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Abstract: The aggravation of left ventricular diastolic dysfunction (LVDD) could lead to ventricular
remodeling, wall stiffness, reduced compliance, and progression to heart failure with a preserved
ejection fraction. A non-invasive method based on convolutional neural networks (CNN) and heart
sounds (HS) is presented for the early diagnosis of LVDD in this paper. A deep convolutional genera-
tive adversarial networks (DCGAN) model-based data augmentation (DA) method was proposed
to expand a HS database of LVDD for model training. Firstly, the preprocessing of HS signals was
performed using the improved wavelet denoising method. Secondly, the logistic regression based
hidden semi-Markov model was utilized to segment HS signals, which were subsequently converted
into spectrograms for DA using the short-time Fourier transform (STFT). Finally, the proposed
method was compared with VGG-16, VGG-19, ResNet-18, ResNet-50, DenseNet-121, and AlexNet
in terms of performance for LVDD diagnosis. The result shows that the proposed method has a
reasonable performance with an accuracy of 0.987, a sensitivity of 0.986, and a specificity of 0.988,
which proves the effectiveness of HS analysis for the early diagnosis of LVDD and demonstrates that
the DCGAN-based DA method could effectively augment HS data.

Keywords: left ventricular diastolic dysfunction; deep convolutional generative adversarial networks;
heart sounds; convolutional neural network; diagnosis

1. Introduction

Left ventricular diastolic dysfunction (LVDD) is a clinical syndrome characterized
by inadequate active relaxation and decreased cardiac output, resulting in elevated end-
diastolic pressure and possibly alterations in cardiac function [1]. At present, the overall
incidence of LVDD in the general population is approximately 30% [2–5] and has a positive
correlation with all-cause mortality. When the manifestations of heart failure (HF) such
as dyspnea, edema, and fatigue gradually appear in the LVDD population, it will move
towards an irreversible stage and cause progression to HFpEF [6,7], and around half of
all HF hospital admissions are accounted for by patients with HFpEF [8]. Therefore, early
diagnosis of LVDD is of great significance for preventing the deterioration of cardiac
function as well as timely treatment.

LVDD is the result of impaired diastolic function, which expands inadequately the
heart lumen and causes insufficient blood to return to the heart. Invasive measurements,
such as stiffness index, could be used to evaluate diastolic function, but they are harmful to
the human body. At present, echocardiography is the most commonly used non-invasive
examination in clinical practice [9], but it cannot effectively detect the early LVDD without
organic diseases. Cardiac auscultation is another non-invasive method used in clinical
detection of cardiovascular disease, while the application of heart sounds (HS) is limited
due to the limited range of human hearing and the high requirement on physicians’
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experience [10]. The electronic transducer can digitally record HS, laying the groundwork
for subsequent processing and application of HS signal. Furthermore, HS can directly
reflect the property of cardiac mechanical activity and provide useful information for early
diagnosis of cardiac abnormalities [11].

At present, there are two types of frequently utilized approaches for evaluating
cardiovascular diseases utilizing HS: traditional machine learning and deep learning
methods. The former need to extract features as input, such as wavelet features [12], Mel-
frequency cepstral coefficients [13,14], energy entropy [15], etc. Saraf et al. [16] offered five
physiologically-motivated characteristics extracted from HS signals, which might be used
to quantify LVDD using echocardiography-like criteria. These characteristics may better
reflect the physical meaning of HS. However, selecting useful features requires manual
interaction, and machine learning models were built using a small database. Therefore,
the robustness cannot be verified. Deep learning, a machine learning extension, has been
popular as artificial intelligence has progressed due to its remarkable ability to extract
features automatically. For example, He et al. [17] identified normal and abnormal HS in
PhysioNet/CinC Challenge 2016 based on a convolutional neural network (CNN). Also
on this database, Noman et al. [18] proposed an one-dimensional (1-D) CNN model to
learn deep features directly from original HS signals, indicating that CNN has shown great
potential in HS classification and diagnosis.

Although the above studies show that cardiovascular diseases can be early diagnosed
using HS, the relevant databases are still scarce [19]. Furthermore, the amount of data has a
direct influence on the performance of deep learning models. The over-fitting problem will
occur if the amount of data is small, resulting in poor performance. Data augmentation
(DA) [20] is an elegant solution to this problem. Due to the rigorous requirements for
experimental individuals and surroundings, collecting large-scale and high-quality HS
signals of LVDD is difficult in this study. As a result, a DA strategy for LVDD diagnosis is
necessary.

