correlation. We run the generalized Kuramoto model with delayed interactions

on top of the brain’s connectome and show that how the transmission delay and the

strength of the connections, affect the correlation between the pair of nodes over different

frequency bands.

Keywords: functional connectivity, functional network, connectome, transmission delay, brain oscillation,

correlation matrix, hierarchical clustering

1. INTRODUCTION

A very prominent feature of the brain is the ability to dynamically changing the routes for
communication between the brain regions when undertaking different cognitive and executive
functions (Honey et al., 2007; Friston, 2011; Valdes-Sosa et al., 2011; Park et al., 2018). This is
revealed by extensive studies on the pattern of statistical inter-relations between the activities of
different brain regions at different brain states based on BOLD signals (Chang and Glover, 2010;
Allen et al., 2014; Calhoun et al., 2014; Wang et al., 2016; Park et al., 2018). The brain functional
network is defined based on the level of linear pair-wise correlation or other non-linear measures
between the activities of the different regions (Gao et al., 2012; Rubchinsky et al., 2012). These
correlated activities are supposed to underlie the integration of information over subsets of the
whole-brain structural network, comprising different functional modules (Friston, 2002). It has
been shown that, due to environmental demands and changes in the state of the brain, regions of
the brain can engage in functional modules and detach from others, allowing the brain to switch
between multiple tasks over time (Gonzalez-Castillo et al., 2015; Hansen et al., 2015).
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Functional networks are not only defined based on the
BOLD signals but also they can be constructed upon the
electrophysiological data using EEG and MEG tools (Rodríguez-
Rivera et al., 2006; Haufe et al., 2011). Each of the methods
has its advantages and disadvantages. BOLD signals have low
temporal resolution and can only capture the slow dynamics
of the brain regions, but they have higher spatial resolution
compared to EEG and MEG. Electrophysiological data on the
other hand provides a good temporal resolution but they suffer
from difficulties in source localization (Pascual-Marqui, 1999).
Despite the shortcomings, the higher temporal resolution of
these tools extend the studies on the functional networks to the
frequency domains which were not accessible through fMRI.
This frequency range spans several specific bands (including
delta, alpha, beta, and gamma bands) which are hypothesized
to be important in several perceptional, cognitive, and executive
brain functions (Schnitzler and Gross, 2005; De Pasquale et al.,
2010; Brookes et al., 2016; Tewarie et al., 2016; Li et al., 2017).
For example, coherence in the gamma range is hypothesized
to provide a means for controlling communication between the
brain regions, according to “communication through coherence”
theory (Womelsdorf and Fries, 2007; Schroeder and Lakatos,
2009; Ray and Maunsell, 2015; Bonnefond et al., 2017).

Recent studies using MEG have shown that functional
networks not only change in time (De Pasquale et al.,
2010) but also they are frequency-dependent and multiple
functional networks are present at any given time over different
frequency bands (Hillebrand et al., 2012). These observations
assert that any region can simultaneously participate in
multiple functional modules, acting in parallel, and exploiting
the structural communication channels for multiple tasks
(Brookes et al., 2011, 2016).

In this study, we question what properties of the brain
structural network determine the pattern of the frequency-
resolved functional network (Ziaeemehr et al., 2020a). Our
focus is on the role of the Euclidean distance between the
brain regions on the pairwise correlation between their activity
at different frequencies. Euclidean distance between the brain
regions determines the length of connecting axons (Nakagawa
et al., 2014) and therefore, the delay in the transmission of the
signals between them (Nakagawa et al., 2014; Petkoski et al.,
2018). On the other hand, the strength of the connections
defined as the number of tracts in diffusion MRI shows a
negative correlation with distance (Fox et al., 2005; Honey et al.,
2007). Despite the debates and possible shortcomings in the
interpretation of the diffusion MRI data for the determination of
the connection’s strengths, other methods confirm the presence
of a similar relation between the strengths of the connections
and the distance between the brain regions (Ercsey-Ravasz et al.,
2013; Markov et al., 2013). By the simulation of a simple model
composed of phase oscillators, on top of the brain structural
network and changing the natural frequency of the nodes
(brain regions), we show that the mean correlation between the
oscillatory activity of the brain regions decreases with frequency
and anticorrelations are seen at higher frequencies, compatible
with previous studies (Fox et al., 2005; Deco et al., 2009; Lewis
et al., 2009; Li and Zhou, 2011). We also show that variation

of the correlation with frequency is more profound for the pair
with longer distances. Likewise, the variation of the correlation
with distance, in general, depends on the frequency and more
variation is observed at higher frequencies.

