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Abstract: The cosmopolitan fungus Rhizoctonia solani has a wide host range and is the causal agent
of numerous crop diseases, leading to significant economic losses. To date, no cultivars showing
complete resistance to R. solani have been identified and it is imperative to develop a strategy to control
the spread of the disease. Fungal viruses, or mycoviruses, are widespread in all major groups of fungi
and next-generation sequencing (NGS) is currently the most efficient approach for their identification.
An increasing number of novel mycoviruses are being reported, including double-stranded (ds) RNA,
circular single-stranded (ss) DNA, negative sense (−)ssRNA, and positive sense (+)ssRNA viruses.
The majority of mycovirus infections are cryptic with no obvious symptoms on the hosts; however,
some mycoviruses may alter fungal host pathogenicity resulting in hypervirulence or hypovirulence
and are therefore potential biological control agents that could be used to combat fungal diseases.
R. solani harbors a range of dsRNA and ssRNA viruses, either belonging to established families,
such as Endornaviridae, Tymoviridae, Partitiviridae, and Narnaviridae, or unclassified, and some of them
have been associated with hypervirulence or hypovirulence. Here we discuss in depth the molecular
features of known viruses infecting R. solani and their potential as biological control agents.

Keywords: Rhizoctonia solani; mycovirus; (+)/(−)ssRNA; dsRNA; hyper/hypovirulence; virus–host
interactions

1. Introduction

The genus Rhizoctonia was initially described by French mycologist Augustin Pyramus de
Candolle in 1815 [1] and belongs to the order Cantharellales, phylum Basidiomycota. Rhizoctonia
species are assigned into three main groups based on the number of nuclei in the fungal cells:
Uninucleate Rhizoctonia, binucleate Rhizoctonia (teleomorphs: Ceratobasidium spp. and Tulasnella
spp.) and multinucleate Rhizoctonia (teleomorphs: Thanatephorus spp. and Waitea spp.). Rhizoctonia
solani Kühn (teleomorph: Thanatephorus cucumeris) is the most widely known species within the
group of multinucleate Rhizoctonia and is classified into fourteen anastomosis groups (AGs) based on
hyphal fusion experiments (Table 1) [2–6]. R. solani is a soil-borne plant pathogen with widespread
geographical distribution and a wide host range, known to cause various important crop diseases,
leading to significant agricultural and economic losses. For instance, R. solani is the causative agent of
rice sheath blight leading up to 50% yield losses in Asia [4]. The symptoms caused by R. solani infection
vary depending on the host plant and include damping-off of seedlings, stem canker, and root or stem
rots [7].
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Table 1. R. solani anastomosis groups (AGs) and subgroups with their reported hosts or habitats.

Anastomosis Groups
(AGs) Anastomosis Subgroups Host or Habitat

AG-1

1-IA,
1-IB,
1-IC,
1-ID,
1-IE,
1-IF

Rice, maize, soybean Brassica crops, Sudan grass

AG-2

2-1,
2-1 II,

2-2 IIIB,
2-2 LP,

2-3

Tobacco, Brassica crops, six-rowed barley, wheat, rice, grass

AG-3 3 IV Tobacco, potato, Brassica crops

AG-4

4-HGI,
4-HGII,
4-HGIII,
AGIIIA

Potato, Brassica crops, cauliflower

AG-5 Brassica crops, soil
AG-6 Brassica crops, soil
AG-7 Brassica crops, radish field soil
AG-8 Brassica crops
AG-9 Brassica crops
AG-10 Brassica crops
AG-11 Brassica crops
AG-12 Brassica crops
AG-13 Brassica crops
AGBI Soil

The establishment of R. solani infection in a suitable host occurs following the attachment of
fungal mycelia or sclerotia on the host root. A sclerotium is an aggregate of a dense structure of
clustered mycelium with the ability to overwinter several years in host plant tissue, plant debris or
soil and germinate in the presence of root exudates emitted by the plant when climatic condition are
favorable [5]. The fungus then proliferates on the root and produces specialised T-shaped structures
named “infection pads”. These infection pads produce enzymes capable of digesting the plant cell wall
so that the fungus penetrates and colonizes the intercellular and intracellular spaces of the root tissue.
As it develops, the fungus diverts the cellular reserves of the plant for its own growth. Gradually,
the mycelium invades the cells and kills them, while producing survival structures, and the plant
begins to wither when its conducting vessels are attacked [5,8].

Attempts to control R. solani by agronomic approaches, such as breeding strategies, crop rotation
or chemical fungicides, proved ineffective due to the wide host range, soil-borne nature and the
saprotrophitic nature of the fungus. Even in cases of extensive use of chemical fungicides due to
substantial crop losses, R. solani proved persistent. Notably, R. solani does not produce conidia (asexual
spores), therefore its ability to spread long distances is limited, despite being considered ubiquitous
in soil [9,10]. Therefore, it is imperative to find new alternatives, preferably with minimal impact on
the environment, to protect crops from R. solani while reducing the use of chemical fungicides [11].
Moreover, it is known that R. solani hosts a range of viruses, some of them still unclassified [7,12–22].

A virus is an infectious agent requiring a host, such as a cell, whose metabolism and
constituents it uses to replicate. A mycovirus is a virus that specifically infects fungi. The first
mycovirus was found in the edible mushroom Agaricus bisporus (phylum: Basidiomycota) in
1962 [23]. Since then mycoviruses have been found in all major fungal taxa, namely Basidiomycota,
Ascomycota, Chytridiomycota, Deuteromycota, and Zygomycota [13]. However, it is considered
that only a fraction of the extant mycoviruses have been described so far and next-generation
sequencing (NGS) techniques are currently being used to identify novel unknown mycoviruses [9].
The majority of mycoviruses reported have dsRNA genomes, although ssRNA and DNA viruses
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have been reported [13]. According to the International Committee for the Taxonomy of Viruses
(ICTV; 2018b), mycoviruses are currently classified in nineteen officially recognized families and
a floating genus not classified in a family, accommodating linear dsRNA viruses (Amalgaviridae,
Botybirnavirus, Chrysoviridae, Megabirnaviridae, Partitiviridae, Quadriviridae, Reoviridae, Totiviridae), linear
positive-sense (+)ssRNA families (Alphaflexiviridae, Barnaviridae, Botourmiaviridae, Deltaflexiviridae,
Endornaviridae, Gammaflexiviridae, Hypoviridae, Narnaviridae), reverse transcribing linear ssRNA families
(Metaviridae, Pseudoviridae), linear negative-sense (−)ssRNA families (Mymonaviridae) and circular
ssDNA viruses (Genomoviridae) [24,25]. Generally, mycoviruses lack an extracellular phase in their
replication cycle [9,23]; nevertheless, a novel ssDNA virus related to plant geminiviruses and conferring
hypovirulence to its host, is transmitted in aerosols [26]. Fungi infected by viruses often present unusual
characteristics such as abnormal pigmentation, irregular growth, and altered sexual reproduction.
Potential hypovirulent effects of mycoviruses on their fungal hosts may be used for biological control
of fungal diseases, similar to the application of a hypovirus found in the plant pathogenic fungus
Cryphonectria parasitica used to control chestnut blight in Europe [12].

