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Abstract

Lysozyme is a cornerstone of innate immunity. The canonical mechanism for bacterial killing

by lysozyme occurs through the hydrolysis of cell wall peptidoglycan (PG). Conventional

type (c-type) lysozymes are also highly cationic and can kill certain bacteria independently

of PG hydrolytic activity. Reflecting the ongoing arms race between host and invading micro-

organisms, both gram-positive and gram-negative bacteria have evolved mechanisms to

thwart killing by lysozyme. In addition to its direct antimicrobial role, more recent evidence

has shown that lysozyme modulates the host immune response to infection. The degrada-

tion and lysis of bacteria by lysozyme enhance the release of bacterial products, including

PG, that activate pattern recognition receptors in host cells. Yet paradoxically, lysozyme is

important for the resolution of inflammation at mucosal sites. This review will highlight recent

advances in our understanding of the diverse mechanisms that bacteria use to protect them-

selves against lysozyme, the intriguing immunomodulatory function of lysozyme, and the

relationship between these features in the context of infection.

Introduction

Ubiquitously encoded in the genomes of the animal kingdom, lysozyme is a conserved anti-

microbial protein that is critical to host defense. All lysozymes share the ability to hydrolyze

bacterial cell wall peptidoglycan (PG) and have a similar overall structure [1]. The following

3 types of lysozymes have been described based on their amino acid sequence and biochemi-

cal properties: chicken or conventional type (c-type), goose type (g-type), and invertebrate

type (i-type). Comparisons of lysozymes across the animal kingdom have been extensively

reviewed elsewhere [1]. In mammals, lysozyme is found in abundance in the blood and

liver, in secretions, including tears, urine, saliva, and milk, at mucosal surfaces (where it can

reach concentrations as high as 1 mg/ml), and in professional phagocytes, including macro-

phages, neutrophils, and dendritic cells [1, 2]. Lysozyme is present in phagocyte-like cells in

nonmammalian organisms as well, suggesting that lysozyme plays a conserved role in host

defense across the animal kingdom [1, 3].

Nearly 100 years ago, Alexander Fleming was the first to observe the bacteriolytic efficacy

of lysozyme [4]. We now know that lysozyme causes bacterial cell lysis via targeted hydrolysis

of bacterial cell walls, which are critical for the resistance of bacteria to osmotic stress. The cell

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006512 September 21, 2017 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Ragland SA, Criss AK (2017) From

bacterial killing to immune modulation: Recent

insights into the functions of lysozyme. PLoS

Pathog 13(9): e1006512. https://doi.org/10.1371/

journal.ppat.1006512

Editor: James B. Bliska, Stony Brook University,

UNITED STATES

Published: September 21, 2017

Copyright: © 2017 Ragland, Criss. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Funding: This work was supported by NIH R01

AI097312 (AKC) and the University of Virginia

Robert R. Wagner Fellowship (SAR). The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.ppat.1006512
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006512&domain=pdf&date_stamp=2017-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006512&domain=pdf&date_stamp=2017-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006512&domain=pdf&date_stamp=2017-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006512&domain=pdf&date_stamp=2017-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006512&domain=pdf&date_stamp=2017-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006512&domain=pdf&date_stamp=2017-09-21
https://doi.org/10.1371/journal.ppat.1006512
https://doi.org/10.1371/journal.ppat.1006512
http://creativecommons.org/licenses/by/4.0/


wall, or sacculus, is composed of PG monomers consisting of the disaccharide N-acetylgluco-

samine (NAG)-N-acetylmuramic acid (NAM) with a peptide stem attached to the lactyl moiety

of NAM (Fig 1A). PG polymers are formed by β-1,4 glycosidic linkages between the NAM and

NAG of individual monomers, and, to confer tensile strength to the sacculus, peptide stems

are crosslinked between adjacent PG polymers. Variations in the structure and synthesis of PG

amongst different bacteria have been reviewed elsewhere, but one notable difference is that

gram-positive bacteria have a thick layer of PG that is exposed extracellularly, whereas the PG

of gram-negative bacteria is thinner and sandwiched between the inner and outer membranes

[5, 6]. Lysozyme hydrolyzes the β-1,4 glycosidic bond that links adjacent monomers (Figs 1B,

2A and 2B). Lysozyme’s enzymatic activity is covered in [1]. In addition to their enzymatic

activity, c-type lysozymes, like human lysozyme and mouse LysM and LysP, are cationic (Fig

2C) [1, 7] and can insert into and form pores in negatively charged bacterial membranes (Fig

1C) [8, 9]. Both the enzymatic and cationic features of c-type lysozyme have been implicated

in antibacterial activity [1, 7–10].

Given the abundance and potent activity of lysozyme against bacteria, it is not surprising

that pathogenic bacteria have developed mechanisms to resist killing by lysozyme. In addition,

the antimicrobial function of lysozyme is coupled with an important immunomodulatory role

because components released from bacteria in a lysozyme–dependent manner can alter innate

immune function. In this review, we will highlight the diverse and complementary mecha-

nisms that pathogenic bacteria use to resist killing by c-type lysozyme, the effect of lysozyme

on immune–mediated outcomes of infection, and the interplay between these features, with a

focus on recent findings in each of these areas. We will then synthesize these findings in light

of an overall model that places lysozyme as a key modulator of host-pathogen dynamics.