The generative adversarial networks (GAN) [21] model was used to generate normal
HS [22], but it has problems of mode collapse and training instability [23], which often lead
to meaningless outputs [24]. Therefore, some researchers have refined it to create a variety
of derivatives that have been shown to be successful in generating medical images [25,26].
In addition, these derivatives also have shown potential in generating time series data,
such as artificial audio [27] and electroencephalogram signals [28]. The representation of
time series data in the two-dimensional (2D) form may be beneficial to machine learning
tasks [29,30]. Therefore, to meet the requirements of deep learning models for the data
size, we converted the HS signals into 2D spectrograms by short-time Fourier transform
(STFT) [31]. Then, a deep convolutional generative adversarial networks (DCGAN) model,
a combination of CNN and GAN, was proposed to automatically generate spectrograms
for the HS signals.

This paper’s main contributions are as follows:

• LVDD is a common pathophysiological route leading to various cardiovascular dis-
eases [32], and therefore the analysis of HS to diagnose LVDD is a non-invasive
method. In this paper, the real HS signals collected by a digital transducer are binary
classified automatically using a 2D CNN model for LVDD diagnosis. In addition, the
performance of the CNN model in the three datasets is compared to six deep learning
models to find the best model.

• Owing to the restricted availability of relevant labels in prevailing public HS databases,
there have been no substantial breakthroughs in categorizing specific forms of heart
disease [33]. Therefore, this paper presented a DCGAN-based DA method to ex-
pand HS database of LVDD, which could establish an effective dataset for deep
learning, drastically minimize the cost of real data collection, and improve LVDD
diagnosis performance.
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2. Materials and Methods

The flow diagram of the proposed method is depicted by Figure 1 for automatically
diagnosing LVDD, which is explained in the following subsections.

Figure 1. A flow diagram of this paper. The CNN is the proposed model, and the others are the
compared models.

2.1. Data Acquisition

All subjects were assessed by cardiologists and completed informed consent forms
prior to participation in this study. The day before HS signal collection, the echocar-
diographic examinations were performed with those patients in the supine position by
professional doctors, and the equipment type is ACUSON X300 with the P2-4 phased
array ultrasound probe. All subjects had their left ventricular ejection fraction (LVEF) as-
sessed using the biplane Simpson method in the apical four-chamber view. Some Doppler
echocardiography indices are shown in Table 1.

Table 1. Some Doppler echocardiography indices (mean ± standard deviation).

Index LVDD Group Control Group p-Value

LVEF 0.45 ± 0.16 0.64 ± 0.03 0.000 *
Peak E-wave velocity(cm/s) 73.81 ± 26.60 63.25 ± 14.07 0.034 *
Peak A-wave velocity(cm/s) 72.58 ± 27.48 75.53 ± 18.07 0.589

Septal e’ velocity(cm/s) 4.18 ± 1.40 6.20 ± 2.09 0.000 *
Average E/e’ 18.57 ± 6.55 10.66 ± 2.00 0.000 *

LA volume index (mL/m2) 40.68 ± 15.49 23.52 ± 5.48 0.000 *
TR velocity(m/s) 28.74 ± 6.62 16.79 ± 7.26 0.000 *

* p-value < 0.05 demonstrates statistically significant difference.

A total of 92 HS signals were acquired from the First Affiliated Hospital of Chongqing
Medical University by the multi-channel physiological signal acquisition system (RM-
6240BD) and HS transducer (XJ102) with the sampling frequency at 8000 Hz, recorded on
the apex position of the heart. The HS transducer utilizes piezoelectric-transducer with
high-sensitivity, which converts the vibratory HS signal into electrical signal. Then, it is
processed by the preamplifier, bandpass filter, 50Hz notch filter, and other circuits of the
acquisition system and sent to the single-chip microcomputer for storage after analog-to-
digital (A/D) conversion. Finally, the acquisition system is connected to the computer,
and the waveform is exhibited on the LCD screen. The collection time was approximately
five minutes.