Since both the delay in the interaction and the strength of
the connections are dependent on the distance, we then focus
on the distinct effects of these two parameters. We show that
increasing the distance, the correlations change in an almost
periodic manner. The period is determined by the delay in
the interaction between the nodes while the amplitude of the
variations is mostly affected by the strength of the structural
connections. Our results highlight the distinct role of the strength
and the delay of the structural connections in the pattern of
correlations between the brain regions and consequently, in the
functional connectivity of brain networks.

2. MODEL AND METHODS

The Kuramoto model has been used to describe large-scale
network synchronization (Breakspear et al., 2010; Cabral et al.,
2011, 2014). Each node in the model represents the oscillatory
activity of a region of interest (ROI) connected by the links
which are based on the structural connections between the brain
regions (Bullmore and Sporns, 2009; Van denHeuvel and Sporns,
2013). The important network parameters are strength of the
connections and their delay, both are set using available data
about the connections in large scale brain connectome. The
generalized Kuramoto model (with delay) obeys the following
dynamical equation (Yeung and Strogatz, 1999; Lee et al., 2009):

θ̇i = ωi + ξi(t)+
K

N

N
∑

j=1

aij sin
[

θj(t − τij)− θi(t)
]

, (1)

where θi(t) denotes the phase of node i at time t, ωi = 2πνi is
the natural angular frequency of the i-th oscillator. aij are the
elements of the weighted adjacency matrix which are derived
from structural network: A. 0 < aij ≤ 1 if there is a link from the
node i to j with a time delay τij; otherwise aij = 0. The parameter
K sets the overall coupling strength.

The initial values of θi are randomly drawn from a uniform
distribution in the interval [0, 2π], and natural frequencies are
drawn from a narrow normal distribution with a given mean
as a parameter and standard deviation of 0.1. We used a small-
amplitude Gaussian white noise with mean zero and standard
deviation SD = 0.05. Adding noise assures that the resultant
numerical solutions of Equation (1) are not spurious.

To construct functional network we use correlation index
which is a measure of the degree of synchronization between any
two nodes of the network, defined as σij = 〈cos[θi(t) − θj(t)]〉.
Here, 〈. . . 〉 represents averaging over different initial conditions.
Correlation index is zero for uncorrelated phases and is equal to
1 (−1) for fully correlated (anti-correlated) phases. We take σij as
the elements of the functional network (Arenas et al., 2006).

The system of delayed differential equations (DDE)
(Equation 1) is solved numerically using adaptive Bogacki-
Shampine (Flunkert, 2011) with minimum time step 0.001
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ms, absolute and relative error tolerance of 10−8 and 10−5,
respectively. For noisy delayed differential equations, the
deterministic parts of the equations are solved using a high
order method as described above. Finally, the noise is added to
each step implemented via the Euler-Maruyama scheme. We
discarded the first 7 s and continued the simulations for 12 s
and repeated the simulations 200 times with different initial
conditions and natural frequency distribution.

To quantify the similarity between the functional and
structural networks, we use a measure of the distance between
the correlation values (elements of the functional network) and
the connection strength (elements of the structural network)
we used pdist module with the Euclidean metric from Scipy
package (Oliphant, 2007). This module calculates the average
difference between the elements of the two matrices. More
average distance means less similarity between the two matrices.

To calculate the distribution of correlations vs. weight and
distance we binned structural data, i.e., we chose the links whose
weight and distance lie in a bin around the given mean values.
The width of the bins were set to 0.05 for the connection strengths
and 16 mm for distances.

