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A computational study 
of cooperative binding to multiple 
SARS‑CoV‑2 proteins
Jianing Li*, Kyle T. McKay, Jacob M. Remington & Severin T. Schneebeli

Structure-based drug design targeting the SARS-CoV-2 virus has been greatly facilitated by available 
virus-related protein structures. However, there is an urgent need for effective, safe small-molecule 
drugs to control the spread of the virus and variants. While many efforts are devoted to searching 
for compounds that selectively target individual proteins, we investigated the potential interactions 
between eight proteins related to SARS-CoV-2 and more than 600 compounds from a traditional 
Chinese medicine which has proven effective at treating the viral infection. Our original ensemble 
docking and cooperative docking approaches, followed by a total of over 16-micorsecond molecular 
simulations, have identified at least 9 compounds that may generally bind to key SARS-CoV-2 
proteins. Further, we found evidence that some of these compounds can simultaneously bind to 
the same target, potentially leading to cooperative inhibition to SARS-CoV-2 proteins like the 
Spike protein and the RNA-dependent RNA polymerase. These results not only present a useful 
computational methodology to systematically assess the anti-viral potential of small molecules, but 
also point out a new avenue to seek cooperative compounds toward cocktail therapeutics to target 
more SARS-CoV-2-related proteins.

Despite the availability of vaccines, there is still an urgent need for small molecules that are effective against 
SARS-CoV-2, the virus which causes the COVID-19 disease in the current pandemic. Over 300 drugs are being 
studied as potential repurposed candidates, but to date only remdesivir1 has been approved to treat COVID-19 in 
the US with an Emergency Use Authorization (EUA). In fact, we still must discover new small molecules for use 
as safe, oral antivirals to treat patients early in the course of infection, which will be key to control the spread of 
the virus. Also, there is an urgent need for effective treatments or even cures for patients with severe symptoms, as 
well as to prepare us for emerging variants of SARS-CoV-2. Thanks to a timely response from the global research 
community2, over 1000 virus-related protein structures have been deposited to the Protein Data Bank (PDB) 
since the start of the pandemic. Particularly, the RNA genome of SARS-CoV-2 and sequences of the encoded 
29 proteins have been revealed3,4, and the structures of more than nine unique viral proteins are available, all of 
which greatly facilitate computational efforts to search for compounds as potential treatments of COVID-19. 
In this work, we present a systems computational study that targets multiple SARS-CoV-2 proteins that span its 
genome and examine the potential of natural compounds for cooperative inhibition, aiming to inspire a new 
avenue towards finding compounds with cooperative effects as potential therapeutic agents.

So far, several directions of structure-based drug design (SBDD)—such as inhibitions of viral entry, assembly, 
replication, etc.—have been pursued, mainly targeting a few structural and non-structural proteins of SARS-
CoV-2. Among the four structural proteins, the Spike protein (S protein), which is crucial for host cell recognition 
and entry, is a primary target5,6. Compounds that block the interactions between the S protein and the angio-
tensin converting enzyme 2 (ACE2) are believed to prevent viral entry and subsequent infection7–10. Besides the 
S protein, two key proteases, the main protease (3CLpro or Mpro) and the papain-like protease (PLpro), which are 
encoded as part of non-structural proteins 5 and 3 (nsp5 and nsp3, respectively), are essential for the replication 
and assembly of SARS-CoV-211–13. Inhibition of these two proteases has also become the focus of many research 
programs14–16. Finally, the RNA-dependent RNA polymerase (RdRp) encoded as nsp12 is a component necessary 
for viral replication and transcription and is considered another emerging target17,18. In addition to those named 
here, there is a fast-growing list of potential targets for SBDD3,19–24.

Despite the expanding breadth of targets, current computational studies almost exclusively focus on similar 
methodologies—the development of specific and highly selective compounds to inhibit individual proteins 
(the “one compound, one target” strategy). These methodologies are not without their challenges14,25,26. In par-
ticular, it remains a possibility that small molecules interact with multiple protein targets, and a protein target 
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may allow cooperative or allosteric binding of the same or different molecules. Thus, conventional molecular 
modeling approaches like docking and virtual screening should be adapted to allow for such investigations. 
Ensemble docking, using representatives of protein conformational ensembles rather than a single structures, 
can be more accurate to identify potent compounds27,28 but is often computationally demanding. Therefore, we 
have designed a multi-step method to prescreen the compounds with conventional docking and use ensemble 
docking for selection, followed by a series of custom analytical steps, simulations, and cooperative docking (see 
Methods and models). Our methodology incorporates a carefully designed clustering algorithm and workflow, 
which is likely to balance computational accuracy and efficiency. In this work, we, for the first time, utilized this 
method in the spirit of systems biology, to extensively examine interactions between eight SARS-CoV-2-related 
proteins (Figure S1 and Table S1) and natural compounds to show the potential cooperative effects of small 
molecules against SARS-CoV-2.