According to the recommendations for the evaluation of left ventricular diastolic
function by echocardiography from the American Society of Echocardiography and the
European Association of Cardiovascular Imaging (ASE/EACVI) [34], the subjects were
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divided into: (i) LVDD group, 30 subjects with LVDD, including G1, G2, G3; (ii) control
group, 41 subjects with normal diastolic dysfunction, G0. The remaining 21 HS signals
could not determine LVDD and were excluded from the study, GIND.

2.2. Data Preprocessing

The first HS (S1), systole (S), the second HS (S2), and diastole (D) are the four states of
a cardiac period. Among them, the pitch of S2 is higher than that of S1, and the frequency
range is 20–200 Hz [35]. To improve signal processing efficiency without sacrificing the
key components of HS, firstly, the signals were resampled into 1000 Hz according to the
Nyquist sampling theorem. The redundant noise was then removed using an improved
wavelet denoising method [36]. Finally, the amplitude of the denoised signal S(n) was
normalized. The denoised waveform can be seen in the upper half of Figure 2.

Snorm(n) =
S(n)

maxN
n=1(|S(n)|)

, (1)

where N is the length of signal.

Figure 2. The examples of converting HS samples into spectrogram: (A) LVDD group; (B) control group.

2.3. Segmentation

The logistic regression-based hidden semi-Markov model (LR-HSMM) is the perfect
method for HS segmentation or identifying the beginning of cycles [37,38]. As a result,
we chose the LR-HSMM to determine the boundary of S1 and S2. In a cardiac period, the
mechanical activity of the heart can be captured [39]. Furthermore, the characteristics of
each cardiac period may differ. Therefore, the frame length was set to 1.6 s (approximately
two cardiac periods), which started with S1 onset [40]. The intervals between two frames
were reserved about two periods to avoid the overlap [40]. Table 2 describes the number of
HS samples in this paper.
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Table 2. The number of HS samples in different groups.

Group Subjects Age (Mean± Square Deviation) Samples Sample Length (s)

LVDD group 30 Aged 24–89 (66.87 ± 16.21) 3677 1.6
Control group 41 Aged 19–81 (58.71 ± 13.19) 4803 1.6

2.4. Short-Time Fourier Transform

By multiplying a window function before the Fourier transform (FT), the core idea of
STFT is to solve the problem that the FT could only deal with the frequency domain [31].
The window function allows STFT to represent the time and frequency domain features of
the HS signal, allowing the dynamic process to be fully revealed. It is supposed that the
HS signal is approximately stationary within the span of a temporal window. The 1D HS
sample s(τ) is converted into the 2D spectrogram using STFT as follows:

S(t, f ) =
L−1

∑
τ=0

s(τ)ω(τ − t)e−j2πτ f , (2)

where t is time, f is frequency, L is the window length, and ω(τ) is the window function.
The log values of S(t, f ) are represented as the 2D spectrogram.

In this paper, the Hanning window was used, and the window length was set at 256.
After that, the 2D spectrogram with size of 128 × 128 was obtained, where the shades
of color represent the change of signal energy of different frequency bands, as shown in
Figure 2. It can be seen that the highest frequency of S2 in the LVDD group is about 150 Hz,
while in the control group, it is about 200 Hz. The different features in the spectrograms
have a high degree of distinction in judging whether to suffer from LVDD.

2.5. Convolutional Neural Network

CNN is often applied in image classification tasks, which shows better performance
than traditional methods in HS signals [41–43]. The convolutional layer, pooling layer, and
fully-connected layer are still present in CNN’s basic structure, despite the fact that it has
evolved into a variety of different forms. Layer after layer, neural nodes are used to connect
the layers.

The convolutional layer is to extract features. It comprises several different convo-
lutional kernels, each of which is used to calculate different feature maps. In addition,
the convolutional operation reduces the complexity of model and makes it easier to train.
Equation (3) describes the jth feature map in layer l, where xl

j is calculated using the

previous feature map xl−1
i multiplied by the convolutional kernel wl

ij and adding a bias

parameter bl
j.

xl
j = f

 ∑
i∈Mj

xl−1
i × wl

ij + bl
j

, (3)

where f (·) is activation function.
The nonlinear property gives the model the ability of uniform approximation, and

the activation function can bring it into model. The expression of the ReLU is simple, as
shown in Equation (4). When x ≥ 0, the derivative of the ReLU is 1, which can solve the
disappearance of gradient and the over-fitting problem.