Finally, the communities were found based on the increasing
mudulatory index using community_walktrap module from
Python-igraph with steps= 4 (Pons and Latapy, 2005; Csardi and
Nepusz, 2006).

2.1. Structural Network
The matrix A was constructed based on the human connectome
data with 66 nodes from (Hagmann et al., 2008). In this
study, diffusion tensor imaging is used by applying six gradient
directions, modeled the diffusion in each voxel as a sphere,
and detected the amount of water diffusion. The main direction
of water diffusion shows the regional white matter tracts. By
connecting voxels based on their anisotropy and their principal
diffusion direction, images of the major white matter pathways
are constructed (Hagmann et al., 2008). In this method, the
strength of the connection is determined by the average number
of fibers between two regions. The structural properties of
the Human connectome and distance matrix are shown in
Figure 1.

We also used more recent data that has established interareal
connectivity using sensitive retrograde tracers to determine the
weighted connectivity of the inputs to 29 areas in an atlas of
91 cortical areas (Markov et al., 2014). Connection strengths
have been derived from a connectivity matrix based on interareal
connection strength in the macaque. The weight of a projection
from a source area to a given target area is defined by the
fraction of labeled neurons (FLN) expressed as the ratio between
the number of labeled neurons in that source area over the
total number of labeled cortical neurons extrinsic to the injected
area. The dataset is available at cor-nets.org. For the simulations,
the 29 × 29 directed graph G29×29 were used. G29×29 has
M = 536 links out of the maximum possible of N(N −

1) = 812 with the density 66%. The structural properties of
the macaque connectome and the distance matrix is shown in
Supplementary Figure 1.

3. RESULTS

In this paper, we aim to study the properties of the functional
network of the brain at different frequency bands through
simulation of a simple model of the human brain network.
Specifically, we explore how the correlation between the
oscillatory activity of the brain regions (nodes in the model)
at different frequencies changes with the distance between the
nodes. Our model is based on a generalized Kuramoto model
run on top of the brain connectome composed of 66 nodes,
whose properties are shown in Figure 1. Each node in the
model is a phase oscillator which represents oscillatory dynamics
of a region of interest of the brain in the given parcellation
scheme (Hagmann et al., 2008). The frequency of the nodes is
chosen from a narrow distribution around a mean value that is
varied to represent the oscillatory dynamics of the brain regions
over different frequency bands. The weights of the connections
in the structural network, determined through diffusion MRI,
are shown in Figure 1A, and the Euclidean distance between
the nodes is shown in Figure 1B. The structural network shows
a modular structure at two levels, with 6 modules at the first
level and two modules at the second (corresponding to two
hemispheres, see Model and Methods). Panel C depicts the
histogram of weights which span five orders of magnitude. In
Figure 1D we have shown the scatter plot of the connection
strengths vs. the distance between the nodes, respectively. In
particular, it is seen that most strong connections are distributed
around short distances with 2 < d < 5 cm and distant nodes
are connected by weak links. Although this effect could be an
artifact of the tractography, other methods with more reliable
measures for the connection weights, confirm that the weight
of the connections between the brain regions decreases with
distance (Ercsey-Ravasz et al., 2013; Donahue et al., 2016). For
comparison, we have presented the properties of the structural
network of the macaque with 29 nodes extracted from the tracing
method in Supplementary Figure 1 and use this structural
network to repeat all the subsequent simulations to show the
generality of the results (Supplementary Figures 2, 3).

3.1. Frequency-Resolved Correlation
Matrix
In the model, we assume that the interaction between the
nodes takes place through a delay time which in general is
dependent on the distance. The distribution of the delays turns
out to be the determinant factor for the functional network at
different frequency bands. We assume that the interaction delay
is (linearly) proportional to the distance between the nodes, i.e.,
we take a fixed value for the speed of the signal transmission
between the nodes (5 m/s) (Nakagawa et al., 2014; Petkoski
and Jirsa, 2019). We also assume a weighted structural network
where the connection strengths are scaled by the number of
axonal tracts. The correlation matrix at five frequency ranges
representing different frequency bands is shown in Figure 2A.
The appearance of anti-correlation between some pairs of nodes
over higher frequency bands is apparent. Anti-correlation first
appears between the nodes with long-range connections in
different hemispheres over the beta range (13–30 Hz), while
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in the gamma range (30–45 and 45–70 Hz for high gamma)
they are also observed for shorter distances between the intra-
hemisphere pairs. This indicates the possible role of distance in
the correlation between the nodes at different frequencies.