We included six SARS-CoV-2 proteins and two ACE2 proteins (human and cat) in our receptor set, with 
small molecules (structures available for download in the SI) from 20 herbal ingredients in the Qingfei Paidu 
decoction (QPD)—a traditional Chinese medicine which underwent clinical trials in 2020–202129,30. In a clini-
cal trial with near 9000 patients hospitalized in China during the period from January to May 2020, the QPD 
treatment was found to reduce the COVID-19-related mortality significantly from 4.8 to 1.2%30. Despite such 
effectiveness, bioactive molecules in the 20 herbal ingredients of QPD and their mechanism of action remain 
largely unknown. Also, as QPD is administrated in clinical practice as a mixture of many bioactive compounds 
from the herbs, a systematic study is required to understand the individual and joint interactions between these 
compounds and the SARS-CoV-2 proteins. To fulfil this need, we have developed our computational meth-
odology which is comprised of ensemble docking, cooperative docking, and extensive molecular dynamics 
(MD) simulations for the systems chemistry investigation. Through literature search, we have identified more 
than 600 flavonoids, triterpenes, polysaccharides, and other bioactive compounds which are considered most 
medicinally relevant in this work (see the selection criteria in Methods and Models). From this study, we have 
identified several compounds which potentially inhibit multiple SARS-CoV-2 proteins; compounds from the 
same or different herbs may have synergy to enhance binding to the viral proteins. These findings shed light on 
new directions of COVID-19 treatments.

Results
Flavonoid glycosides displayed medium to strong interactions with general SARS‑CoV‑2 pro‑
teins.  We have identified at least nine compounds that broadly interact with the six SARS-CoV-2 proteins as 
well as the ACE2 enzymes, with affinities predicted mostly between − 5 and − 15 kcal/mol (Fig. 1 and Table 1). 
A typical example is rutin (C27H30O16), which is a flavonoid glycoside common in several ingredients of QPD 
such as those related to citrus fruits (fructus aurantii immaturus and citri reticulatae pericarpium, or known as 
Zhi Shi and Chen Pi in Chinese, respectively), as well as the Chinese thorowax root (known as Chai Hu). Despite 
debate about its antiviral effects31,32, rutin was suggested to block the active site of SARS-CoV-2 3CLpro in recent 
computational studies33–35. While our results from ensemble docking are consistent with prior research in rutin 
binding to the 3CLpro active site34, we revealed the interactions of rutin with other SARS-CoV-2 structural and 
non-structural proteins (Figure S1). Rutin can bind to the S protein’s receptor binding domain (RBD) and ACE2 
(Glide XP score from − 5 to − 7 kcal/mol) and interact with residues at their recognition interfaces7, such as L455, 
F456, A475, G476, F486, N487, Y489, and F490 of the viral S protein; residues 19–45, 82–83, 330, 353–357 of 
the human/cat ACE2. Further, we also found stable binding (Glide XP score less than − 7 kcal/mol) of rutin to 

Figure 1.   Two-dimensional structures of nine compounds suggested by ensemble docking to interact with 
multiple SARS-CoV-2 proteins and human/cat ACE2. Among them are eight flavonoids including Hyperin and 
three glycosylated derivatives as well as Amygdalin, a cyanogenic glycoside. These chemical structures were 
prepared in ChemDraw (version 20.0).
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the active sites of PLpro (rutin centroid distance to the S atom of the catalytic C111 is 10.7 ± 0.9 Å) and 3CLpro 
(between the catalytic dyad of H41 and C145; rutin centroid distance to the S atom of C145 is 9.2 ± 0.4 Å), as well 
as the RNA binding site of RdRp (Y546, K593, S814, E854, R858, S861, D865, and Q932). The close contact to 
the catalytic cysteine or occupation of the active site suggests the potential for rutin to be an effective inhibitor to 
these viral enzymes. Similar to rutin, we also identified other flavonoid glycosides like hyperin and its derivatives 
which displayed medium to strong affinity to the six SARS-CoV-2 proteins. More than one stable binding mode 
(less than − 7 kcal/mol) was often captured in our ensemble docking poses. Notably, prior computational studies 
that screened various databases13,24,36 also identified a number of flavonoid glycosides as potential inhibitors to 
3CLpro, PLpro and RdRp, which strongly supports our observations in this work. 