2. The Diversity of Viruses Infecting Rhizoctonia solani

The first dsRNA element in R. solani was initially described by Butler and Castano [13]. Since then
numerous thorough studies were performed to explore the diversity of viruses infecting R. solani. To date,
approximately 100 viruses have been found in R. solani isolates, including members of established
families accommodating dsRNA, (+)ssRNA, and (−)ssRNA together with members of proposed
families and unclassified RNA elements (Figure 1). Some of the viruses reported to infect R. solani
belong to well-studied mycovirus families, such as Barnaviridae, Botourmiaviridae, Deltaflexiviridae,
Endornaviridae, Hypoviridae, Megabirnaviridae, Narnaviridae, and Partitiviridae (Table 2 and Table S1).
Others belong or are closely related to families traditionally known to infect plants, such as CMV [7]
and proposed members of the orders Bunyavirales, Serpentovirales, and Tymovirales [6,27–29].
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Table 2. Representative viruses known to infect Rhizoctonia solani.

Name (abbr.)
Rhizoctonia solani

Classification
(Family) Host Strain Segment Genome Size

(bp/nt)
5′ UTR
(bp/nt)

3′ UTR
(bp/nt)

ORF Length
(bp/nt)

Protein Length
(aa)

Molecular Mass
(kDa)

Accession
Number

barnavirus 1
(RsBarV1) Barnaviridae DV-8 (+)ssRNA 3914 partial ≥69 ≥176

2033 677 75.9

KP9009041424 474 53.1

557 185 20.7

beny-like virus 1 42304-9a
(RsBenV1/42304-9a) Benyviridae 42304-9a (+)ssRNA 1306 partial ≥1 ≥1 ≥1306 ≥435 ≥48.6 KP900902

beny-like virus 1 BR2
(RsBenV1/BR2) Benyviridae AG-2.2 LP BR2 (+)ssRNA 11666 partial ≥622 ≥289 10755 3584 403.9 MK507778

ourmia-like virus 1
(RsOLV1) Botourmiaviridae RsAG2 (+)ssRNA 2792 partial ≥1 ≥689 ≥2103 ≥700 ≥79.0 KP900921

Cucumber mosaic virus
(CMV) Bromoviridae AG-3

(+)ssRNA 3309 81 248 2959 992 111.3 MG025947

(+)ssRNA 3053 72 316
2573 856 96.5

MG025948
332 62 7.27

(+)ssRNA 2214 97 321
839 278 30.3

MG025949
656 218 23.8

flexivirus 1
(RsFV1) Deltaflexiviridae AG2-2 IV DC17 (+)ssRNA 10644 34 176 10,433 3476 381.0 KX349055

flexi-like virus 1
(RsFLV1) Deltaflexiviridae AG-2.2 LP BR9 (+)ssRNA 2982 partial ≥15 ≥178 2888 962 110.8 MK507787

endornavirus RS002
(RsEV-RS002) Endornaviridae AG-3PT RS002 (+)ssRNA 14694 partial ≥13 ≥1 ≥14,680 ≥4893 ≥555.6 KC792590

endornavirus 2 Illinois1
(RsEV2/Illinois1) Endornaviridae Illinois1 (+)ssRNA 15850 partial ≥35 ≥26 15,783 5262 597.0 KT823701

hypovirus 1
(RsHV1) Hypoviridae AG-2.2 LP BR20 (+)ssRNA 18371 partial ≥752 ≥1584 16,033 5344 363.0 MK558259

megabirnavirus 1
(RsMBV1) Megabirnaviridae AG2-2 IV DC17 dsRNA 975 partial ≥1 ≥1 ≥975 ≥325 ≥36.2 KX349071

mitovirus 1 RS002
(RMV1-RS002) Narnaviridae AG-3PT RS002 (+)ssRNA 2797 partial ≥192 ≥126 2475 825 92.7 KC792591
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Table 2. Cont.

Name (abbr.)
Rhizoctonia solani

Classification
(Family) Host Strain Segment Genome Size

(bp/nt)
5′ UTR
(bp/nt)

3′ UTR
(bp/nt)

ORF Length
(bp/nt)

Protein Length
(aa)

Molecular Mass
(kDa)

Accession
Number

virus 717
(RsV-717) Partitiviridae AG-2 Rhs 717

dsRNA1 2363 85 88 2189 730 86.0 AF133290

dsRNA2 2206 78 76 2051 683 76.0 AF133291

partitivirus 1 OA-1
(RsPV1/OA-1) Partitiviridae OA-1 dsRNA1 1810 partial ≥1 ≥1 ≥1810 ≥603 ≥67.3 KU299048

partitivirus 2 GD-11
(RsPV2/GD-11) Partitiviridae AG-1 IA GD-11

dsRNA1 2020 88 60 1871 623 72.6 KF372436

dsRNA2 1790 107 213 1469 489 53.3 KF372437

dsRNA virus 2 A
(RsDSRV2/A) Partitiviridae AG-2.2 LP A

dsRNA1 1942 partial ≥58 ≥11 1869 622 76.6 MK400668

dsRNA2 1727 partial ≥79 ≥181 1467 488 53.3 MK400669

positive-stranded RNA
virus 1

(RsPSV1)
Tymoviridae Illinois1 (+)ssRNA 3492 partial ≥1 ≥248

≥2265 ≥754 ≥85.0

KT823702542 180 20.2

596 198 22.2

bipartite-like virus 1
(RsBLV1)

Bipartitiviridae AG-2.2 LP BR1 dsRNA

1827 partial ≥39 ≥1 1787 595 68.5 MK492913

1888 partial ≥126 ≥151
972 323 37.0

MK492914
552 183 21.1

negative-stranded RNA
virus 1

(RsNSRV1)
Betamycoserpentoviridae DK13-1 (−)ssRNA 5593 partial ≥148 ≥1 ≥7237 ≥2411 ≥271.0 KP900919

negative-stranded RNA
virus 2

(RsNSRV2)
Betamycoserpentoviridae 248-36 (−)ssRNA 7335 partial ≥136 ≥192 7145 2381 267.6 KP900920

negative-stranded RNA
virus 3

(RsNSRV2)
Betamycoserpentoviridae DK13-3 (−)ssRNA 7335 partial ≥127 ≥65 7142 2380 267.5 KP900903

fusarivirus 1 BR18
(RsFV1/BR18) Fusariviridae AG-2.2 LP BR18 (+)ssRNA 10776 partial ≥161 ≥235

2194 731 49.7

MK5582571577 525 35.7

4682 1560 106.0

alphavirus-like 1 BR15
(RsALV1/BR15) Mycoalphaviridae AG-2.2 LP BR15 (+)ssRNA 2414 partial ≥61 ≥1 ≥2352 ≥784 ≥90.3 MK507793
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Table 2. Cont.