The mean correlation between the nodes vs. connection
strength and distance is shown in Figure 2B only for the
pairs with a direct connection. At lower frequencies mean
correlation shows no apparent conclusive dependence on the
distance and connection strength. Anti-correlation appears at
high distances at the beta range and shifts to lower distances
with the increasing frequency following the results shown
in Figure 2A. We note that by changing the value chosen
for the signal transmission speed, the results change such
that increasing the speed, anticorrelations appear at higher
frequencies. However, the variations of correlation with distance
are more apparent at higher frequencies regardless of the choice
of the transmission speed.

To get insight into the role of transmission delays and
connection strengths, we have shown scatter plots of the
correlation index between all the pairs at different frequencies
in Figures 2C,D, where colors indicate the weights (C) and
distances (D) between the nodes, respectively. It is seen that
the mean correlation between all the pairs of nodes decreases at
higher frequencies and negative correlation is observed at higher
frequencies for distant nodes. The left panel shows that strong
connections (those with greater connection weight) lead to high
positive and negative correlations at low and high frequencies,
respectively. As it is seen in the right panel, at low frequencies
the high positive correlation is seen mostly for low distances,
while at higher frequencies short-distance nodes may show either
positive or negative high degree of correlation. Long-distance
nodes show lower values of correlation for all the frequencies.
Similar results are obtained using Macaque connectome data
(Markov et al., 2014) presented in Supplementary Figure 2.
There it is confirmed that general results hold for a typical
connectome network given that the connection strengths have a
negative correlation with distance and the delays increase with
the distance between the nodes. In the following, we inspect the
frequency-resolved correlation matrix in more detail.

3.2. Relation to Distance and Frequency
We have shown the scatter plot of the correlation of the
pairs vs. the distance of the nodes, at different frequencies
in Figure 3A. We observe a negative correlation between
the distance and correlation index, i.e., those nodes which
are farther from each other have a lower correlation index.
But, while at lower frequencies the correlation almost linearly
decreases with distance, at higher frequencies a steeper drop
with distance is observed similar to the structural distribution
of the connection weights. As an important corollary, we have
compared this distribution with the structural one (Figure 1D)
by the distance measure introduced in Model and Methods.
The best similarity between the distribution of structural and
dynamical couplings between the nodes (which represent the
structural and functional networks, respectively) characterized
by the lowest distance between two distributions, is seen in
beta and low gamma range around 30 Hz (Figure 3C). Similar

results are obtained by using the macaque connectome shown
in Supplementary Figure 3. We also note that the frequency
range that shows the maximal similarity between the structural
and the functional networks, depends on the choice of the
speed of signal transmission. Notably increasing the speed of the
signal transmission (decreasing delay) moves the frequency that
shows maximum similarity to the higher frequency bands (see
Supplementary Figure 3C).

We have also colored the points in Figure 3A based on the
weight of the structural link between the nodes. It is observed that
strong links overall lead to a larger pairwise correlation between
the nodes, but this is only observable at low distances since there
are hardly strong links between the far nodes (Figure 3D). Again,
it is seen that while strong links lead to high positive correlation
at low frequencies, they give rise to negative correlation at high-
frequency ranges.

To more precisely inspect the relationship between the link
strength and the correlation index between the nodes, we
have shown them in the scatter plots of Figure 3B. Since in
the connectome most of the links are very weak, the points
in the scatter plot are packed in the small strength links.
Nevertheless, the positive correlation between the link weight and
correlation is observed for low frequencies and this correlation
decreases with increasing frequency and turns to a negative
correlation in high gamma range Figure 3D. Notably, the figure
shows that very weak links can carry high correlations in low
frequencies and short distances (shown by color). Similar results
have been obtained on the macaque connectome shown in
Supplementary Figures 3B,D.