Fig 1. Lysozyme can kill bacteria through 2 mechanisms. (A) A newly synthesized PG monomer

consists of a disaccharide, NAG linked to NAM with an attached peptide stem, and the NAM is anchored

to the membrane via a lipid carrier (grey). Monomers are added to a growing chain through the action of

glycosyltransferases (green). (B) Lysozyme hydrolyzes the β-1,4 glycosidic bond between the NAM of 1

monomer and the NAG of the adjacent monomer. Lysozyme hydrolysis of PG leads to cell wall instability

and bacterial cell death. (C) Lysozyme can also kill bacteria independently of PG hydrolysis through a

mechanism involving its cationic nature. Cationic killing of bacteria may involve the formation of pores by

lysozyme (red cylinders) on the bacterial cell membrane. Abbreviations: NAG, N-acetylglucosamine;

NAM, N-acetylmuramic acid.

https://doi.org/10.1371/journal.ppat.1006512.g001
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Mechanisms of bacterial lysozyme resistance

Bacteria with the potential to cause disease have evolved the following 3 broad approaches to

evade killing by lysozyme: modifying PG to render it resistant to hydrolysis by lysozyme, alter-

ing bacterial envelope charge and integrity, and expressing inhibitors of lysozyme.

PG modifications

In order to bind its PG substrate, lysozyme must properly orient its active site residues with

the glycan backbone of PG (Fig 2) [1]. Three types of PG modifications prevent the effective

binding of lysozyme to PG: N-deacetylation of NAG and both O-acetylation and N-glycolyla-

tion of NAM. See Davis and Weiser for a historical perspective on these modifications [11].

Less common PG modifications that block hydrolysis by lysozyme are also described.

Deacetylation of NAG. Interactions between the active site of lysozyme and the acetyl

groups on the glycan backbone of PG facilitate efficient hydrolytic activity [1]. To limit these

interactions, some pathogenic bacteria express a NAG deacetylase, encoded by pgdA, which

removes the acetyl group at the C2 position of NAG (Fig 3B) [12]. Streptococcus pneumoniae

Fig 2. The enzymology and cationicity of human lysozyme. (A) The active site of lysozyme accommodates up to 6 consecutive

sugars through 6 subsite contacts, annotated A-F. Lysozyme hydrolyzes the β-1,4 glycosidic bond between the NAM at subsite D

and the NAG at subsite E [1]. (B) Ribbon model of human lysozyme highlighting the essential active site residues, an aspartic acid

(blue) and a glutamic acid (orange). (C) Electrostatic potential map of human lysozyme (isoelectric point, 9.28). Because the

bacterial envelope is negative, lysozyme may have an enhanced charge-mediated attraction for the bacterial surface that is

proposed to lead to a catalytic-independent mechanism of bacterial killing. This structure was created using space-filling models in

the PyMOL molecular graphics system. The electrostatic potential map was then calculated with the APBS Tools plug-in for PyMOL

with default settings (contoured at ± 5kT/e; blue, positive; red, negative; white, hydrophobic). Human lysozyme, PDB accession

1REX. Abbreviations: NAG, N-acetylglucosamine; NAM, N-acetylmuramic acid; PDB, Protein Data Bank.

https://doi.org/10.1371/journal.ppat.1006512.g002
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lacking pgdA is more sensitive to killing by lysozyme in vitro and is less virulent in vivo [12,

13]. pgdA homologs in other bacteria, including Helicobacter pylori, Listeria monocytogenes,
Streptococcus suis, Streptococcus iniae (pdi), Enterococcus faecalis, Shigella flexneri,Mycobacte-
rium tuberculosis (Rv1096), and Clostridium difficile (pdaV), enhance bacterial resistance to

lysozyme in vitro, increase bacterial survival in vivo, and/or increase bacterial survival in the

presence of professional phagocytes [14–22]. Because the outer membrane of gram-negative

bacteria occludes the passage of molecules that are larger than 650 Da [23], including lysozyme

(e.g., human lysozyme is 14.7 kDa), pgdA mutants in the gram-negative H. pylori and S. flexneri
are sensitive in vitro to lysozyme only upon the addition of a membrane-disrupting agent such

as lactoferrin. Because pgdA mutants in these species also display decreased survival in vivo, it

implies that there are membrane-disrupting conditions that increase sensitivity to lysozyme

during infection [17, 24, 25].

Acetylation of NAM. The addition of an acetyl group to the C6 hydroxyl group of NAM,

termed O-acetylation, prevents the binding of lysozyme to PG through steric hindrance (Fig

3C) [26]. O-acetylation of NAM is a common bacterial modification, although the mechanism

occurs differently between gram-negative and gram-positive bacteria [27]. In the gram-posi-

tive bacterium Staphylococcus aureus, NAM acetylation by O-acetyltransferase A (oatA)

enhances resistance to lysozyme in vitro and bacterial survival in vivo [28, 29]. The loss of the

NAM O-acetyltransferase in L. monocytogenes (oatA), S. pneumoniae (adr), and Bacillus
anthracis (oatB) renders these gram-positive bacteria sensitive to lysozyme, but only if they

also lack pgdA or have fully N-acetylated PG [30–32]. Similarly, E. faecalis requires deletions in

multiple lysozyme resistance factors, including pgdA (EF1843) and oatA (EF0783) before lyso-

zyme sensitivity is observed [18, 19]. In contrast, Lactobacillus plantarum O-acetylates both

NAM (via OatA) and NAG (via OatB), but only NAM O-acetylation confers resistance to lyso-

zyme [33]. Thus N-deacetylation of NAG and O-acetylation of NAM can work additively but

are not necessarily equivalent in their contribution to lysozyme resistance in gram-positive

bacteria, implying that additional species-specific features contribute to lysozyme resistance.

Furthermore, the redundancy, potency, and conservation of these resistance factors under-

score the importance of lysozyme resistance to bacterial pathogenesis.