f (x) =
{

x, x ≥ 0
0, x < 0

(4)
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The pooling layer, also called down-sampling, is used to reduce dimension. It moves
the pooling window to output an element in the feature map according to the rules, such
as max-pooling or mean-pooling. The max-pooling was used in this paper as follows:

xl
j,k = max(xl−1

j·s+m,k·s+n), (5)

where j and k are the locations of the current feature map xl
j, max is the maximum function,

s stands for pooling size, m ≥ 0, and n ≤ s.
The fully connected layer is essentially a perceptron connecting all the feature maps

between the current layer and previous layer to generate the global semantic information.
After this layer, the dropout is utilized to avoid over-fitting by disregarding some neurons
at random throughout the training process [44].

In the classification task, the fully connected layer is often followed by the classifica-
tion function, which is used to output the classification process of target. The commonly
used classification function in CNN is softmax, which obtains the classification result by
calculating the probability. The performance of softmax is improved using two fully con-
nected layers by taking into account the influence of time and frequency in this paper [45].
The relevant information of the CNN model is shown in Table 3. The Adam optimizer with
a learning rate of 0.0001 is used to improve the training speed of the model.

Table 3. The detailed information of the CNN model.

# Layer Filter Size Stride Output Dimension Activation Function

1 Input — — (128, 128, 3) —
2 Conv1 3 × 3 1 (128, 128, 64) ReLU
3 Maxpool1 2 × 2 2 (64, 64, 64) —
4 Conv2 3 × 3 1 (64, 64, 32) ReLU
5 Maxpool2 2 × 2 2 (32, 32, 32) —
6 Conv3 3 × 3 1 (32, 32, 16) ReLU
7 Maxpool3 2 × 2 2 (16, 16, 16) —
8 FC1 — — (128, 1) —
9 FC2 — — (100, 1) dropout = 0.5

10 Output — — (0, 1) softmax
Conv = convolutional layer; Maxpool = max-pooling layer; FC = fully connected layer.

2.6. DA Methods

According to the way of generating samples, DA methods are parted into two classes:
non-generative and generative methods.

2.6.1. Non-Generative DA Methods

Traditional non-generative DA methods are applied to spectrogram images, such as
flipping, cropping, rotation, and other operations, which will result in a large amount of
information loss or distortion from spectrograms, which have no physical meaning. For
audio files, five audio augmentation techniques are adopted: positive pitch shift, negative
pitch shift, slow time stretches, fast time stretches, and trim silence, and then, they are
converted to spectrograms, which could effectively augment audio data [46].

2.6.2. Generative DA Methods

Commonly used generative DA methods are the GAN model and its derivatives.
The GAN model comprises two neural networks, called generator (G) and discriminator
(D) [21], as shown in Figure 3.
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Figure 3. The structure of the GAN model.

The GAN model has the disadvantage of being too free, which results in uncontrollable
and unpredictable defects when using the trained GAN model to generate samples [24]. To
solve this problem, the DCGAN model has been proposed, which focus on the topology to
ensure the stability in the training process [23]. In addition, since the DCGAN model can
generate a large number of new samples that are closer to real samples while maintaining
the validity of the semantic features [20,47], it is used to generate more samples to expand
datasets in this paper. In the DCGAN model, D creates a filter that learns useful features of
the target image based on CNN, while G ensures the feature quality and diversity of the
generated image. The loss function of the DCGAN and GAN model is consistent, as given
in Equation (6).

min
G

max
D

V (D, G) = Ex∼Pdata(x)[log D(x)] + Ez∼Pz(z)[log(1− D(G(z)))], (6)

where Pdata(x) represents the distribution of real samples x, and Pz(z) represents the
distribution of random noise z. G and D update parameters constantly through adversarial
learning to restrict each other, and finally reach the Nash equilibrium.