Name (abbr.)
Rhizoctonia solani

Classification
(Family) Host Strain Segment Genome Size

(bp/nt)
5′ UTR
(bp/nt)

3′ UTR
(bp/nt)

ORF Length
(bp/nt)

Protein Length
(aa)

Molecular Mass
(kDa)

Accession
Number

bunya/phlebo-like virus 1
(RsBPLV1) Mycophleboviridae AG-2.2 LP BR3 (−)ssRNA 7804 partial ≥150 ≥112 7542 2513 295.6 MK507779

RNA virus HN008
(RsRV-HN008) Unclassified HN008 dsRNA 7596 38 250

3539 1179 128.0
KP861921

3710 1236 140.0

dsRNA virus 1 B275
(RsDSRV1/B275) Unclassified AG-1 IA B275

dsRNA1 2379 131 169 2078 692 78.7 JX976612

dsRNA2 1811 115 298 1397 465 51.8 JX976613

putative virus 1 BR4
(RsV1/BR4) Unclassified AG-2.2 LP BR4 RNA 6311 partial ≥48 ≥374 5887 1962 133.3 MK507780

M1 dsRNA Unclassified AG-3 Rhs 1A dsRNA 6398 partial ≥9 419
639 212 24.0

AF020042
5172 1723 196.5

M2 dsRNA Unclassified AG-3 Rhs 1A dsRNA 3570 421 884 2265 754 84.4 U51331
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In general, recent large-scale metatranscriptomic analyses of plant pathogenic fungi has led
to the discovery of several (−)ssRNA mycoviruses including mymonaviruses [19,30–32] and other
mycoviruses related to the bi- and tri-segmented peribunyaviruses and phenuiviruses, and the
multi-segmented ophioviruses [19,33,34]. Since whole transcriptome shotgun sequencing is widely
utilized to identify and quantify mycoviruses in biological samples, the majority of reported sequences
are partial while verification of full length genomic sequences is not always feasible. To our knowledge,
the mycoviruses infecting R. solani whose complete genome sequences have been reported so far
belong to the established families Deltaflexiviridae, Endornavirdae, and Partitiviridae [15] but several
partial genomes of viruses have been described (Table 2 and Table S1) [6,19]. Only the betapartitivirus
Rhizoctonia solani virus 717 and the magoulivirus Rhizoctonia solani ourmia-like virus have been
approved by ICTV so far, even though the genome of the latter has not been fully sequenced.

To date, numerous different viruses have been reported to infect R. solani AG-1 IA, isolated from
rice: Rhizoctonia solani dsRNA virus 1 (RsRV1) in 2013 [16], Rhizoctonia solani partitivirus 2 (RsPV2)
in 2014 [17], Rhizoctonia solani RNA virus 2 (RsRV2-HN008) in 2015 [12] and more recently Rhizoctonia
solani dsRNA virus 3 (RsRV3) [35], Rhizoctonia solani partitivirus 3 to 8 (RsPV3 to 8, respectively) [36–38]
and Rhizoctonia solani endornavirus 1 (RsEV1) [39]. Multiple co-infections of R. solani isolates are
not uncommon; for instance R. solani AG2-2 IV DC17 has been reported to harbor an endornavirus,
a megabirnavirus, a mitovirus, two flexiviruses, and three closely related mycoalphaviruses [9,15].
Similarly, R. solani AG-3PT RS002 infecting potato harbors an endornavirus [14] and a mitovirus [18].
Furthermore, a cross-kingdom viral infection has been discovered when a plant virus, cucumber mosaic
virus (CMV), was found in an R. solani strain isolated from potato plants [7]. In addition, five unrelated
dsRNA elements (L1, L2, M1, M2, and S1) were found to occur in DNA form in R. solani AG3 from
North America [40,41].

2.1. Double-Stranded RNA Viruses

DsRNA viruses have a wide host range including animals, plants, protozoa, and fungi [42].
Mycoviruses with dsRNA genomes are mostly encapsidated in isometric particles [43] and are currently
classified into eight families: Amalgaviridae (1 genomic segment, 3.5 kbp in length), Chrysoviridae
(3–7 genomic segments, 2.4–3.6 kbp in length), Megabirnaviridae (2 genomic segments, 7.0–9.0 kbp in
length), Partitiviridae (2–3 genomic segments, 1.4–2.3 kbp in length), Quadriviridae (4 genomic segments,
3.7–4.9 kbp in length), Reoviridae (Spinareovirinae subfamily, 10–12 genomic segments, 0.7–5.0 kbp
in length) and Totiviridae (non-segmented, 4.6–7 kbp in length) [42,44–46]. Moreover, a dsRNA
virus named Botrytis porri RNA virus 1 (BpRV1) belonging to the genus Botybirnavirus has been
described [47]. Mycovirus taxonomy regularly changes with the discovery of novel viruses [48] and
additional families, such as Alternaviridae (4 genomic segments 1.4–3.6 kbp in length), have been
proposed recently. Generally, dsRNA viruses form spherical and not filamentous virions, the latter
being a common characteristic of several (+)ssRNA plant and fungal viruses including Alphaflexiviridae,
Betaflexiviridae, Gammaflexiviridae, Potyviridae, and Closteroviridae; nevertheless, a novel dsRNA virus
from Colletotrichum camelliae isolated from tea plants in China was found to form flexuous and elongated
virions [42,44]. Some dsRNA viruses form no true virions but are associated with and coated by viral
proteins, as reported recently for Aspergillus fumigatus tetramycovirus-1 (AfuTmV-1) and Beauveria
bassiana polymycovirus-1 (BbPmV-1), from the human pathogen A. fumigatus and the insect pathogen
B. bassiana, respectively [49,50]. BbPmV-1 appears to be associated with hypovirulence in its host which
is uncommon for mycoviruses [51].