Conversely, in gram-negative bacteria, O-acetylation of NAM requires the following gene

products: PatA (or PacA), a transmembrane protein that transports acetate from the cytoplasm

to the periplasm, and PatB (or PacB), the periplasmic O-acetyltransferase [27]. In H. pylori and

Campylobacter jejuni, the deletion of patA increases bacterial susceptibility to lysozyme in the

presence of lactoferrin [24, 34]. In C. jejuni, patA mutant bacteria are more sensitive to killing

by macrophages in vitro and have a decreased capacity to colonize the intestine in vivo [34]. In

Neisseria gonorrhoeae and Neisseria meningitidis, pacA and pacB are important for PG O-acety-

lation and the resistance of purified PG to lysozyme [35]. We recently reported that pacA does

not affect the sensitivity of N. gonorrhoeae to lysozyme unless bacterial envelope integrity is

also compromised [36]. The loss of pacA did not increase gonococcal sensitivity to killing by

human neutrophils, which implies that the many mechanisms used by N. gonorrhoeae to resist

killing by neutrophils are sufficient to protect the PG cell wall from lysozyme-mediated degra-

dation [36, 37]. Notably, while lysozyme is abundantly produced by neutrophils, the contribu-

tion of lysozyme to the killing of bacteria, including N. gonorrhoeae, in neutrophils remains

unresolved.

It is noteworthy that O-acetylation of NAM is important in bacterial physiology beyond

lysozyme inhibition, and this modification can also inhibit the activity of lytic transglycosy-

lases, which are bacteria-derived cell wall turnover enzymes (see “Gram-negative envelope

integrity” section) [38]. In E. faecalis, PG is basally modified with O-acetyl groups, whereas

other PG modifications, including N-deacetylation of NAG, only occur when the bacteria are
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Fig 3. Bacteria modify PG to increase resistance to lysozyme, and some modifications can affect downstream innate

detection. To disrupt efficient lysozyme binding to PG (A), bacteria modify their PG via N-deacetylation of NAG (B), O-
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exposed to lysozyme [18, 19]. A lack of O-acetylation can increase autolysis and/or prevent cell

separation, as is the case for B. anthracis [32]. On the other hand, excessive O-acetylation in N.

meningitidis and C. jejuni, which is caused by the loss of the PG O-acetyl esterase Ape1, causes

decreased bacterial virulence in vivo [39, 40]. While these observations indicate that O-acetyla-

tion is important for bacterial physiology as well as in resistance to lysozyme, the interplay

between these functions in the context of infection remains unclear.

Moreover, the expectation that gram-positive bacteria use OatA while gram-negative bacte-

ria use PatA/PatB for PG O-acetylation is not so simple. The gram-positive B. anthracis pos-

sesses homologs of both systems, with both contributing to PG O-acetylation. However, the

systems do not appear to be redundant because only PatA/PatB but not OatB contributes to

cell separation [32]. Future studies should reveal if other bacteria harbor multiple O-acetyla-

tion system, and, if so, how these systems respectively contribute to lysozyme resistance and/or

bacterial physiology, possibly through differential spatial or temporal distribution in the bacte-

rial cell.

N-glycolylation of NAM. Mycobacteria and some closely related Actinomycetes N-glyco-

lylate NAM (Fig 3D). In mycobacteria, the production of N-glycolylmuramic acid is catalyzed

by the hydroxylase NamH, a monooxygenase enzyme. The loss of namH in Mycobacterium
smegmatis results in a decreased resistance to lysozyme [41]. Compared with NAG deacetyla-

tion or NAM O-acetylation, relatively few bacterial species analyzed to date N-glycolylate their

PG. This may be related to the fact that PG with N-glycolylated NAM are better recognized by

the host pattern recognition receptor NOD2, resulting in an enhanced pro-inflammatory

response (see “Effects of lysozyme on innate detection of PG through NOD1 and NOD2” sec-

tion) [42, 43].

Cell wall crosslinking and other modifications to PG structure. Additional modifica-

tions to the glycan backbone as well as crosslinking of the peptide stem of PG impede the

ability of lysozyme to catalyze PG hydrolysis. Bacillus subtilis produces a polysaccharide deace-

tylase, PdaC, which N-deacetylates NAM in the context of intact PG and can also N-deacetylate

NAG in short (NAG)n oligomers (Fig 3E) [44]. A pdaC mutant has an increased sensitivity to

lysozyme, but whether this phenotype is attributable to the enzymatic activities of PdaC on

NAG or NAM or both has not yet been resolved [44]. In S. aureus, a wall teichoic acid can be

covalently coupled to the C6 hydroxyl group of NAM, and like O-acetylation at this position,

this contributes to an increased resistance to lysozyme, presumably via steric hindrance (Fig

3F) [45]. However, the addition of wall teichoic acids to PG could also increase lysozyme resis-

tance by affecting the degree of PG crosslinking and thus the accessibility of lysozyme to its

substrates [46]. In support of this latter possibility, mutants in S. pneumoniae murMN have

fewer PG peptide crosslinks and are more sensitive to lysozyme as well as to nonenzymatic,

cationic antimicrobial peptides [47]. In S. aureus, inhibiting PG crosslinking via penicillin has

no effect on wild-type bacteria but increases lysozyme sensitivity in an oatA background (Fig

3H); whether PG crosslinking in S. aureus directly inhibits the enzymatic activity of lysozyme

or causes pleiotropic effects that increase sensitivity to lysozyme has not been resolved [45].

Other evidence supporting a role for general cell wall remodeling in lysozyme resistance is

acetylation of NAM (C), and N-glycolylation of NAM (D). Bacteria that N-deacetylate NAM (E), add WTAs to NAM (F), highly

crosslink their PG (G), or amidate D-glutamic acid (H) are also more resistant to lysozyme. NAM on PG fragments that are

released by lysozyme are in a reduced form and can activate the pattern recognition receptors NOD1 (I) and NOD2 (J). In

contrast, PG released by bacterial lytic transglycosylases occurs with the formation of a 1,6-anhydrobond on the NAM residue,

which can prevent NOD2 detection (K). N-deacetylation of NAM and N-glycolylation of NAM can decrease and increase

NOD2-PG detection, respectively, whereas O-acetylation of NAM does not affect NOD2-PG detection. Abbreviations: NAG,

N-acetylglucosamine; NAM, N-acetylmuramic acid; PG, peptidoglycan; WTAs, wall teichoic acids.

https://doi.org/10.1371/journal.ppat.1006512.g003
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demonstrated by work on both L. monocytogenes and B. subtilis, in which the putative penicil-

lin-binding protein PbpX is required for lysozyme resistance, although through an as yet

uncharacterized mechanism [48, 49].