In this paper, spectrograms of HS samples were used as real samples. Hence, there are
3677 images in the LVDD group and 4803 images in the control group. The DCGAN model
was used to generate new samples through modeling the distribution of real samples. This
is essentially a two-part minimum and maximum optimization problem:

(i) Train G: fix D and optimize the parameters of G. D(G(z)) indicates the probability of D
to judge whether the sample generated by G is real or not. Hence, the larger D(G(z)),
the better, implying that V(D, G) should be minimized, as shown in Equation (7). D
sends its gradient back to G to update the parameters.

min
G

V(D, G) = Ez∼Pz(z)[log(1− D(G(z)))] (7)

(ii) Train D: fix G and optimize the parameters of D. To improve the discriminative
capacity of D, the smaller the fake samples, the better, which means minimizing
D(G(z)). Therefore, V(D, G) should be maximized, as shown in Equation (8). The
back propagation of error updates the parameters of D.

max
D

V(D, G) = Ex∼Pdata(x)[log D(x)] + Ez∼Pz(z)[log(1− D(G(z)))] (8)

A convolutional layer was added to the original DCGAN model to construct a model
with an output of 128 × 128 in this paper.

(i) The generative model of the DCGAN model is a neural network similar to deconvo-
lutional (Deconv), whose information is shown in Table 4. Its input layer is a random
vector with uniform distribution. Secondly, the pooling layer is replaced by Deconv
to learn spatial upsampling. Then, the stride is 2, the number of channels is cut in half,
and the size is doubled. Batch normalization (BN) operation applies a transformation
that maintains the means of the convolved features close to 0 and the variances of
those close to 1 [48]. Adding BN operation to each layer except the output layer can
solve initialization problems.
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Table 4. The detailed information of the generative model.

Layer Filter Size Stride Output Dimension Activation Function BN

Input — — (1, 1, 100) ReLU Yes
Deconv1 5 × 5 2 (8, 8, 512) ReLU Yes
Deconv2 5 × 5 2 (16, 16, 256) ReLU Yes
Deconv3 5 × 5 2 (32, 32, 128) ReLU Yes
Deconv4 5 × 5 2 (64, 64, 64) ReLU Yes
Deconv5 5 × 5 2 (128, 128, 3) ReLU Yes
Output — — (128, 128, 3) Tanh No

Deconv = deconvolutional layer.

(ii) The discriminant model of the DCGAN model is CNN, whose information is shown
in Table 5. Similar to the generative model, the BN operation is carried out on each
layer except the input layer, which alleviates the disappearance of gradient. Leaky
ReLU, an activation function based on the ReLU, assigns a non-zero slope to all
negative values for preventing the sparseness of gradient [49]. A scalar with a range
of 0 to 1 is output through a fully connected layer to indicate the probability that
input data belong to a real sample rather than a generated sample.

Table 5. The detailed information of the discriminant model.

Layer Filter Size Stride Output Dimension Activation Function BN

Input — — (128, 128, 3) Leaky ReLU No
Conv1 5 × 5 2 (64, 64, 64) Leaky ReLU Yes
Conv2 5 × 5 2 (32, 32, 128) Leaky ReLU Yes
Conv3 5 × 5 2 (16, 16, 256) Leaky ReLU Yes
Conv4 5 × 5 2 (8, 8, 512) Leaky ReLU Yes
Conv5 5 × 5 2 (4, 4, 1024) Leaky ReLU Yes
Output — — (0, 1) sigmoid Yes

Conv = convolutional layer.

Figure 4 depicts the structure of the DCGAN model, using Adam as the optimizer
with momentum of 0.5 to help to stabilize the training; the learning rate is 0.0002, batch
size is 64, epoch is 300, and the slope of Leaky ReLU is 0.2.

Figure 4. The structure of the DCGAN model.

2.7. Similarity between Real and Generated Samples

For the generative result of the DCGAN model, how to evaluate whether the generated
samples are qualified or not is a problem. Although the generated samples can be displayed
as waveforms or spectrograms, it is difficult to detect the subtle changes visually. We
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presented an indirect way to measure the similarity between the samples generated by the
DCGAN model and the real samples to tackle this problem [50]. To begin, the DCGAN
dataset, which consists of samples generated by the DCGAN model in the LVDD and
control groups, was used as a training set to train the CNN model, which learns the
features that generated samples. The RS dataset, which is composed of real samples, is then
utilized to test the fully trained CNN model. Finally, the test accuracy of the CNN model
reflects the similarity of two types of samples. This method could be used to compare the
real samples with the generated samples in order to determine the differences between the
two types of samples.

3. Results

Matlab (Version: R2018a) software was used to implement the signal preprocessing,
segmentation, and STFT. The deep learning models were built with Python (Version: 3.7.0)
and the Tensorflow package (Version: 2.0.0). All experiments were implemented on a
computer with an Intel Core i5-9500K processor running at 3.70 GHz and a GTX1660Ti
GPU with 64 GB of RAM.