2.1.1. Megabirnaviridae and Phlegiviridae

Megabirnaviridae is a family known to infect fungi and currently accommodates one genus
Megabirnavirus [52], while a second related genus Phlegivirus has been proposed [9]. Members of
the family contain linear bi-segmented dsRNA genomes, with two linear segments sizing each
from 7 to 8.9 kbp and comprising 16.1 kbp in total length. The dsRNAs genomes are separately
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packaged into isometric particles [43,53,54]. The exemplar of the only officially recognized species
RnMV1/W779 for each segment two tandem non-overlapping ORFs in each segment [52]. The ORFs
in the largest segment encode a putative RdRp and a capsid protein (CP), whereas the ORFs
in the smallest segment encode two proteins of unknown function [53,54]. Other unclassified
members of the family include Sclerotinia sclerotiorum megabirnavirus 1 (SsMBV1) [55], Rosellinia
necatrix megabirnavirus 2 (RnMBV2) [56], Pleospora megabirnavirus 1 (PMBV1) [57], and Entoleuca
megabirnavirus 1 (EnMBV1) [27]. Virus transmission occurs either horizontally through anastomosis
or vertically via sporulation [53]. Additionally, recent NGS approaches revealed more dsRNA viruses
related to the Megabirnaviridae family (Table S1) [6,9]. The partial sequence of Rhizoctonia solani
megabirnavirus 1 (RsMBV1; Table 2) is 975 bp in length and encodes a putative RdRp (Pfam02123,
E-value 7e-13). More partial ORFs have been reported and named Rhizoctonia solani dsRNA virus
6-10 (RsRV6-10; Table S1), which are related to the previously proposed genus Phlegivirus [58] in the
family Phlegiviridae [6].

2.1.2. Partitiviridae and Bipartitiviridae

Members of the Partitiviridae family have two linear, individually encapsidated monocistronic
dsRNA segments, while an additional satellite or defective dsRNA segment may also be present.
Each dsRNA segment is from 1.4 to 2.4 kbp in size and contains one large ORF encoding and RdRp
or CP [59]. The family accommodates five genera: Alphapartitivirus, Betapartitivirus, Cryspovirus,
Deltapartitivirus, and Gammapartitivirus [59]. The genera Alphapartitivirus and Betapartitivirus are
known to infect plants, ascomycetes or basidiomycetes, whereas the genus Gammapartitivirus infect
ascomycetes [59] and oomycetes [60]. The genera Deltapartitivirus and Cryspovirus infect exclusively
plants and protozoa, respectively [59]. Fungal partitiviruses are transmitted either horizontally via
hyphal fusion or vertically via spores [61].

To date, members of the genera Alphapartitivirus and Betapartitivirus have been found in R. solani.
a putative alphapartitivirus named Rhizoctonia solani partitivirus 2 (RsPV2) was isolated from the
causal agent of rice sheath blight, R. solani AG-1 IA GD-11. RsPV2/GD-11 contains two segments
2020 bp and 1790 bp in length, respectively (Figure 2; Table 2). The protein encoded by dsRNA1 is an
RdRp (Pfam02123, E-value 5e-05) similar to that of partitiviruses such as Diuris peduncolata cryptic
virus (DpCV; accession number JX156424, identity 63.77%, E-value 0.0), while dsRNA2 encodes a
CP [17]. The betapartitivirus Rhizoctonia solani virus 717 (RsV717), isolated from R. solani AG-2 Rhs
717 has two genomic segments, 2363 bp and 2206 bp in length (Figure 2; Table 2). DsRNA1 encodes a
putative RdRp (Pfam00680, E-value 0.002) with high similarity to that of Fusarium poae virus 1 (FpV1;
accession number LC150606, identity 46.81%, E-value 0.0); while dsRNA2 encodes a putative CP [20].
In addition, the complete genomes of four other alphapartitiviruses, Rhizoctonia solani dsRNA virus
3 (RsRV3/A105), Rhizoctonia solani partitivirus 3 (RsPV3/HG81), Rhizoctonia solani partitivirus 4
(RsPV4/HG81), and Rhizoctonia solani partitivirus 5 (RsPV5/C24), were also determined [35,36,38].
Furthermore, the complete genomes of three betapartitiviruses isolated from R. solani YNBB-111,
Rhizoctonia solani partitivirus 6 to 8 (RsPV6-8/YNBB-111), were also characterized [37]. Moreover,
the complete coding sequences of Rhizoctonia solani dsRNA virus 2 (RsDSRV2/A; Table 2) and
Rhizoctonia solani partitivirus 6 to 8 (RsPV6/BR5, RsPV7/BR6 and RsPV8/BR16; Table S1) (RsPV6-8;
Table S1), isolated from R. solani AG2-2 LP, have been determined using NGS. RsDSRV2/A, RsPV7/BR6
and RsPV8/BR16 RdRps belong to the genus Alphapartitivirus, while RsPV6/BR5 belongs to the genus
Betapartitivirus [6]. Finally, a partial sequence of the Rhizoctonia solani partitivirus 1 from R. solani
OA-1 has been determined (Table 2). In total, fourteen members of the family Partitiviridae have been
found to infect R. solani, together with Rhizoctonia solani bipartite-like virus 1 (RsBPV1; Table 2),
a member of the proposed family Bipartitiviridae [6].
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2.1.3. Unclassified dsRNA Viruses

To our knowledge, few studies characterized unclassified dsRNA viruses infecting R. solani.
Rhizoctonia solani dsRNA virus 1 (RsRV1) (Figure 2; Table 2), found in the Chinese R. solani AG-1 IA
B275 isolate from rice in 2007, was fully sequenced and analyzed. RsRV1 consists of two segments
named RsRV1-dsRNA1 and RsRV1-dsRNA2, 2379 and 1811 bp in length, respectively, each containing
a single open reading frame (ORF). RsRV1-dsRNA1 encodes an RNA-dependent RNA polymerase
(RdRp; Pfam00680, E-value 1e-04), whereas RsRV1-dsRNA2 encodes a protein of unknown function.
Both proteins are closely related to the unclassified Fusarium graminearum dsRNA mycovirus-4
(FgV-4) [16].

Rhizoctonia solani RNA virus HN008 (RsRV-HN008) (Figure 2; Table 2) was fully sequenced and
characterized. RsRV-HN008 has a genome 7596 bp in length, containing two non-overlapping ORFs.
ORF1 has no significant similarity to any protein in the databases, whereas ORF2 encodes an RdRp
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(Pfam02123, E-value 4e-14) with low similarity to that of Rosellinia necatrix megabirnavirus 1-W779
(RnMV1/W779; accession number LC333756, identity 29.06%, E-value 9e-71) [17].