Alterations in envelope charge and envelope integrity

Cationic antimicrobial proteins are highly attracted to the negatively charged cell envelope of

bacteria, and this interaction is important for efficient bacterial killing [10]. Therefore, changes

to the bacterial envelope that reduce the net negative charge toward a more neutral charge can

concomitantly reduce the binding of lysozyme as well as other cationic antimicrobial proteins

of host defense.

PG charge. The PG sacculus itself has a net negative charge [50]. In S. aureus, MurT and

GatD amidate glutamic acid to glutamine at the second position in the PG peptide stem, con-

sequently reducing the net negative charge of PG (Fig 3G) [50–52]. The amidation of glutamic

acid increases the resistance of intact bacteria and purified PG to lysozyme [51, 52]. Lactococ-
cus lactis amidates its aspartic acid crossbridge residues via a putative asparagine synthase

(asnH), which increases L. lactis resistance to lysozyme [53]. In addition, N-deacetylation of

NAG, which perturbs enzymatic hydrolysis by lysozyme, also results in PG with a reduced neg-

ative charge. It is still unclear whether modifications that affect the charge of PG strictly alter

cationic killing by lysozyme or whether such modifications exert pleiotropic effects that affect

lysozyme resistance. Furthermore, because positively charged residues in the active site of lyso-

zyme are important for substrate recognition, it is possible that perturbing the PG charge

could alter substrate recognition by lysozyme and hence thereby affect its enzymatic activity

[54].

Teichoic acid charge. In S. aureus, D-alanylation of teichoic acids by the dlt operon also

reduces the net negative charge of the cell envelope [55]. S. aureus lacking dltA is more sensi-

tive to killing by cationic antimicrobial proteins, including lysozyme, in vitro, and lysozyme-

mediated killing of dltA mutants occurs independently of its enzymatic activity [55, 56]. Simi-

lar results have been found for other bacteria that add D-alanine to teichoic acid [48, 49, 57–

60]. However, not all changes to cell envelope charge are equivalent, because the mutation of

dltA in S. suis results in an increased sensitivity to some cationic antimicrobial proteins but not

to lysozyme [61]. This may imply that other modes of defense against lysozyme are more

important to S. suis pathogenesis.

Lipid charge. Reducing the negative charge of plasma membrane lipids can be an effective

defense against cationic antimicrobial proteins, including lysozyme. For instance, the MprF

family of enzymes lysinylate polar membrane lipids. The MprF homolog in M. tuberculosis,
LysX, contributes to resistance to lysozyme as well as to cationic dyes and antimicrobial pro-

teins and enhances bacterial survival in macrophages [62, 63]. However, if bacteria have

redundant, compensatory mechanisms that can maintain an advantageous envelope charge,

the loss of mprF may have a limited effect on susceptibility to lysozyme, as observed in E. faeca-
lis [57].

The negatively charged molecule lipopolysaccharide in the outer membrane of gram-nega-

tive bacteria can attract cationic antimicrobial proteins [64]. In fact, the presence of lipopoly-

saccharide in in vitro–generated lipid monolayers is sufficient to promote the insertion of

lysozyme [65]. However, while reducing the negative charge of lipopolysaccharide generally

increases the resistance of gram-negative bacteria to cationic antimicrobial proteins [64], the

degree to which this affects gram-negative resistance to lysozyme is largely unknown. In one

example, in Acinetobacter baumannii, mutations that enhance the activation of the 2-compo-

nent signal transduction system PmrAB increase the addition of phosphoethanolamine to the
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lipid A portion of lipopolysaccharide, resulting in a reduced negative charge [66]. Bacteria

with these mutations have an increased resistance to lysozyme and to other cationic antimicro-

bial peptides [67]. We are currently examining in Neisseria gonorrhoeae how phosphoethano-

lamine addition to the lipid A of lipooligosaccharide by the enzyme LptA affects resistance to

lysozyme because this modification enhances the resistance to killing by other cationic antimi-

crobial proteins and by neutrophils [68, 69].

Gram-negative envelope integrity. In general, the gram-negative outer membrane pre-

vents larger molecules like lysozyme from gaining access to interior targets [23]. The extent of

intrinsic barrier function of the outer membrane varies among species and can be perturbed

by changes to the integrity of the cell envelope [23]. For instance, we recently reported that 2

PG-recycling enzymes, the lytic transglycosylases LtgA and LtgD, are important for lysozyme

resistance in N. gonorrhoeae by contributing to envelope integrity [36]. The related cell wall–

recycling homologs in Escherichia coli similarly contribute to envelope integrity and lysozyme

resistance [70]. In N. gonorrhoeae, cell envelope integrity and resistance to lysozyme by LtgA

and LtgD is correlated with increased likelihood of survival in the presence of human neutro-

phils [36]. This observation suggests that inhibiting lytic transglycosylase activity, for instance

through the antibiotic bulgecin A [71], could effectively combat infections with gram-negative

bacteria by reducing envelope integrity and consequently enhancing their sensitivity to killing

by lysozyme and potentially other innate immune components.

Cationic antimicrobial peptides such as lactoferrin synergize with lysozyme for the

enhanced killing of gram-negative bacteria through a proposed mechanism by which lactofer-

rin permeabilizes the outer membrane to enhance the access of lysozyme to periplasmic PG

[25]. Lysozyme itself can form pores on bacterial membranes in some contexts [8, 9], yet it is

still unclear if these pores are sufficient to enhance the transit of other lysozyme molecules to

the periplasm to enzymatically degrade PG.