3.1. Result of DA

As for the results of non-generative DA methods, this paper adopted the above five
audio augmentation methods to augment HS, and then converted to spectrograms through
STFT. Therefore, there are 18,385 images in the LVDD group and 24,015 images in the
control group, called the non-generative augmentation dataset (NG dataset), which are
mixed with the RS dataset as the input of the model for LVDD diagnosis.

In the DCGAN model, the cross-entropy loss function was utilized to define the
loss of G and D, respectively. When the epoch was 300, the outputs of G and D were
relatively stable, as well as the loss value was close to 1 and then started to oscillate, as
shown in Figure 5. D can no longer tell the difference between real and fake samplesat
300th epochs. Therefore, the epoch is set to 300. Figure 6 shows the examples of the
generated spectrogram using the DCGAN model in the LVDD group. First, itis an original
spectrogram and then is split in intervals of 50 epochs successively, where the profile and
feature of the generated spectrogram becomes clearer and more obvious with an increasing
number of epochs.

Figure 5. The loss value of the DCGAN model.
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Figure 6. The examples of the spectrogram using the DCGAN model in the LVDD group with an increasing number of
epochs: (A) original image; (B) epoch = 0; (C) epoch = 50; (D) epoch = 100; (E) epoch = 150; (F) epoch = 200; (G) epoch = 250;
(H) epoch = 300.

3.2. Result of Similarity between Real and Generated Samples

The experiment was repeated by the method mentioned in Section 2.7, and the average
test accuracy was 0.869. This indicates that the generated samples retain the most features
of the real samples. Moreover, the DCGAN model could ensure the high validity and
quality of the generated samples, regarding as a good method for DA. However, there
are also some differences that indicate the diversity and unknown values of the generated
samples. In view of this, it is also possible to mix the DCGAN dataset with the RS dataset
and use them as the input of the CNN model (or other models) to identify LVDD. The
structure of the CNN model is depicted in Figure 7.

Figure 7. The structure of the CNN model.

3.3. Identification Performance

The performance of the proposed method was calculated from the testing set. All the
samples were split into ten equal-sized subsets. Eight subsets were selected as the training
set, and one subset was used as the validation set to tune the parameters of training process,
and the rest was selected as the testing set, while specifying that the samples from the same
subject cannot appear in the different subsets of the 10-fold cross-validation scheme. This
process was carried out ten times. The model was evaluated in this paper using the typical
evaluation metrics of accuracy (Acc), sensitivity (Se), and specificity (Sp).

Acc =
TP + TN

TP + TN + FP + FN
; (9)

Se =
TP

TP + FN
; (10)

Sp =
TN

TN + FP
, (11)

where TP = true positive, TN = true negative, FP = false positive, and FN = false negative.

3.3.1. Expansion Coefficient in the DCGAN Dataset

The expansion coefficient represents the average number of images generated by DA
from each spectrogram of the RS dataset. According to Figure 8, when the expansion
coefficient ranges 0 to 8 times, the performance is significantly improved, and the over-
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fitting problem is gradually solved with the expansion of samples and the use of dropout
operation. When the expansion coefficient in the DCGAN dataset is set to 8 times, the CNN
model achieves good performance with an Acc of 0.981, a Se of 0.980, and a Sp of 0.982.
As samples are further expanded, when the coefficient is in the range 8 to 20 times, the
performance does not increase, reaching a state of saturation. Therefore, there are 29,416
images in the LVDD group and 38,424 images in the control group in the DCGAN dataset.

Figure 8. The performance of the CNN model in the DCGAN dataset with different coefficients.

3.3.2. Performance Comparison

In the three different datasets, we tested the performance of the CNN model. Moreover,
the CNN model was compared against VGG-16, VGG-19, ResNet-18, ResNet-50, DenseNet-
121, and AlexNet to determine the best model for the diagnosis of LVDD. The number
of parameters of these models is shown in Table 6. The global average pooling layer
was adjusted before the fully connected layer to avoid dimension mismatches, and the
hyperparameters of each model remain consistent.

Table 6. Characteristics of the CNNs’ architectures used in this paper.