To confirm the stability of the rutin-bound complexes, we performed 120-ns MD simulations of the best pose 
of each cluster from ensemble docking in solution, which helped us assess the stability of the ligand–protein 
complexes. The rutin molecules stayed bound to the proteins throughout most simulations (Table S4). With 
protein alignment, our ligand root mean square deviation (RMSD) mainly varied in the range between 1.6 and 
9.7 Å (Fig. 2) for all complexes, comparable with previous simulations34 of rutin complexed with 3CLpro (RMSD 
4–6 Å). In particular, we observed that rutin was tightly bound in the macrodomain of nsp3, which has a well-
defined pocket (Glide XP score of − 10.5 kcal/mol, ligand RMSD 1.6 ± 0.3 Å), but was much more dynamic when 
bound to other proteins with open or wide binding sites such as the S protein RBD and RdRp (ligand RMSDs of 

Table 1.   Compounds suggested by ensemble docking to interact with multiple SARS-CoV-2 proteins and 
human/cat ACE2, as well as their best Glide XP docking scores (kcal/mol) from ensemble docking. The PDBID 
of each protein model was provided in parenthesis in the table header.

Compound MW (g/mol) S protein (7C8D) Npro (6WJI) 3CLpro (7JYC) PLpro (6WX4) RdRp (7BV1) NSP3 (5RSO) cACE2 (7C8D) hACE2 (6VW1)

Amygdalin 457  − 5.5  − 10.2  − 8.4  − 6.9  − 7.5  − 9.8  − 5.7  − 5.2

Rutin 611  − 7.2  − 8.0  − 12.2  − 7.8  − 9.3  − 10.5  − 7.3  − 5.1

Narcissin 625  − 4.8  − 8.8  − 11.2  − 6.6  − 8.0  − 9.3  − 5.9  − 6.1

Hyperin 464  − 7.1  − 10.2  − 10.4  − 7.1  − 7.7  − 10.5  − 6.5  − 4.3

Hyperin 
5-O-galactopyra-
noside

627  − 7.6  − 8.7  − 11.4  − 9.0  − 10.3  − 10.5  − 7.0  − 6.0

Hyperin 7-O-D-
xylopyranoside 597  − 6.2  − 11.4  − 10.6  − 6.1  − 9.5  − 12.3  − 6.3  − 6.2

Hyperin 6″-gallate 617  − 5.1  − 12.4  − 9.8  − 6.0  − 9.6  − 10.3  − 7.2  − 6.1

Tectorigenin 
7-O-gentiobioside 625  − 6.2  − 14.1  − 11.4  − 6.5  − 10.0  − 9.9  − 6.3  − 5.5

Kaempferol 
7-O-neohesperi-
doside

595  − 8.0  − 8.2  − 10.5  − 6.8  − 8.3  − 9.2  − 5.1  − 4.7

Figure 2.   Cartoon illustration of rutin interactions with key SARS-CoV-2 proteins and the time evolution of 
RMSDs with protein alignment (blue plot: protein Ca atoms; grey plot: rutin heavy atoms). The RMSDs were 
calculated using the initial docking models as references. In the cartoon, the initial ligand positions (from 
docking) are represented as transparent spheres, and the final ligand positions (the final snapshot of the MD 
simulation) are shown as sticks. As the initial and final ligand positions largely overlap, it is shown that rutin 
stayed bound to the viral proteins through the simulations. The cartoon illustration was prepared in Pymol 
(version 2.3.4).
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4.7 ± 0.9 and 5.9 ± 0.5 Å, respectively). For example, key residues in the S protein RBD for ACE2 binding mainly 
involve the β1′ and β2′ regions37, which are quite extended (greater than 30 Å in length) with a large surface area 
(2456 Å2, calculated with the PDB structure 7C8D). In both ensemble docking and MD simulations, rutin has 
been shown to form a wide range of interactions with hydrophobic patches on the S protein RBD surface, includ-
ing residues L455, F456, and F489 (Fig. 2). Similarly, various binding poses of rutin in the large RNA-binding 
site of RdRp (approximately 25 Å in width), first suggested by ensemble docking, remained stable during our 
simulations, mostly in contact to the thumb38,39 region of RdRp (Fig. 2). With comparable ligand stability to 
similar simulation studies ranging from 50 to 400 ns9,12,13,34,40, our simulations suggested that a number of small 
compounds from the QPD ingredients can bind to key SARS-CoV-2 proteins with medium to strong affinity. 
While our results identified individual compounds as “good binders” to these proteins, we also endeavored to 
address the question whether simultaneous binding of similar or different compounds can further enhance the 
binding strength.