3.3. Distinct Role of Connection Weight
and Delay
Since both the connection strength and the delay in
communication between the brain regions are dependent
on the distance between them, we question what is their distinct
role in the pairwise correlation? More specifically, previous
results show that the distant nodes show a smaller correlation
index at all frequency bands and they show anti-correlation for
higher frequencies. Is that because they communicate through
a longer delay or because they are connected by relatively
weaker connections?

To this end, we pick the pairs of nodes with almost the same
connection strength locating at different distances. Note that
fixing the connection strength, only the delay is changing when
the distance is varied. We have shown the mean correlation vs.
frequency for four different distances (delays) in Figures 4A,B

(for two different strengths). The figure shows the values of the
mean correlation index corresponding to the filtered edges at
given delays and weights. It can be seen that the correlation shows
an almost periodic behavior with frequency and the variation
in correlation is faster for the pairs with a longer delay. A
comparison of the two panels also shows that the amplitude of the
changes is larger for stronger connections, while the rate of the
change with frequency is only dependent on the communication
delay and is independent of the connection strengths.
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FIGURE 1 | Structural properties of the human connectome. (A) The normalized coupling weights (0 ≤ W ≤ 1) and (B) Euclidean distances (in mm) in the human

connectome with 66 nodes (Hagmann et al., 2008). The squares show the modules and the nodes ordered for the structural module (community) they comprise. The

color bar of the weight matrix has a log10 scale. The background dark blue regions in A (< 10−5) and B (= 0) indicate the absence of edges between the areas. (C)

Semi-log presentation of the distribution of the weights of structural connections that span five orders of magnitude. (D) Scatter plot shows the distribution of the

normalized weights of the structural connections vs. the distance between the nodes. Here we have used a linear scale for both exes.

FIGURE 2 | The correlation distributions. (A) The functional networks at five sample frequency ranges. The elements of the functional networks are the correlation

indices σij defined in the Methods. In each panel, the results of a simulation of the model with a given mean frequency are presented. From left to right the mean

frequency is 3, 11, 23, 35, and 51 Hz which lie within the bands θ ,α,β, γ , and high-γ , respectively. The frequencies are chosen from a normal distribution with the

given mean value and standard deviation 0.1. The axes show the index of nodes which represent ROIs of the structural network. The gray dash lines indicate the

boundary of the brain hemispheres. The coupling scale factor is K/N = 0.25 and the noise amplitude is 0.05. The initial phases are chosen from a uniform distribution

in the range [−π ,π ]. The results are averaged over 200 realizations. (B) The distribution of correlations vs. weight (W) and distance (D) of the connections at each

frequency. (C,D) The distribution of correlations vs. average natural frequencies of the nodes (ν0). The colors in panels (C) and (D) show the corresponding

connection’s weights and distances, respectively.

We also presented the results for the nodes which are
at almost the same distance but are connected by different
connection strengths. The results presented in Figures 4C,D (for
two different distances) support the above results that stronger

connections lead to a larger amplitude of variation while the
pairs at the same distance, show the same rate of the change
of correlation, with respect to frequency. Another point is that
strong synapses not only give rise to higher correlation in
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FIGURE 3 | (A) The scatter plots of the average correlation between the nodes C, vs. distance at five average frequencies, 3, 11, 23, 35, and 51 Hz corresponding to

theta, alpha, beta, gamma, and high gamma, respectively The colors indicate the corresponding weights of the structural connections. For comparison, the structural

connections W, are also shown in black dots. (B) The scatter plots of the average correlations between the nodes vs. weights of structural connections. The colors

indicate the corresponding distances at different frequencies. (C) The distance between scatter plots of the correlations and weights of connections in (A). The inverse

of this parameter is a measure of the similarity between the two matrices. (D) The slope of fitted lines in (B) vs. frequency.

FIGURE 4 | The average correlation vs. frequency for connections whose strength lies in the range (A) 〈W〉 = 0.15 and (B) 〈W〉 = 0.25 and various distances

indicated in the legends. The average correlation vs. frequency for connections whose distance lies in the range (C) 〈d〉 = 25 mm and (D) 〈d〉 = 35 mm and various

strengths indicated in the legends. Correlation is calculated using the correlation index σij defined in Methods. The colored areas show the results for p-value = 0.05.