Bacterial inhibitors of lysozyme

Some gram-negative bacteria, such as Pseudomonas aeruginosa and E. coli, are intrinsically

resistant to lysozyme, yet these bacteria notably lack PG modifications like the O-acetylation of

NAM [72, 73]. Instead, they express a periplasmic protein inhibitor of lysozyme that is termed

Ivy [73–75]. Inhibition occurs through a loop protrusion in Ivy that occludes the active site of

lysozyme via a lock-and-key mechanism [75]. Ivy is important for in vitro resistance to lyso-

zyme for E. coli and Yersinia pestis. Furthermore, Ivy is important for the survival of Y. pestis
from human neutrophils ex vivo and for optimal virulence in a mouse model of bubonic and

pneumonic plague [76]. Other bacteria produce additional periplasmic lysozyme inhibitors

such as MliC and PliC (reviewed in [77]). Although most examples place Ivy, MliC, and PliC

in the periplasm, Humbert et al. recently found the surface-exposed adhesin complex protein

of Neisseria spp. shares overall structural homology with MliC, and, like MliC, directly inhibits

lysozyme activity [78].

In addition to inhibiting lysozyme, Ivy-type proteins also inhibit bacterial lytic transglyco-

sylases [73]. As described above, lytic transglycosylase–mediated remodeling of the cell wall

optimizes envelope integrity and contributes to the defense against lysozyme. However, unre-

strained lytic transglycosylase activity can reduce PG tensile strength and lead to autolysis.

Moreover, the PG fragments released by lytic transglycosylases may activate host pattern rec-

ognition receptors (see “Lysozyme activity modulates innate immune responses” section).

Thus, Ivy-type inhibitors play complex and overlapping roles in gram-negative bacterial physi-

ology, immune modulation, and host defense, and most studies have not discriminated among

these functions. For instance, Legionella pneumophila EnhC inhibits the lytic transglycosylase
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SltL and enhances bacterial survival in association with macrophages [79]. While it was sug-

gested that the mechanism for increased macrophage survival is to prevent the release of

immunostimulatory PG fragments, EnhC may also defend against macrophage-derived lyso-

zyme and/or assist in the optimal structuring of the L. pneumophila envelope [79]. Although

bacterially encoded inhibitors of lytic transglycosylases have not been described for gram-posi-

tive bacteria, B. subtilis produces an inhibitor of PG endopeptidases, IseA; its contribution to

lysozyme resistance has not been studied [80].

Regulation of lysozyme resistance factors

While lysozyme resistance factors appropriately tailor the bacterial response to immune pres-

sure, modifications to PG that increase resistance to lysozyme may have a fitness cost, as

reported for S. pneumoniae [30]. Thus, it is not surprising that the expression of many of the

factors described above is increased upon the exposure to lysozyme or to immune cells [14, 16,

18, 81]. For example, E. faecalis deacetylates NAG only after lysozyme challenge [18, 19], and

MliC is up-regulated in Salmonella enterica serovar Typhi within macrophages [81]. Regula-

tion of lysozyme resistance factors occurs both transcriptionally and posttranscriptionally.

Transcriptional regulation. In several gram-positive pathogens, the extracytoplasmic

function sigma factor σV (gene, sigV or csfV) regulates genes with products that enhance PG

resistance to lysozyme. σV is sequestered by the membrane-bound anti-sigma factor RsiV. The

binding of lysozyme to RsiV leads to the degradation of RsiV and release of σV [49, 82–84]. In

B. subtilis, σV regulates oatA and dltA, whereas in C. difficile, σV regulates pdaV, a PG N-deace-

tylase, and dltA [21, 49, 59, 82]. Despite possessing oatA and dltA, E. faecalis σV only apprecia-

bly regulates the expression of pgdA in response to lysozyme [57]. While σV in B. subtilis and

C. difficile is specifically induced by lysozyme, σV from E. faecalis is induced by lysozyme as

well as other cell wall stressors [21, 49, 82, 85]. sigV mutants in B. subtilis, C. difficile, and E. fae-
calis all have an increased sensitivity to lysozyme in vitro [21, 49, 59, 82, 85]. E. faecalis sigV
mutants are decreased in bacterial burden in vivo, and C. difficile sigV mutants can have signif-

icantly attenuated virulence in vivo, depending on the experimental model [21, 57, 59].

The 2-component signal transduction system GraRS induces the expression of the dlt
operon in S. aureus and enhances bacterial resistance to lysozyme [56]. GraRS is activated by

specific cationic antimicrobial peptides, but the mechanism underlying this activation still

remains to be elucidated [86]. Similarly, the 2-component system VirRS in L. monocytogenes
positively regulates the dlt operon, and virR mutants are attenuated in vivo [60, 87]. In S. iniae,
the transcriptional regulator CpsY is important for O-acetylation of NAM and an increased

resistance to killing by lysozyme and human neutrophils by indirectly affecting oatA transcrip-

tion [88, 89]. Similarly, SpxB in L. lactis directly binds to the α subunit of RNA polymerase to

enhance the transcription of oatA, and SpxB activity is linked to the 2-component signal trans-

duction system CesSR that responds to envelope stress [90]. In S. enterica serovar Typhimur-

ium, the transcriptional regulator SlyA up-regulates the expression of a putative lysozyme

inhibitor, PliC (STM1249), although the cues that induce SlyA activity in this context are

unknown [91].

Post-transcriptional regulation. In L. monocytogenes, the small noncoding RNA Rli31

positively regulates pgdA and a putative PG peptidase, pbpX, while the RNA-binding protein

SpoVG negatively regulates lysozyme resistance through an undefined mechanism [48, 92]. In

H. pylori, oxidative stress and exposure to macrophages can induce the expression of the NAG

N-deacetylase pgdA via posttranscriptional regulation by the apo-aconitase AcnB. H. pylori
mutants lacking acnB have an increased sensitivity to lysozyme in vitro and a decreased ability

to colonize the mouse stomach in vivo [14, 93, 94].
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Given the number and diversity of lysozyme resistance factors in both gram-negative and

gram-positive bacteria, much remains to be learned about how these factors are regulated.