M1 and M2 dsRNAs were found in R. solani Rhs 1A together with the genetically distinct dsRNAs
L1 (25 kbp), L2 (23 kbp) and S1 (1.2 kbp), and represent the first well-described dsRNA elements in
R. solani (Table 2) [40,62]. M1 is homologous to the recently described Rhizoctonia solani putative
virus 1 (RsV1/BR4, Table 2; E-value 45.64%); it contains two putative ORFs on the positive strand,
while four more have been reported on the negative strand [62]. M2 contains one main ORF which
encodes an RdRp (Pfam05919; 4e-170) closely related to that of mitoviruses, such as the Rhizoctonia
solani mitovirus 22 (RsMV22, Table S1; E-value 79.57%) and similar to the pentafunctional AROM
polypeptide of the shikimate pathway, which synthesizes the five central steps of the shikimate pathway
in filamentous fungi and yeast [40].

2.2. Single-Stranded RNA Viruses

In addition to dsRNA viruses, ssRNA viruses are also prevalent in R. solani [63]. Some viruses with
the smallest and simplest genomes have ssRNA as their genetic material [64]. The ssRNA viruses may
be classified as positive-sense (+) or negative-sense (−), based on the polarity of their RNA genome [65].
The (+)ssRNA viruses have a simple RNA replication and expression mechanism [66], while the
(−)ssRNA viruses initiate replication by packaging their transcription and replication machinery
into virions [67]. The majority of ssRNA mycoviruses reported have a linear monopartite (+)ssRNA
genome [68]. According to the ICTV, (+)ssRNA mycoviruses are assigned in 8 families [69], including
Alphaflexiviridae (5.4–9 kb in length), Barnaviridae (4 kb in length), Botourmiaviridae (2.9 kb in length),
Deltaflexiviridae (6–8 kb in length), Endornaviridae (14–17.6 kb in length), Gammaflexiviridae (6.8 kb in
length), Hypoviridae (9–13 kb in length) and Narnaviridae (1.7–2.9 kb in length). Only one (−)ssRNA
mycovirus is officially recognized by the ICTV, Sclerotinia sclerotiorum negative-stranded RNA virus
1, which is closely related to nyaviruses and bornaviruses and was recently assigned to the family
Mymonaviridae [70].

2.2.1. (+)ssRNA Viruses: Barnaviridae

The Barnaviridae family currently accommodates genus Barnavirus and one species, Mushroom
bacilliform virus [71] The exemplar of the species, mushroom bacilliform virus (MBV; accession number
NC_001633) has a monopartite (+)ssRNA genome 4.0 kbp in length. The genome has four ORFs,
encoding a protein of unknown function (P1), a polyprotein that includes protease and VPg domains
(P2), RdRp (P3), and CP (P4), respectively. Few viruses related to genus Barnavirus have been discovered
so far, including Colobanthus quitensis associated barnavirus 1 (CqBV1; accession number MG686618)
and Rhizoctonia solani barnavirus 1 (RsBV1) [19]. RsBarV1 is 3915 bp in length and contains three
ORFs, encoding a polyprotein with protease (Pfam02122, E-value 9e-06) and VPg domains, an RdRp
(Pfam02123; E-value 5e-30) similar to that of MBV (identity 47%, E-value 1e-124), and a CP. The ORF
encoding the protein of unknown function is missing, suggesting that the 5′ terminal sequence of
RsBV1 is incomplete.

2.2.2. (+)ssRNA Viruses: Benyviridae

The family Benyviridae accommodates (+)ssRNA plant viruses with rod-shaped virions,
whose genome is capped and polyadenylated, comprises four to five segments and ranges from
1.3 to 6.7 kb in length [46]. Benyviridae accommodates four species within the genus Benyvirus and
its members are associated with cell-to-cell movement [46,72,73]. Two distinct viruses, both named
Rhizoctonia solani Beny-like virus 1 (RsBenV1; Table 2) were found in R. solani 42304-9a [19] and R. solani
AG-2.2 LP BR2 [6], respectively, and were partially characterized. In each case, only one segment of
the genome was identified, encoding a putative RdRp related to benyviruses and benylike-viruses;
more specifically RsBenV1/42304-9a is closely related to beet soil-borne mosaic virus (BSBMV; accession
number AF280539, identity 39.13%, E-value 1e-09), an official member of the Benyviridae family,
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while RsBenV1/BR2 is closely related to Sclerotium rolfsii beny-like virus 1 (SrBLV1; accession number
MH766487, identity 40.74%, E-value 0.0).

2.2.3. (+)ssRNA Viruses: Botourmiaviridae and Basidionarnaviridae

Botourmiaviridae is a family of plant and fungal viruses with (+)ssRNA genomes. The family
Botourmiaviridae currently accommodates ten species and four genera: Botoulivirus (1 segment, 2.9 kbp
in length), Magoulivirus (1 segment, 2.3 kbp in length), Ourmiavirus (3 segments, approximately 0.9 kbp,
1.0 kbp and 2.8 kbp in length, respectively), and Scleroulivirus (1 segment, 3 kbp in length). NGS has led
to the identification of new viruses infecting R. solani which are related to Botourmiaviridae, Rhizoctonia
solani ourmia-like virus (RsOLV) 1-5 [6,19]. Only 59%–87% of the RsOLV1 genome was sequenced and
the original analysis revealed similarity to the RdRps of members of the genus Ourmiavirus such as
Cassava virus C (CVC; accession number NC_013111, identity 33.73%, E-value 2e-07), Epirus cherry
virus (EcV; accession number NC_011065, identity 33.61%, E-value 2e-09) and Ourmia melon virus
(OmV; accession number NC_011068, identity 32.61%, E-value 9e-09) [19].