The width of the bins was set to 0.05 for the connection strengths and 16 mm for distances.

low frequencies but also lead to more negative correlation at
higher frequencies.

The presented results above show that the rate of the
changes in the correlation with frequency is determined by
the transmission delay but the amplitude of the variations is

dependent on the link’s strength. To confirm these results, we
did two more simulation experiments by fixing the strength
of connections or by fixing the delay in the interactions in
the connectome. We first consider a binary structural network
where the elements of the adjacency matrix aij are either zero
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or one and distance only affects the interaction delay. This can
be considered also as an ultimate case where it is assumed that
the connection strengths do not correlate with the distance.
In this case, when binning the pair of nodes based on their
distance is expected to lead to the curves seen in Figures 4A,B.
The results shown in Supplementary Figure 4A conforms with
this expectation and the nodes with different distances show
different rates of change with respect to frequency. In the second
experiment, we fixed the delay in the interaction between the
nodes and retained the weight of the structural connection to
those extracted from Figure 4A. We then binned the pair of the
nodes based on the weight of their connections and inspected
how the mean correlation changes with frequency. The results
shown in Supplementary Figure 4B shows that the pairs with
different structural weights show a periodic dependence on the
frequency but the amplitude of the variation is dependent on the
weight, right similar to Figures 4C,D.

4. DISCUSSION

In this manuscript, we studied the dependence of the correlation
between the oscillatory activities of the pair of nodes to their
distance, at different frequency bands, through simulation of a
system of delayed-coupled phase oscillators on top of the brain’s
connectome network. Since both delays in the communication
between the nodes and the strength of the synaptic connections
between them are a function of distance, we studied how the
communication delay and connection strength can affect the
correlation. We showed that the effect of these two parameters
can be different at different frequencies. In particular, we found
that at low frequencies the dependence of the pairwise correlation
between the nodes is compatible with expectation and shorter
delay and stronger connections lead to larger correlation. On
the other hand at higher frequencies, the dependence is not
trivial. Stronger connections in this range can lead to anti-
correlation of the nodes and longer delays can both result
in positive and negative correlation. In an intermediate-range,
around beta and low gamma, we observed that the pattern of the
correlations and the distribution of the weights against distance
has maximal similarity to each other, compatible with the recent
results (Ziaeemehr et al., 2020b).

In the studies on the synchronization of the oscillators on
complex networks, the connection strength and the interaction
delays are two determinant factors which their effect is
extensively explored (Deco et al., 2009; Cabral et al., 2012; Wang
et al., 2014; Petkoski et al., 2016; Asl et al., 2018; Madadi Asl et al.,
2018). It is shown the phase relations between the pair of the
coupled oscillators depend on the connection strength and to the
delay (Yeung and Strogatz, 1999; Sadeghi and Valizadeh, 2014;
Esfahani et al., 2016) and once the phase response function of
the oscillators is known, the regions for the stability of in-phase,
antiphase, and out of phase-locking can be determined (Esfahani
and Valizadeh, 2014; Dumont and Gutkin, 2019). In the studies
of large scale brain networks, the effect of conduction delay has
attracted much interest in recent years and several studies have
explored the effect of delay on the phase-locking between the

oscillatory activity of the brain networks (Yeung and Strogatz,
1999; Deco et al., 2009; Lee et al., 2009; Petkoski et al., 2018;
Petkoski and Jirsa, 2019). In particular, it has been shown that
the appearance of in-phase and antiphase relation between the
brain regions depends on the frequency, and antiphase locking
is observed over higher frequency bands and for long-range
connections with long delays (Petkoski et al., 2018; Petkoski
and Jirsa, 2019). Our findings confirm these results although
the parameters of the underlying structural networks, e.g., the
distribution of the delays and connection strengths in Petkoski
et al. (2018) were different from those we assumed. Beyond the
effect of delay, however, our results suggest that the distance
between the brain regions can affect the collective brain dynamics
and the functional connectivity not only through delay but also
through the distance-dependence of the structural connection’s
weight. One of the main focuses of the current study was to
show that the delay and connection weights affect the frequency-
dependent functional connectivity, in different ways.