Structurally similar compounds binding to the S protein.  We discovered from cooperative docking 
and MD simulations that a number of flavonoid glycosides (like rutin, narcissin, and chrysin 7-o-beta-gentio-
bioside, etc.) can simultaneously bind to the same viral protein. Generally, flavonoids share a 15-carbon skeleton 
comprised of two phenyl rings (namely A and B) and a heterocyclic C ring41 and readily form π–π-stacking with 
other flavonoids or similar compounds bound to a protein target. This has been observed before in a co-crys-
talized structure42. In addition, a distal sugar moiety may also allow hydrogen bonding to the protein, further 
stabilizing the complex. Considering that the S protein exists as a homotrimeric complex43, we notably predict 
simultaneous binding at even a single monomer. Using the S protein RBD with several flavonoid glycosides from 
our ligand set, we gained proof of concept that multiple compound binding may enhance the inhibition of the 
target viral protein.

Our cooperative docking approach started by selecting a pose for a single ligand from ensemble docking. 
Next, the second ligand was docked to the same binding site (containing the first ligand), which generated initial 
models for subsequent MD simulations of the complex with two ligands. Notably, the assignment of the first and 
second ligands can affect the complex stability seen in subsequent MD simulations (see the Discussion section). 
For proof of concept, we only focused on selected compounds (i.e. Glide XP score less than -10 kcal/mol) and 
rutin in this work. For example, we have docked six compounds (Table S5) to the rutin-bound S protein model. 
These compounds displayed stronger binding (with docking scores lowered by 0.5–1.8 kcal/mol) as the second 
ligands than as the first ligands, which is indicative of cooperative binding. As expected, most of the secondary 
ligands were predicted to form π–π-stacking interactions with rutin. In the subsequent MD simulations, we found 
that all the compounds remained bound to the S protein (Fig. 3), and such stacking interactions were stable in 
four simulations. First, the complex with two rutin molecules was highly stable, while the rutin dimer remained 
bound to the β1′ and β2′ region. Particularly, the π–π-stacking between the rutin molecules was enhanced dur-
ing sampling in the MD simulations (centroid distance of 6.7 ± 0.7 Å), leading to the packing of A/C ring from 
one compound and the B ring from another (Fig. 2C). The glucose and rhamnose sugar groups stretched out 
to interact with the side chain of Q493 and the backbone of residues 490–492. As a result of these interactions, 
the structural fluctuations of the protein (RMSD from 2.0 to 1.7 Å) and the first rutin (RMSD from 4.7 to 4.5 Å) 
were slightly reduced, compared with the simulation with one rutin bound (Table S4). Further, similar enhanced 
π–π-stacking interactions were observed in narcissin-rutin, coumarin glycoside-rutin, and tectorigenin 7-O-gen-
tiobioside-rutin in complex with the S protein RBD, indicated by the centroid distance of the two ligands below 

Figure 3.   Cooperative and additive binding of two flavonoid glycosides to the S protein RBD. (A) Time 
evolution of the center of mass (COM) distances (grey plot: rutin-rutin; pink plot: rutin-chrysin 7-O-β-
gentiobioside). (B) Cartoon illustration of typical flavonoid glycosides from QPD ingredients binding to the S 
protein-ACE2 interface, especially involving the β1′ and β2′ region (PDBID: 7C8D). (C, D) Final snapshots of 
MD simulations of two flavonoid glycosides binding to the S protein. Hydrogen bonds were shown in yellow 
dash; and π–π-stacking was shown with magenta dash. The cartoon illustration was prepared in Pymol (version 
2.3.4).
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8.0 Å (Table S5). Thus, adding another flavonoid glycoside may increase the stability of the complex. Likely, these 
results imply potential synergy between the active compounds in QPD, regarding the same compounds (like 
rutin), compounds from the same herb (like rutin and narcissin in the Torowax root), or even compounds from 
different herbs (like rutin in the Torowax root and tectorigenin 7-O-xylosylglucoside in Belamcanda Sinensis). 
However, for the other pairs of compounds, the complex conformations from docking were less stable. While 
both ligands stayed at the S protein interface with ACE2, their centroid distances over 8.0 Å indicated little to no 
stacking between the two compounds (Fig. 3A, D), such as chrysin 7-O-β-gentiobioside-rutin (centroid distance 
of 8.8 ± 1.8 Å) and kaempferol 3-O-neohesperidoside-rutin (centroid distance of 20.0 ± 1.9 Å). In these cases, 
although the first ligand did not enhance the binding of the second ligand, it may still add inhibition of the S 
protein binding to ACE2 in comparison to only the first ligand.