Plant viruses of the genus Ourmiavirus are tripartite with each segment encoding a single protein:
RdRp, CP and movement protein (MP), respectively, and are believed to have evolved by reassorting
genomic segments of viruses infecting fungi and plants [74]. In contrast, the RsOLV1 genome does
not appear to encode the CP or the MP [19]. Currently, RsOLV1 is the exemplar of the officially
recognized species Rhizoctonia magoulivirus 1, genus Magoulivirus, family Botourmiaviridae. In contrast,
evolutionary phylogenetic tree clustered RsOLV 2 to 5 together Agaricus bisporus virus 15 (AbV15/003;
accession number AQM49945) into a potential novel genus within the family Botourmiaviridae or even
a novel closely related family (Figure 3) provisionally named Basidionarnaviridae since it currently
accommodates only viruses infecting basidiomycetes [6]. The RsOLV2/Rs, RsOLV2, and RsOLV3 RdRp
sequences are over 70% identical, therefore they are likely different isolates of the same species [6].
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2.2.4. (+)ssRNA Viruses: Bromoviridae

Bromoviridae is a family of viruses with worldwide distribution that naturally infects plants.
There are currently six genera in the family, including Alfamovirus, Anulavirus, Bromovirus, Cucumovirus,
Ilarvirus, and Oleavirus. Bromoviridae possess a tripartite linear (+)ssRNA genome [75], approximately
8 kb in length [76]. RNA1 and RNA2 encode RdRp 1a and 2a, respectively, both involved in genome
replication and transcription of ssRNA4 from the minus-strand copy of RNA3. RNA3 produces a MP
and a CP. Members of the genera Cucumovirus and Ilarvirus have an additional overlapping ORF [75].
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Members of the family Bromoviridae form virions, either spherical or quasi-spherical for the members
of the genera Cucumovirus, Ilarvirus, Anulavirus, and Bromovirus, or bacilliform for the members of the
genera Ilarvirus, Alfamovirus, and Oleavirus [76].

Natural cross-kingdom virus transmission between plants and fungi has been speculated for some
time and recently transmission of CMV to R. solani was reported [7]. CMV-infected R. solani AG-3
(Figure 4) was isolated from potato plants (Solanum tuberosum L.) in Inner Mongolia, China. CMV
transmission can occur in both directions from plant to R. solani and R. solani to plant, while CMV
can be transmitted horizontally via hyphal fusion but not vertically via basidiospores [7]. CMV is a
member of the genus Cucumovirus, family Bromoviridae [7] and has three genomic segments 3309 nt,
3053 nt, and 2214 nt in length, respectively, encapsidated in isometric particles [7].
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protein (CP); (B) deltaflexivirus RsFV-1/DC717.

2.2.5. (+)ssRNA Viruses: Deltaflexiviridae and Tymoviridae, Tymovirales

The general term flexiviruses refers to members of the order Tymovirales, families Alphaflexiviridae,
Betaflexiviridae, Deltaflexiviridae, and Gammaflexiviridae. Flexiviruses have a monopartite (+)ssRNA
polyadenylated genome 6.5–9.5 kb in length and filamentous virions, which encode a
replication-associated polyprotein 150–250 kDa in size [68] and are known to infect both plants
and fungi [77,78]. The first mycovirus reported in the order Tymovirales was Botrytis virus F
(BotV-F), which belongs to the family Gammaflexiviridae, genus Mycoflexivirus [79]. Within the family
Deltaflexiviridae, three species belonging to the genus Deltaflexivirus have been reported: Sclerotinia
deltaflexivirus 1 (SsDFV1) [80], soybean-associated deltaflexivirus 1 (SlaMFV1) [81], and Fusarium
deltaflexivirus 1 (FgDFV1) [68]. Only one flexivirus infecting R. solani has been fully sequenced in,
tentatively named Rhizoctonia solani flexivirus 1 (RsFV1; Figure 4; Table 2) [15]. RsFV-1 was isolated
from R. solani AG2-2IV/DC17 and its (+)ssRNA genome consists of 10,621 nt excluding the poly (A)
tail. RsFV-1 encodes a single protein similar to that of other members of the order Tymovirales, most
notably the deltaflexiviruses SsDFV1 (accession number NC_038977, identity 35.5%, E-value 2e-104),
SlaMFV1 (accession number NC_038979, identity 34.32%, E-value 9e-110) and FgDFV1 (accession
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number NC_030654, identity 38.8 %, E-value 2e-111) [15]. Additionally, the RsFV-1 protein has three
conserved domains, including a viral methyltransferase (Pfam01660, E-value 3.65e-29), a viral helicase
(Pfam01443, E-value 2.04e-08), and an RdRp (Pfam00978, E-value 2.46e-08). Two more flexiviruses,
Rhizoctonia solani flexivirus 2 (RsFV2; Table S1) and Rhizoctonia solani flexi-like virus 1 (RsFLV1;
Table 2) were detected in R. solani AG2-2IV/DC17 and R. solani AG-2.2 LP BR9, respectively, and have
been partially sequenced.

Tymoviridae is a family of (+)ssRNA viruses in the order Tymovirales which range from 6.0 to 7.5 kb
in length [82]. The family Tymoviridae currently accommodates three genera Maculavirus, Marafivirus,
and Tymovirus and 41 officially recognized species [69]. However, more viruses related to Tymoviridae
have been reported but not classified thus far [76], including Rhizoctonia solani positive-stranded
RNA virus 1 (RsPSV1; Figure 2) [19], the only known tymovirus infecting R. solani. The partial genome
sequence of RsPSV1 contains a large ORF and several small ORFs, similar to the bee Macula-like virus
(MlV; accession number NC_027631, identity 30%, E-value 4e-56) in the family Tymoviridae.

2.2.6. (+)ssRNA Viruses: Endornaviridae

Endornaviridae is a family of viruses with non-encapsidated RNA genomes that range in size from
9.7–17.6 kb and contains a single ORF encoding a polyprotein [83,84]; the polyprotein has an RNA
helicase domain at the N-terminus and conserved RdRp motifs at the C-terminus [85]. Endornaviruses
naturally infect fungi, plants, and oomycetes, which are persistent and do not cause obvious symptoms
in their host [85–87]. In fungal hosts, endornaviruses are transmitted vertically via sporulation
and horizontally via anastomosis [88], whereas in plant hosts they rely on vertical transmission via
pollen and ova, since they lack a MP and cannot move from cell to cell [89–91]. Endornaviruses are
not encapsidated and do not form true viral particles [85]. The family accommodates two genera,
Alphaendornavirus and Betaendornavirus.