Because many nonpathogenic bacteria encode homologs of Ivy, PgdA, and Oat and Pat O-
acetyltransferases [32, 44, 49, 53, 74, 82, 90], we speculate that pathogenic bacteria produce

higher levels of lysozyme resistance factors or exert tighter control over the regulation of these

factors than commensals, although these comparisons remain to be made. Future studies

should aim to identify the factors involved with regulating lysozyme resistance genes and to

characterize their mechanisms of regulation.

Lysozyme activity modulates innate immune responses

Many studies testing the contribution of lysozyme to immune cell responses have relied upon

mice that lack lysozyme M (gene, lysM). Lysozyme M is homologous to the single human lyso-

zyme and is produced by phagocytes and other myeloid cells [95]. Mice also produce a second

lysozyme, lysozyme P, which is expressed by intestinal Paneth cells. It has been shown that

LysM-/- mice can exhibit compensatory expression of lysozyme P in nonintestinal cells [7, 95].

Thus, the potential for compensatory expression of lysozyme P in LysM-/- mice should be kept

in mind in the context of the studies reviewed below; a mouse lacking both lysozyme M and P

does not exist, to our knowledge.

Lysozyme activates pro-inflammatory immune responses

Lysozyme produced by neutrophils and macrophages can be delivered to bacterium-contain-

ing phagosomes [1]. Accordingly, bacteria that are more sensitive to lysozyme are more likely

to be degraded in the phagosomes of macrophages in a LysM-dependent manner [31, 96]. In

human neutrophils, we recently demonstrated a correlation between the susceptibility of N.

gonorrhoeae to lysozyme and enhanced neutrophil activation, as measured by increased gran-

ule release at the plasma membrane and into phagosomes, which illustrates that lysozyme may

modulate immune activation in other phagocytes [36]. Pattern recognition receptors activated

downstream of lysozyme-mediated degradation include the NOD1 and NOD2 receptors, Toll-

like receptors (TLRs), and inflammasomes. The following sections will cover these inflamma-

tory responses mainly in the context of phagocytes.

Effects of lysozyme on innate detection of PG through NOD1 and NOD2. PG is made

by almost all bacteria but not by eukaryotes, making it an excellent target for pattern recogni-

tion receptors. The sensing of PG by the cytosolic receptors NOD1 and NOD2 stimulates

downstream pro-inflammatory signaling events via the activation of NF- κB, including the

production of pro-inflammatory cytokines such as interleukin (IL)8 and antimicrobial mole-

cules [97, 98]. Notably, sufficient quantities of stimulatory PG can be released by lysozyme

even when lysozyme does not markedly affect bacterial viability [96].

In humans, NOD1 recognizes PG-derived peptides containing D-glutamyl-meso-diamino-

pimelic acid (iE-DAP), making NOD1 a selective receptor for the detection of gram-negative

bacteria, which predominantly incorporate this amino acid into PG (Fig 3I) [98]. Bacteria nat-

urally release the tripeptide L-alanine-D-glutamyl-meso-diaminopimelic acid, not iE-DAP,

during normal cell wall turnover, and the tripeptide, attached or not to NAM, stimulates

NOD1 to a greater extent than iE-DAP alone [99–101]. To date, no modifications that affect

the ability of lysozyme to hydrolyze the glycan backbone of PG are implicated in signaling via

NOD1; however, NOD1 recognition is reduced by alterations in the PG peptide stem that also

affect susceptibility to lysozyme, such as N-myristoylation or the amidation of glutamic acid

[97, 101].
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NOD2 recognizes NAM with an attached dipeptide stem (i.e., muramyl dipeptide, or

MDP), which is produced by both gram-negative and gram-positive bacteria (Fig 3J) [98]. The

recognition of MDP by NOD2 is direct, and the presence of NAM in MDP is vital for effective

NOD2-MDP recognition [101–104]. The biochemical properties of MDP and NOD2 that con-

tribute to ligand binding and downstream NOD2 signaling are reviewed in [98, 105]. NOD2

has yet to be crystalized in complex with MDP, but it is predicted that NOD2 interacts with

the peptide stem and proximal carbons of NAM (e.g., C2) [106]. Modifications to PG that alter

lysozyme-mediated hydrolysis also affect NOD2-MDP recognition and NOD2 signaling. In

particular, N-glycolylation of NAM on the proximal C2 N-acetyl group enhances MDP recog-

nition by NOD2 [42, 43, 107], while N-deacetylated NAM at the C2 position, as in PdaC-

expressing B. subtilis, abrogates it [44, 107]. In contrast, the addition of a stearoyl fatty acid to

the C6 distal O-acetyl group in NAM does not inhibit NOD2 signaling and in fact enhances it

by allowing for the direct cytosolic entry of MDP [108].

The release of PG monomers by lysozyme is an important prerequisite to NOD2 activation.

Chemically synthesized PG moieties of differing glycan lengths (e.g., tetrasaccharide, octasac-

charide, etc.) have been used to show that smaller PG moieties are more stimulatory to NOD2

[102, 109]. The cell wall of L. monocytogenes, which intrinsically has N-deacetylated NAG, is a

poor activator of NOD2 in HEK293 epithelial cells unless it is predigested with mutanolysin,

which hydrolyzes PG in the same way that lysozyme does but is unaffected by this modification

[15]. The cell wall from the L. monocytogenes pgdA mutant, which has acetylated NAG, was

more stimulatory to NOD2 than the wild-type (WT) cell wall but markedly less so than predi-

gested PG [15]. Notably, while lysozyme-derived PG monomers can stimulate NOD2, PG

monomers derived from bacterial lytic transglycosylases poorly stimulate NOD2 (Fig 3K)

[110, 111].