In general, the above-described patterns of multiple compound binding—involving both addition and syn-
ergy—to the S protein were also observed in flavonoid glycoside binding to viral enzymes like 3CLpro, PLpro, 
and RdRp, as well as to human/cat ACE2 (Table S5). These findings confirm the possibility that cooperative 
compounds may target multiple viral proteins and thus likely act via various mechanisms in the life cycle of 
SARS-CoV-2.

Structurally distinct compounds binding to the RNA polymerase.  Different from the S protein, 
we found cooperative binding of two different types of compounds (like triterpenes and flavonoids) at the 
large RNA-binding site of RdRp. In our simulation of saikosaponin I and rutin bound to RdRp, there was clear 
hydrophobic interactions between the C30 skeleton of saikosaponin I with the A/C ring in rutin, as well as the 
sugar moieties forming hydrogen bonds with the RNA-binding site of the protein (Fig. 4B2). According to our 
simulations, rutin or saikosaponin I was relatively stable at the same site alone, indicated by the average ligand 
RMSD near 5 Å. However, while both molecules were bound to RdRp (Fig. 4E), the binding stability was greatly 
increased as shown by the low RMSDs (saikosaponin I, 3.4 ± 0.1 Å and rutin 2.6 ± 0.2 Å), and they remained 
stacked for 120 ns throughout the simulations (centroid distance of 5.8 ± 0.2 Å). In addition to saikosaponin I 
from Chinese thorowax root, we also simulated two other triterpenes from the licorice root, macedonoside B 
and licoricesaponin F3 (Fig. 4), which were also found to form strong stacking with rutin at the RNA-binding 
site of RdRp. Such interactions may involve tighter binding of the small compounds to RdRp, which likely block 
RNA binding to the polymerase.

In addition, we observed cooperative binding of two flavonoids (like rutin-rutin and rutin-tectorigenin 
7-O-xylosylglucoside) at the RNA-binding site of RdRp (Table S5). Taken all together, as a potential QPD molecu-
lar mechanism to treat COVID-19, active compounds from different herbs may simultaneously bind the viral 
proteins and generate additional or synergistic inhibitory effects.

Figure 4.   Cooperative binding of rutin and triterpenes at the RNA-binding site of RdRp. (A) Cartoon 
illustration of the RNA-binding site surrounded by the so-called Thumb, Palm, and Finger regions (PDBID: 
7BV2). (B–D) Final snapshots of MD simulations of rutin and a triterpene compound binding to RdRp. (E) 
Time evolution of ligand RMSD of rutin or saikosaponin I-bound simulations as well as the saikosaponin 
I-rutin RdRp complex simulations. It is shown that the cooperative binding reduces the ligand flexibility at the 
wide RNA-binding site of RdRp. The cartoon illustration was prepared in Pymol (version 2.3.4).
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Discussion
From the drug discovery perspective, some of the SARS-CoV-2 proteins can be difficult targets for structure-
based design, given their less well-defined (like in the S protein) or generally very large binding pockets (like in 
the RdRp). Thus, it can be a challenge to identify specific and selective compounds. From ensemble docking and 
molecular simulations, we identified several compounds contained in QPD that potentially bind to the viral pro-
teins, but most of them displayed only medium affinity with multiple possible binding poses, which renders these 
compounds less attractive as potential drug candidates. However, with ensemble/cooperative docking combined 
with extensive MD simulations, we have examined the possibility of multi-compound interactions at the same 
binding site. We found that binding of one compound (i.e. rutin) from QPD ingredients to a viral protein can 
favorably influence the binding of another compounds (i.e. another flavonoid or a triterpene) from the same or 
different ingredients, mostly likely through π–π-stacking interactions. Cooperativity of ligand binding through 
direct interaction between stacked molecules, often referred to as heterotropic cooperativity, has been long known 
in model proteins like P450 3A442,44. Interestingly, the stacking stability can change with different assignments 
of the first and second ligands (or the docking order of cooperative compounds). Regarding the cooperativity 
of rutin and lucenin3 when binding to 3CLpro (Table S5 and Figure S3), the stacking between lucenin3 and rutin 
were much stronger (centroid distance of 7.6 ± 0.3 Å), with lucenin3 directly bound to 3CLpro as the first ligand 
(RMSD of 1.2 ± 0.2 Å). However, with rutin as the first ligand (RMSD of 6.2 ± 0.3 Å), the complex appeared less 
stable and the stacking was much weaker (centroid distance of 10.6 ± 0.3 Å). The complex that is more thermo-
dynamically stable will be likely dominant, and further theoretical and experimental studies may be needed in 
the future to fully explore this phenomenon. In addition to cooperative binding, we also found different com-
pounds that may bind to the large interface of the S protein and ACE2, which generates a joint effect stronger 
than a single compound. Overall, our work shows that QPD provides a rich source of active small molecules 
that may synergistically inhibit the key players in the processes of SARS-CoV-2 entry, assembly, and replication.