An endornavirus, tentatively named Rhizoctonia solani endornavirus (Table 2) and isolated from
R. solani AG-3PT strain RS002 (RsEV-RS002), was partially sequenced. The RsEV-RS002 partial genome
(14964 nt) includes a partial 5′ untranslated region (5′-UTR) but not the 3′-UTR. The RsEV-RS002 genome
shows low similarity to the genomic sequence of bell pepper alphaendornavirus (BPEV-YW; accession
number NC_015781, identity 29.8%, E-value 1e-71). A conserved domain search in Pfam [92] showed
that the RsEV-RS002 protein has three conserved domain motifs including a viral methyltransferase
(MT; Pfam01660, E-value 5e-05), a viral helicase (Hel; Pfam01443, E-value 7e-11), both located at the
N-terminus, and an RdRp (Pfam00978, E-value 3e-16) located at the C-terminus. The putative RdRp
domain is located at the C-terminus whereas the putative viral helicase and MT are both located at
the N-terminus [14]. Rhizoctonia solani endornavirus 1 (RsEV1/GD-2; Table S1), Rhizoctonia solani
endornavirus 2 (RsEV2/Illinois1; Table 2), Rhizoctonia solani endornavirus 3 (RsEV3/DC17; Table S1),
and Rhizoctonia solani endornavirus 4 to 7 (RsEV4-7; Table S1) have also been reported [6]. RsEV4,
5, 6, and 7 each contain a single putative ORF of 6719, 5300, 5077 and 4757 aa, respectively. RsEV4,
RsEV6 and RsEV7 encode an RdRp (Pfam00978; E-value 9e-23, 9e-22, and 1e-25, respectively) and a Hel
(Pfam01443; E-value 7e-12, 3e-06, and 1e-25, respectively) domain. RsEV5 encodes an MT (Pfam01660;
E-value 4e-05) domain in addition to the RdRp (Pfam00978; E-value 5e-17); however, no Hel domain
was detected. Additionally, a complete genome sequence of an endornavirus from R. cerealis, another
species of the genus Rhizoctonia, has been described [93] and is the exemplar of an officially recognized
species Rhizoctonia cerealis alphaendornavirus 1. RsEV-RS002, RsEV1/GD-2 and RsEV5 belong to genus
Alphaendornavirus as well, while a new genus Gammaendornavirus within the family Endornaviridae
was recently proposed to accommodate RsEV2/Illinois1, RsEV3/DC17, RsEV4, RsEV6, and RsEV7 [6].

2.2.7. (+)ssRNA Viruses: Hypoviridae and Fusariviridae

The family Hypoviridae accommodates a single genus, Hypovirus, and four recognized species,
Cryphonectria hypovirus 1 to 4, with capsidless monosegmented (+)ssRNA genomes ranging from
12.7 to 9.2 Kbp in length [94–98]. Each genome has either one or two ORFs, encoding at least putative
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RdRp and Hel domains [98] and occasionally additional domains including glucosyltransferase (UGT),
papain like protease (PRO) and permuted papain-fold peptidase of dsRNA viruses and eukaryotes
(PPPDE) [99,100]. The primary interest in hypoviruses stemmed from their ability to mitigate the fungal
host virulence (hypovirulence), of the chestnut blight fungus Cryphonectria parasitica. Hypoviruses can
be transmitted horizontally to virulent isolates via hyphal anastomosis [99].

To our knowledge, a complete hypovirus genome from R. solani has not been reported so far,
but the complete ORF of Rhizoctonia solani hypovirus 1 (RsHV1; Table 2) and partial ORFs for
Rhizoctonia solani hypovirus 2 and 3 (RsHV2 and 3, respectively; Table S1) were recently described
using NGS [6]. The RsHV1 segment is 18 kbp in length, representing one of the longest hypovirus
genomes known so far, and encodes a large putative protein of 5344 aa where only a helicase conserved
domain (cd00046, E-value 6.99e-06) was detected; neither an RdRp domain nor the GDD motif, hallmark
of most viral RdRps, was found in the protein sequence. Nevertheless, BLAST analysis revealed that
the RsHV1 protein was homologous to other hypoviruses such as Sclerotinia sclerotiorum hypovirus
2 (SsHV2; accession number QBA69886, identity 26.64%, E-value 4e-81) [101]. The RsHV2 and 3
sequences are 9 and 5 kbp in length, respectively, with two ORFs each. The two RsHV2 ORFs encode
proteins homologous to those of hypoviruses but lacking any conserved motifs, while one of the RsHV3
ORFs has a helicase conserved domain (cd00046, E-value 3.62e-10). A new genus Megahypovirus
within the family Hypoviridae was proposed to accommodate RsHV1 and SsHV2, whose genomes are
large, together with Agaricus bisporus virus 2 (AbV2/003; accession number KY357506), RsHV2 and
RsHV3 [6].

Furthermore, three fusariviruses Rhizoctonia solani fusarivirus 1, 2 and 3 (RsFV1, 2 and 3,
respectively) were described [6] related to the members of the proposed family Fusariviridae [102].
The RsFV1 genomic segment is 11 kbp in length containing four putative ORFs: the largest ORF3
encodes a protein with an RdRp (Pfam00680; E-value 7e-20) and a Hel (Pfam00270; E-value 1.2e-06)
domain; ORF1 encodes a viral helicase (Pfam04851; E-value 3.7e-09); the smallest ORF2 and ORF4
encode proteins of unknown function. RsFV2 has similar genomic organization, while the RsFV3
partial genomic sequence encodes for an RdRp (Pfam00680; E-value 1.2e-06) and a Hel (cd00046;
E-value 2e-06) domain [6]. It has been proposed to subdivide the currently described fusariviruses into
at least two further genera, based on the sequence length and genome organization, and in this case
RsFV1 and RsFV2 would cluster together while RsFV3 would belong to a different genus [6].

2.2.8. (+)ssRNA Viruses: Narnaviridae

Members of the family Narnaviridae are the simplest viruses with a linear (+)ssRNA genome
1.7–3.6 kb in length, a single ORF, which encodes an RdRp [103,104], and no capsid. The family
Narnaviridae accommodates two genera, Mitovirus and Narnavirus [103]. All known members of genus
Mitovirus infect filamentous fungi and plants [104,105], whereas members of the genus Narnavirus have
been also found in the yeast Saccharomyces cerevisiae and in the oomycete Phytophthora infestans [43].
Mitoviruses have genomes 2.3–3.1 kb in length [106] and do not form true virions but are associated
with lipid membrane-bound vesicles [107]. Mitoviruses replicate in the mitochondria of the host
cell, in contrast to narnaviruses that are known to replicate in the cytosol. Since the discovery of the
first mitovirus in C. parasitica, many mitoviruses have been detected in phytopathogenic fungi [106],
most of them from ascomycetes, a few from basidiomycetes and one from arbuscular mycorrhiza [108].
Some mitoviruses have been reported to confer hypovirulence to their host, such as Sclerotinia
sclerotiorum mitovirus 4 (SsMV4) isolated from S. sclerotiorum strain AH16 [109].