Models Parameters Epochs

VGG-16 138,357,544 500
VGG-19 20,483,904 500

ResNet-18 63,470,656 500
ResNet-50 46,159,168 500

DenseNet-121 62,378,344 500
AlexNet 82,378,344 500

Proposed CNN 559,396 500

The CNN model was trained for 500 epochs, and the gradient of backpropagation was
also calculated using the cross-entropy loss function. After expanding the samples, the
dropout operation in the CNN model achieved a certain effect of regularization, accelerat-
ing the convergence speed.

According to Tables 7–9, our proposed CNN model achieves the best classification
performance in the RS dataset + DCGAN dataset, with an average Acc of 0.987, Se of 0.986,
and Sp of 0.988 among the seven models. The CNN model has the fewest parameters, so it
takes less time to train. It can be seen that the length of training time has little impact on
model performance. Furthermore, the DCGAN-based generative DA method outperforms
the non-generative DA method in terms of classification performance. Compared with the
RS dataset, the Acc, Se, and Sp of the CNN model in the RS dataset + DCGAN dataset
are improved by 0.071, 0.054, and 0.093, respectively, which shows that the DCGAN
model could effectively expand HS dataset of LVDD, thus improving the performance for
LVDD diagnosis.
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Table 7. The results of different models on the testing set in the RS dataset during the 10-fold
cross-validation (mean ± standard deviation).

Models
Evaluation Metrics Training Time

(mins:secs)Acc Se Sp

VGG-16 0.913 ± 0.018 0.929 ± 0.018 0.892 ± 0.019 443:68
VGG-19 0.894 ± 0.022 0.908 ± 0.021 0.876 ± 0.022 112:37

ResNet-18 0.861 ± 0.021 0.883 ± 0.020 0.864 ± 0.020 251:26
ResNet-50 0.883 ± 0.022 0.899 ± 0.021 0.871 ± 0.020 178:13

DenseNet-121 0.842 ± 0.019 0.856 ± 0.022 0.825 ± 0.021 224:79
AlexNet 0.879 ± 0.017 0.897 ± 0.019 0.857 ± 0.019 317:25

Proposed CNN 0.916 ± 0.015 0.932 ± 0.017 0.895 ± 0.018 65:44
RS dataset = 3677 images in the LVDD group and 4803 images in the control group.

Table 8. The results of different models on the testing set in the RS dataset + NG dataset during the
10-fold cross-validation (mean ± standard deviation).

Models
Evaluation Metrics Training Time

(mins:secs)Acc Se Sp

VGG-16 0.949 ± 0.009 0.958 ± 0.009 0.931 ± 0.010 535:25
VGG-19 0.928 ± 0.013 0.933 ± 0.012 ±0.912 ± 0.013 243:14

ResNet-18 0.902 ± 0.011 0.911 ± 0.010 0.901 ± 0.011 361:12
ResNet-50 0.925 ± 0.012 0.934 ± 0.011 0.914 ± 0.011 302:57

DenseNet-121 0.887 ± 0.011 0.896 ± 0.012 0.867 ± 0.012 332:13
AlexNet 0.919 ± 0.009 0.930 ± 0.009 0.898 ± 0.010 435:79

Proposed CNN 0.955 ± 0.005 0.966 ±0.007 0.947 ± 0.008 179:26

RS dataset + NG dataset = 22,062 images in the LVDD group and 28,818 images in the control group.

Table 9. The results of different models on the testing set in the RS dataset + DCGAN dataset during
the 10-fold cross-validation (mean ± standard deviation).

Models
Evaluation Metrics Training Time

(mins:secs)Acc Se Sp

VGG-16 0.981 ± 0.003 0.978 ± 0.004 0.979 ± 0.003 494:56
VGG-19 0.964 ± 0.004 0.956 ± 0.005 0.961 ± 0.005 194:78

ResNet-18 0.957 ± 0.004 0.941 ± 0.006 0.949 ± 0.005 314:34
ResNet-50 0.968 ± 0.005 0.952 ± 0.006 0.951 ± 0.006 263:71

DenseNet-121 0.936 ± 0.005 0.922 ± 0.007 0.913 ± 0.006 286:45
AlexNet 0.962 ± 0.004 0.959 ± 0.005 0.955 ± 0.005 381:24

Proposed CNN 0.987 ± 0.001 0.986 ± 0.002 0.988 ± 0.002 130:13

RS dataset + DCGAN dataset = 33,093 images in the LVDD group and 43,227 images in the con-
trol group.