NOD1 is broadly expressed in a variety of cell types, including epithelial cells, and thus con-

tributes to pro-inflammatory signaling in these cell types [98]. The expression of NOD1 is rela-

tively low in phagocytes, but NOD1 has been implicated in altering phagocyte function in

vivo, although it is still unclear whether this is driven by a phagocyte-specific NOD1 response

[112–114]. In contrast, NOD2 expression is largely restricted to phagocytes and some special-

ized cell types, such as intestinal Paneth cells [98, 114–116]. In phagocytes, the current working

model for the activation of NOD family receptors posits that bacteria are phagocytosed and

directed into lysosomes containing lysozyme and other antimicrobial components. There,

intact, insoluble PG is processed into PG fragments in a lysozyme-dependent manner. PG

monomers are then transported across the endosomal membrane via SLC15 family peptide

transporters to NOD proteins, which dock on the cytosolic face of the endosome [96, 117,

118]. Phagocytes appear to be optimized to respond to phagosomally produced PG fragments,

not extracellular ones, because peripheral monocytes and neutrophils are poorly responsive to

extracellular MDP [119], and macrophages only macropinocytose soluble MDP at high con-

centrations of ligand [120]. Further testing of this model has proven challenging because pri-

mary phagocytes are poorly genetically manipulable and bear limited resemblance to the

favored model for NOD biology, the immortalized HEK293 cell line in which NOD proteins

are overexpressed. Unlike phagocytes, HEK293 cells can detect exogenous, soluble PG, which

bypasses the need for phagosomal processing [116, 119].

Taken together, these data show that the ability of lysozyme to digest PG alters the produc-

tion of ligands that are recognized by NODs. Two of the remaining outstanding questions in

this field that are germane to this review include defining what structures of PG are ultimately

recognized by NODs in phagocytes and how modifications that alter lysozyme-mediated pro-

cessing manipulate that recognition.
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Lysozyme and activation of TLRs and inflammasomes. The lysozyme-mediated degra-

dation of bacteria enhances the release of immunomodulatory bacterial products, including

but not limited to PG. For example, lysozyme-sensitive S. aureus is more susceptible to degra-

dation by macrophages, which is correlated with increased inflammatory cytokine production,

such as TNFα and IL6, via TLR2 and TLR9, the receptors for bacterial-derived lipoproteins

and DNA, respectively [121]. Similarly, lysozyme-sensitive L. monocytogenes induces the

release of inflammatory cytokines, including type I interferons, from macrophages, by a path-

way that is dependent on TLR2 [15].

Frequently, the increased pro-inflammatory response of macrophages occurs via an

increased activation of the inflammasome, resulting in IL1β secretion (Fig 4) [29, 31, 121–

124]. PG and/or NOD2 activity has been implicated in stimulating the NLRP3 inflammasome

as well as the NLRP1 and AIM2 inflammasomes [31, 125–128]. When lysozyme in macro-

phages is inhibited by using exogenously added NAG polymer (i.e., triNAG) or in a LysM-/-

background, PG induces less activation of the inflammasome [29, 31]. Reminiscent of the

effects on NOD activation, in macrophages, insoluble PG but not soluble PG activates the

inflammasome [29]. One direct mechanism for inflammasome activation by PG was recently

elucidated by Wolf et al., who reported that NAG stimulates a pathway leading to re-localiza-

tion of hexokinase from mitochondria to the cytosol, thereby activating NLRP3 [128]. N-dea-

cetylation of NAG abrogates this response, linking PG modifications and, by extension,

Fig 4. Lysozyme modulates the immune response. At the site of infection, extracellular lysozyme (red

sector), which is secreted locally by the epithelium, can kill bacteria, leading to the release of PAMPs,

including but not limited to monomeric PG. This can initiate an epithelial-driven response that leads to

phagocyte recruitment (not depicted here). Resident or recruited macrophages also secrete lysozyme

extracellularly and can internalize bacteria, delivering lysozyme to the bacterium-containing phagosome. In

macrophages, bacterial degradation by phagosomal lysozyme releases PAMPs that stimulate a robust

proinflammatory cytokine response and activate the inflammasome. Neutrophil activities may be similarly

enhanced by lysozyme-mediated degradation of phagosomal bacteria, akin to macrophages. Deposition of

complement (blue circles) on particles, including bacteria and/or insoluble polymeric PG, enhances bacterial

phagocytosis and also produces complement-derived anaphylatoxins (yellow stars) that are chemotactic for

phagocytes. Because phagocytes poorly respond to extracellular, monomeric PG and monomeric PG cannot

activate complement, the degradation of bacterial PG by extracellular lysozyme serves to restrict phagocyte

activation and recruitment. Thus, lysozyme activity can function to enhance or dampen the immune response.

Abbreviations: PAMP, pathogen-associated molecular pattern; PG, peptidoglycan.

https://doi.org/10.1371/journal.ppat.1006512.g004
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susceptibility to lysozyme-mediated degradation to NLRP3 activation [128]. Inflammasome

activation may also be indirect through the lysozyme-catalyzed release of other stimulatory

bacterial factors.

The increased lysozyme-mediated degradation of bacteria in phagocytes can lead to an

overzealous inflammatory response. For example, macrophages that phagocytose S. aureus
lacking O-acetylation have increased inflammasome activation in vitro, which correlates with

increased lesion size in a subcutaneous skin infection model in vivo [29]. In this context, the

inhibition of lysozyme with TriNAG reduced inflammasome activation in vitro [29]. Similarly,

Müller et al. recently found that exposure to S. aureus harboring reduced numbers of PG cross-

links led to increased inflammasome activation in macrophages in vitro and increased lesion

size in vivo, potentially owing to increased lysozyme digestion of under-crosslinked PG [124].

Together, these findings reveal that the lysozyme-mediated digestion of PG leads to the

activation of multiple innate immune receptor families that stimulate pro-inflammatory

responses. The location of lysozyme activity (particularly intracellular lysozyme), the suscepti-

bility of PG to lysozyme digestion, and the amount and composition of the factors released as

a consequence all modulate the degree and extent of innate immune activation.