Although we only gained proof of concept for possible synergy among selected compounds in a 1:1 stoichi-
ometry, more complex binding (e.g. more than two different molecules, or different stoichiometry) is possible. 
Our ensemble and cooperative docking approach (Fig. 5) can be utilized to further explore these possibilities at 
an affordable computational cost. Moreover, although only selected SARS-CoV-2 proteins with crystal structures 
were studied in this work, the methodology presented here opens the door to more comprehensive studies to 
cover (i) other viral and even human protein targets (with experimental structures or theoretical models), and/
or (ii) more small molecules (e.g. from databases). Notably, our results suggested only 12 of 20 QPD ingredients 
that may be directly associated with SARS-CoV-2 interactions. Some other herbal ingredients may be involved 
to regulate the human immune system, and interact with human therapeutic targets. It is viable to establish more 
comprehensive studies on the methodology in this work, which can complement current efforts in computer-
aided discovery for COVID-19 treatments.

Conclusions
We have systematically modeled the interactions between eight related proteins and more than 600 small mol-
ecules from herbal ingredients of a Chinese medicine against SARS-CoV-2. Our results suggest that several 
natural compounds may be able to inhibit the viral proteins, and thus key processes in the viral life cycle. We 
also found compelling evidence that selected compounds may simultaneously bind to the same viral protein as 
the Spike protein and the RNA polymerase, leading to synergistic effects in blocking the protein targets. While 
the synergy of identified compounds will be validated in the future experimentally, we provide a novel compu-
tational protocol to discover synergistic agents to target large protein binding sites, as a valuable tool to discover 
new COVID treatments.

Methods and models
Small‑molecule ligand selection and preparation.  Distinct from prior studies to screen compounds 
from databases13, we collected a set of 625 small-molecules (compound names and 3D models provided in the 
SI for download) from a thorough literature search from recent analytical studies of bioactive compounds of 20 
herbs in QPD (Table S1). After referring to records in PubChem45, volatile or toxic compounds were excluded, 
so that we could focus on the chemically relevant ingredients. Notably, QPD is prepared by boiling the dried 
herbal components in the gypsum aqueous solution for 20–30 min, and the small, volatile compounds are likely 
lost during the drying and/or boiling processes. Non-volatile compounds are more likely to be dominant in the 
active ingredients of QPD. The 3D models of these compounds were either built in Maestro (Schrödinger Inc.) 
or downloaded from PubChem, followed by structure cleanup and prediction of the favorable tautomeric states 

Figure 5.   Cartoon illustration of our workflow. Prescreening used the Virtual Screening Wizard and ensemble/
cooperative docking was performed with Glide with the Glide XP scoring function.
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in the Epik program46. The qualitative assessment of absorption, deposition, metabolism, excretion and toxicity 
(ADMET) profile of selected hits were predicted computationally by using the SwissADME server47 (Table S6).