Figure 9 demonstrates how the performance of the CNN model in the RS dataset
+ DCGAN dataset improves as the number of epochs increases during training. Since
the 350th epoch, the CNN model has steadily converged, with the accuracy and loss of
validation set approaching those of the training set, indicating that the training epoch of
500 is sufficient.
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Figure 9. The training and validation performance of the CNN model in the RS dataset + DCGAN
dataset at 500 epochs.

4. Discussion

Over the years, many studies on the diagnosis of LVDD involved biomarkers, echocar-
diographic diagnostic indices, epidemiology, and pathogenesis. For example, Mocan
et al. [51] found that IL-6 as an inflammatory biomarker has the best predictive capacity for
LVDD, but such an invasive method is not suitable for pervasive application. HS signal
classification, a non-invasive method, has potential to identify of cardiovascular diseases
and has been extensively studied, but the objects of these researches are different [52,53].
However, the study for LVDD diagnosis based on deep learning using HS has not been
studied. This paper could therefore be an efficient supplement for the diagnosis of LVDD.

Due to the available HS databases are insufficient to train deep learning models,
Narváez and Percybrooks [22] developed a GAN-based DA method that could only gen-
erate normal HS with a single type and participate in classification tasks. In the GAN
model, G and D are in healthy competition for concurrent learning. The loss function is
derived using the output of D, and t hereforeit updates parameters more quickly, whereas
G does not always converge. Another drawback of the GAN model is that, for diverse
random inputs, G produces similar outputs [54]. In the original DCGAN model, CNN
architecture is integrated into unsupervised learning training to alleviate this problem
and boost generative effect [55]. In this paper, the DCGAN model was applied to the
analysis of HS, which could solve the problem of sparsity and imbalance of samples using
the DA of HS dataset. A DCGAN model with the output of 128 × 128 was constructed
to automatically generate spectrograms of HS frames, which could be used as the input
of the different deep learning models for training. Compared with the non-generative
DA method, the DCGAN-based DA method improves the classification performance of
different models. Moreover, it is also beneficial to enhance the speed and quality of the
generated samples, which shows the feasibility and effectiveness of the DCGAN model for
DA in the HS field.

The benefits of CNN can be shown in the following areas: it could learn features from
datasets automatically, and it has convolutional invariant, and it could obtain features
straight from the convolutional layer, overcoming the limitations of hand-crafted feature
extraction and providing high reliability [56]. Furthermore, transforming the HS signal into
a 2D spectrogram could better describe the time and frequency aspects of the signal [57].
Based on the above advantages, we proposed a 2D CNN model for the diagnosis of LVDD.
The performance of this model is compared with six common deep learning models, as
shown in Tables 7–9. In the RS dataset + DCGAN dataset, the CNN model has the best
classification performance and stability, which is a wonderful solution to the problem of
small samples. The method classifies spectrograms generated using the DCGAN model
and decreases the influence of out-of-distribution inputs, indicating it the preferred method
for the diagnosis of LVDD using HS.
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This paper also has two limitations. Firstly, the samples generated by the DCGAN
model have a low resolution of 128 × 128, which may affect the classification results of
deep learning models [58]. Secondly, the number of collected HS signals of LVDD is small,
which makes the features in the spectrograms insufficient to continue DA effectively to
improve model performance. We could collect more HS signals of LVDD to train the super
resolution generative adversarial networks (SRGAN) model to generate high-resolution
spectrograms, so as to have a better performance of deep learning models.

The DA method proposed in this paper could be utilized in the future to establish
HS databases for the other cardiovascular diseases in order to expand the application of
deep learning in the different fields. It provides important auxiliary diagnosis for medical
professionals and forms a non-invasive, low-cost, and reusable early diagnosis method to
avoid tedious examination.

5. Conclusions

Early diagnosis of LVDD can help guide treatment and provide important insights
into the progression and severity of HFpEF. We proposed a CNN model for the diagnosis of
LVDD using HS in this paper that does not rely on hand-crafted feature extraction, as well
as a DCGAN-based DA method for expanding the HS dataset of LVDD. The experimental
results support the efficacy of our proposed model. Furthermore, the suggested method is
not constrained by small datasets and offers a viable solution for HS signal analysis using
deep learning, which is a potential non-invasive technology for the identification of LVDD.
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