Contribution of lysozyme to the resolution of inflammation

Although lysozyme is important for driving a pro-inflammatory response, lysozyme also

plays a role in limiting inflammation systemically, resulting in decreased inflammatory-

driven pathology [7, 129]. LysM-/- mice infected with Klebsiella pneumoniae by intratracheal

injection have an increased bacterial burden but also produce less IL10, an anti-inflamma-

tory cytokine, compared with WT mice [130]. Similarly, in an otitis media infection model

with S. pneumoniae, LysM-/- mice experienced enhanced inflammation compared with WT

mice, which was concomitant with decreased bacterial clearance [131]. However, these

studies did not distinguish between lysozyme functioning to directly limit inflammation

and lysozyme-limiting bacterial outgrowth, which itself is pro-inflammatory. Addressing

this issue, Ganz et al. subcutaneously injected mice with heat-killed M. luteus or purified PG

from M. luteus and found that lesion size and immune infiltrates were increased in the

absence of LysM [129]. These results demonstrate that the failure of lysozyme to clear PG is

sufficient to drive increased inflammation, but lysozyme may still reduce inflammation by

restricting bacterial growth.

Lysozyme also functions to limit intestinal inflammation. Using a murine model of Crohn’s

disease, Zhang et al. and Wang et al. recently showed that intestinal inflammation is correlated

with the failure of Paneth cells to sort and secrete lysozyme P, which is dependent on NOD2

and RIP2 [115, 132]. Furthermore, the addition of lysozyme to mice with dextran sodium sul-

fate–induced colitis can ameliorate intestinal inflammation [133]. There are several mecha-

nisms that could explain how lysozyme limits inflammation. Lysozyme could assist in

intestinal epithelial barrier protection to limit the invasion of the microbiota, which are nor-

mally not pathogenic unless they breach the epithelial barrier; liberate PG fragments that acti-

vate a protective intestinal immune response; or clear polymeric PG that could hyper-activate

resident macrophages. Studies designed to test among these possibilities have not yet been

performed.

The addition of exogenous lysozyme has a variety of other immune-dampening effects. It

decreases chemotaxis and the production of an oxidative burst in neutrophils by as-yet

unknown mechanisms [134, 135]. Lysozyme can directly bind and neutralize extracellular,

prooxidant bioreactive derivatives, which are termed advanced glycation end products and are

otherwise pro-inflammatory [136, 137]; however, this interaction also blocks the enzymatic
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bactericidal activity of lysozyme, which could have secondary effects on immune responses

during infection [137]. Finally, extracellular, insoluble PG can trigger potent phagocyte che-

motaxis via complement factors C3a and C5a, which are produced when complement is fixed

onto insoluble PG. The lysozyme-mediated digestion of PG into soluble fragments reduces the

production of these anaphylatoxins, thereby reducing phagocyte influx and concomitant cellu-

lar inflammatory responses (Fig 4) [138]. Taken together, these findings indicate that lysozyme

contributes in multiple ways to resolve phagocyte-driven inflammation.

Working model for the contribution of lysozyme to immune

responses

The degradation of bacteria by lysozyme serves 2 purposes: (1) to kill bacteria and (2) to release

immunomodulatory bacterial ligands, including PG fragments. Several recent studies have

uncovered the mechanisms used by host organisms to detect bacterial PG as well as the numer-

ous and complementary ways that bacteria evade recognition and degradation by lysozyme.

Pathogenic bacteria that modify their cell surface, including alterations to the composition and

crosslinking of PG can avoid degradation by lysozyme, thereby modulating both bacterial viru-

lence and corresponding host responses. Knowledge of these mechanisms can illuminate ave-

nues for novel antibacterial therapies, such as interfering with the ability to synthesize PG

modifications that contribute to lysozyme resistance.

One intriguing conundrum that still remains to be resolved is the dual, potentially contra-

dictory role of lysozyme in the immune response to infection. While the lysozyme-mediated

degradation of PG enhances phagocyte activation to drive bacterial killing and the production

of inflammatory mediators, lysozyme also helps to resolve inflammation. Based on these find-

ings, we posit a model where lysozyme activities must be balanced temporally and spatially to

appropriately tune immune responses during the course of infection (Fig 4).

Lysozyme plays an important role in limiting bacterial growth at mucosal surfaces and

other sites, where it may not only control potentially pathogenic bacteria but also limit over-

growth of the microbiota to prevent dysbiosis. Extracellular lysozyme also degrades multimeric

PG into soluble fragments that activate NOD receptors in mucosal epithelial cells, leading to

the secretion of chemotactic and activating factors for neutrophils and macrophages. These

phagocytes engulf bacteria into phagosomes that contain lysozyme and other degradative

enzymes, which liberates PG fragments and other microbial-associated molecular patterns that

further activate pro-inflammatory pathways.

Concomitantly, extracellular, soluble PG fragments are not particularly effective at activat-

ing phagocytes, and thus extracellular lysozyme limits the extent of phagocyte activation via

PG. Moreover, extracellular lysozyme limits complement deposition on PG (either the gram-

positive bacterial surface or insoluble PG fragments released from bacteria that are susceptible

to extracellular digestion), thus reducing anaphylatoxin production and the recruitment of

more phagocytes. If these activities of lysozyme occur later in the course of infection, they are

likely to be important for the resolution of infection. A corollary of this model is that when

bacteria are relatively resistant to lysozyme or if lysozyme abundance or activity is reduced,

both lysozyme-mediated antibacterial defense and immune resolution are altered. Depending

on the circumstance, this not only enhances the survival of pathogenic bacteria but also pro-

motes a sustained inflammatory response with the potential to cause collateral tissue damage.

Results from ongoing and future studies that seek to understand when, where, and how lyso-

zyme is released and how pathogenic bacteria regulate the expression of lysozyme resistance

mechanisms will refine this model to contextualize lysozyme as a critical and abundant agent

of host immune defense.
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