Ensemble and cooperative docking approaches.  We have created an original approach for ensemble 
docking, which efficiently assesses the potential interactions between a large number of compounds (ligands) 
and conformations of multiple protein targets (receptors). The work flow of this approach, illustrated in Fig. 5, 
was designed to balance the computational efficiency and accuracy in a systems chemistry study. The eight PDB 
structures (Table 1 and Table S1) of protein receptors (six SARS-CoV-2 proteins, the human ACE2, and the cat 
ACE2) were prepared by the Protein Preparation Wizard in Maestro (Schrödinger, Inc.), to assign protonation 
states and to fill incomplete side chains and loop gaps48,49.

After preparation of the small-molecule compounds and the protein receptors, our approach starts with 
virtual screening using one model for each receptor. Notably, most selected PDB structures in this work have 
co-crystalized ligands and known binding interfaces, so that we could readily define the ligand-binding sites. 
The docked ligand is confined to the enclosing box centered at the binding-site center (10 Å for the inner box; 10 
or 15 Å for the outer box). While all the 625 compounds were prescreened using the Virtual Screening Wizard 
(Schrödinger Inc.), the top 10% with the best Glide XP scores were then promoted to ensemble docking. To do 
so, we could filter the compounds that are too small or too bulky for binding, and allow only the most relevant 
compounds for the costly ensemble docking and subsequent stages in our workflow. Visualization of the docking 
results was carried out in Maestro (version 2020-2) and Pymol (version 2.3.4).

In parallel to prescreening, the receptor conformations for ensemble docking were generated by clustering 
the conformations sampled in the ligand-free protein simulations (Table S1). These simulations were performed 
with the Desmond-GPU version (Schrödinger Inc.) and analysis for clustering was carried out by the Desmond 
Trajectory Clustering Tool in Maestro. We chose the clusters of receptor conformations based on the local dynam-
ics of the ligand-binding site (local RMSD), in order to select the most relevant conformations and provide an 
affordable computational cost for ensemble docking. Clustering was based on heavy-atom RMSD of residues 
within 4 Å of the ligand-binding site. Only representative conformations of clusters with > 10 members were 
selected for ensemble docking. We had 2–6 clusters (Table S1) for each protein receptor in this work. Next, the 
top compounds from prescreening were docked to each of the cluster representative conformations in Glide 
(Schrödinger Inc.). The best Glide XP score50 and the corresponding pose from all the docking tests of these 
representative models are considered the ensemble docking score and pose respectively (Table S4). The stability 
of the complex models from ensemble docking was further evaluated by MD simulations for 120–250 ns with 
two trajectories for each complex.

Finally, selected complexes with one ligand were setup for cooperative docking (Table S5), which docked 
the top 10% of compounds from prescreening as the second ligand at the same binding site of each top complex 
model from ensemble docking by Glide (12 Å for the inner box; 15 Å for the outer box). For example, three 
clusters were identified for RdRp, and from each cluster a representative structure was used to provide the three 
structures for ensemble docking. The top complex models with saikosaponin I, macedonoside B, licoricesaponin 
F3 respectively were employed for cooperative docking (Table S5). Among all these complex models with two 
ligands bound, the best Glide XP score and the corresponding pose were reported as the cooperative docking 
results. To evaluate the stability and confirm the cooperativity, these complex models were simulated with two 
trajectories for 120–250 ns in Desmond, to further understand the potential cooperative binding. The simulations 
(i.e. RMSD, RMSF, and center of mass distance) were visualized and analyzed using Maestro (version 2020-2), 
VMD (version 1.9.3), and our in-house Python and Tcl scripts.

System construction and simulation setup of molecular dynamics (MD).  We used MD simula-
tions (i) to sample apo protein conformations for ensemble docking, and (ii) to validate complex structures 
from ensemble/cooperative docking. All the constructs were prepared in System Builder (Schrödinger Inc.) and 
relaxed using a multistage protocol which has been described in our previous work51,52. Parameters from the 
OPLS3e53 force field and the SPC water model54 were assigned.

Our production runs were performed in the NPT ensemble (300 K, 1 bar, Martyna–Tobias–Klein coupling 
scheme) with a time step of 2 fs in the Desmond MD engine. The particle mesh Ewald technique was used for 
the electrostatic calculations. Van der Waals and short-range electrostatics were cut off at 9.0 Å. The long-ranged 
electrostatics was updated every third simulation step. Each construct was simulated with two trajectories for 
120–250 ns, and most of the systems showed consistent RMSF (Figure S4), which suggests sufficient sampling 
within our simulated length. Our total MD sampling reached 16 microseconds, with details provided in Tables 
S3–S5.
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