One of our main assumptions in this study was the presence
of a long tail distribution of the structural connection weights
and a negative correlation between the weights and distance.
We used two different datasets for the structural connectivity
based on two different methods, tractography, and tracing, for
identifying the connections between the brain regions. Previous
studies in non-human primates demonstrate both successes
and limitations of these two methods for assessing neurite
trajectories (Jbabdi et al., 2015; Sotiropoulos and Zalesky, 2019).
Of importance, none of the methods directly measure the
synaptic strength and they only give indirect estimations for the
weights of structural connections. Nonetheless, despite possible
inaccuracies and pitfalls, both methods give qualitatively similar
results on the wide distribution of the weights and the negative
weight-distance correlation.

Brain functional networks are commonly constructed upon
the linear statistical interdependencies between the activities
of the brain regions which is conventionally measured by
fMRI (Logothetis, 2008). The indirect measurement of the
collective neuronal activity by fMRI can only reveal the slow
dynamics of the brain due to its low temporal resolution, around
1 s (Kim et al., 1997; Sejnowski et al., 2014). Brain oscillations
over several frequency bands which are known to be important
for a variety of cognitive and executive functions have much
shorter periods and it is impossible to assess them with BOLD
signals. On the other hand, EEG and MEG recordings have a
finer time resolution (Sejnowski et al., 2014; Burle et al., 2015).
Recent instrumental advancements and the developments in
data analysis software have made it possible to use EEG and
MEG data to reveal the correlation between the brain networks’
local dynamics in much finer time scales and a wide range
of frequencies (Hillebrand et al., 2012; Gramfort et al., 2013).
These warrant the need for theoretical and computational studies
on the spectral properties of the correlation matrix and the
functional networks.

Since these phase relations are hypothesized to underlie the
communication between the brain populations, it is important
to know how they change in realistic brain networks. In the
brain networks, both the delay and connection strengths have
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a wide distribution making the brain structural network a
very heterogeneous one. In this study, we used a realistic
distribution for both the parameters and inspected how each of
them impacts the pattern of the correlation between the brain
regions, at different frequencies. With such a wide distribution
of these parameters, a diversity of the correlations and the phase
relations are observed which are important for a diverse and
dynamic communication pattern in the brain (Ghosh et al., 2008;
Breakspear et al., 2010; Maris et al., 2016).

While we did not directly explore the phase difference between
the activities of the nodes, changes in the correlation could
indirectly determine the phase relations. Namely, a high positive
and negative correlation could indicate an almost in-phase or
antiphase evolution of phases, respectively, with a continuum of
intermediate phase differences between the two extremes. Our
results indicated that the phase relations for any pair of nodes are
in general dependent on the frequency. This has an important
functional implication for the communication between the
brain’s areas. Since the phase differences could determine the
effective functional connectivity between the nodes (Friston,
2011; Maris et al., 2016), the pairs can communicate at
different frequencies with different efficacy at multiple frequency
bands. Such a multiplex of effective functional networks makes
it possible to simultaneously engage the nodes at multiple
functional modules (Park and Friston, 2013).

Moreover, our results showed more diverse phase relations
at higher frequencies. Indeed over low-frequency bands, the
correlation more slowly changes with distance and this means
that long-range communication between the brain areas can take
place by slow dynamics. On the other hand, a faster change in
correlation with distance at high frequencies makes it possible
to functionally dissociate the areas at a certain distance and
form local functional modules. This can be a fundamental

need for the brain networks for segregation of information
processing at high-frequency bands and global integration at
low frequencies (Isomura et al., 2006; Buzsáki and Mizuseki,
2014). The presence of multiple frequency bands could then
lead to a hierarchy of spatial scales over which the information
is integrated, corresponding to each frequency band (Zhou
et al., 2006; Meunier et al., 2010). Our results show that the
heterogeneous communication delay is the key requisite for the
brain to enable such a hierarchical integration of information.
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