To our knowledge, there are no complete mitovirus genomes described from R. solani, however,
forty partial genome sequences of mitoviruses infecting R. solani have been reported [6,9,21]. A novel
mitovirus infecting R. solani AG-3PT strain RS002 [18] was characterized and tentatively named
Rhizoctonia solani mitovirus 1 (RMV1-RS002; Table 2). The partial genome sequence of RMV1-RS002
is 2797 nt and shows similarity to the tuber excavatum mitovirus (TeMV; accession number JN222389,
identity 25.6%, E-value 4e-106) [18]. The protein encoded by RMV1-RS002 is similar to Glomus sp. RF1
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small virus (GRF1V-S; accession number NC_040656, identity 49.55%, E-value 7e-94) [18]. The partial
5′-UTR of RMV1-RS002 was shown to form at least three stem-loop structures [18], as is typical for
viral UTRs in general. In addition to of RMV1-RS002, several partial mitovirus genomes sequences
have been reported (Table S1) [6,9,19]. A new family Mitoviridae, closely related to but distinct from
the family Narnaviridae, has been proposed to accommodate current members of the genus Mitovirus
and other mitoviruses. This new family would be subdivided into a number of genera, including
plant and fungal mitoviruses [6,105,110]. Moreover, a new order would be established to include the
Narnaviridae and the proposed Mitoviridae families [95].

2.2.9. (+)ssRNA Viruses: Mycoalphaviridae

The Togaviridae family accommodates genus Alphavirus and 31 species, including several important
human pathogens such as Eastern equine encephalitis virus (EEEV) [111], Western equine encephalitis
virus (WEEV) [112], Venezuelan equine encephalitis virus (VEEV) [113], Sindbis virus (SINV) [114], Ross
River virus (RRV) [115], Semliki Forest virus (SFV) [116], and Chikungunya virus [117]. Alphaviruses
are arboviruses that are transmitted alternatively between insect vectors and vertebrate hosts [118,119].
Members of the Togaviridae family are small enveloped (+)ssRNA viruses ranging from 10 to 2 Kbp in
size [119], with a methylguanosine cap and a poly(A) stretch at the 5′ end and 3′ end, respectively,
and a genome encoding both non-structural and structural proteins [118]. The virion consists of a
nucleocapsid core, a lipid bilayer and surface glycoproteins [120].

To our knowledge, there is no member of the genus Alphavirus infecting R. solani. However, partial
genomic sequences related to Togaviridae family were recently reported in R. solani AG-2.2 LP, including
Rhizoctonia solani alphavirus-like 1, 2, and 3 (RsALV1/BR15, Table 2; RsALV2/BR14 and RsALV3/BR8,
Table S1) [6]. The RsAVL2 partial ORF encodes RdRp (Pfam00978, E-value 2.9e-21), whereas both
RdRp (Pfam00978, E-values 3.8e-18 and 2.1e-19, respectively) and viral helicase (Pfam01443, E-values
8.5e-05 and 6.6e-11, respectively) domains can be detected in RsAVL1 and RsAVL3 [6]. A new family
Mycoalphaviridae was proposed to accommodate RsALV1, RsALV 2, and RsALV3, together with
Rhizoctonia solani RNA virus 1, 2, and 3 (RsRV1-3/DC17; Table S1) detected in R. solani AG 2-2IV DC17
and Sclerotinia sclerotiorum RNA virus L (SsRVL; accession number EU779934) [6].

2.2.10. (−)ssRNA Viruses: Betamycoserpentoviridae, Serpentovirales

Aspiviridae, formerly known as Ophioviridae, is a family of flexible filamentous viruses known
to infect plants [121] and belongs to the order Serpentovirales. The family Aspiviridae currently
accommodates one genus Ophiovirus and 7 species. The members of the family Aspirividae contain a
(−)ssRNA genome ranging from 11.3 to 12.5 kb in length separated into 3 to 4 segments [121]. Recently,
unclassified partial virus sequences related to ophioviruses were reported infecting soil-borne R. solani
strains and named Rhizoctonia solani negative-stranded RNA virus 1 to 3 (RsNSRV1-3; Table 2).
Analysis of the sequences revealed a large ORF with significant similarity to the L proteins encoded
by RNA1 of the lettuce ring necrosis ophiovirus and other members of the family Aspiviridae. A new
family Betamycoserpentoviridae within the order Serpentovirales has been proposed to accommodate
these viruses, together with Fusarium poae negative-stranded RNA virus 1 (FpNSV1) from the fungal
plant pathogen Fusarium poae [19,34].

2.2.11. (−)ssRNA Viruses: Mycophleboviridae, Bunyavirales

The order Bunyavirales accommodates twelve families: Arenaviridae, Cruliviridae, Fimoviridae,
Hantaviridae, Leishbuviridae, Mypoviridae, Nairoviridae, Peribunyaviridae, Phasmaviridae, Phenuiviridae,
Tospoviridae, and Wupedeviridae. Metatranscriptomics analyses of plant pathogenic fungi revealed the
presence of several (−)ssRNA mycoviruses, related to bi- and tri-segmented (−)ssRNA viruses, such as
peribunyaviruses and phenuiviruses [19,33,34]. For instance, Lentinula edodes negative-strand RNA
virus 2 (LeNSRV2) infecting Lentinula edodes is a phenui-like virus and the first segmented (−)ssRNA
virus found to infect fungi [28], while more viruses related to the order Bunyavirales were reported in
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fungi associated with the marine organism Holothuria polii [29] and the ascomycete Entoleuca sp. [27].
Recently, two viruses infecting R. solani and related to bunyaviruses were reported: Rhizoctonia solani
bunya/phlebo-like virus 1 (RsBPLV1; Table 2) [6] and Rhizoctonia solani negative-stranded virus 4
(RsNSV4; Table S1). Analysis of the protein encoded by the RsBPLV1 segment revealed the presence
of RdRp motifs (Pfam04196; E-value 1e-09). Subsequently, the new family Mycophleboviridae was
proposed within the order Bunyavirales to accommodate RsBPLV1 and RsNSRV1 together with Ixodes
scapularis associated virus 6 (IsV6; accession number MG256514).

3. Transmission of Viruses Infecting Rhizoctonia solani

Mycovirus transmission is a significant process that needs to be addressed in any
mycovirus-mediated biological control approach to alleviate fungal diseases. Specifically, it is
necessary for the mycovirus to acquire some functions before being considered as a potential biological
control agent, including limitation of host range to prevent the spread to undesirable hosts and the
ability to establish and spread within the targeted host population [122]. Two principal pathways
of transmission are known: Horizontal transmission via hyphal anastomosis and heterokaryosis,
and vertical transmission through sporulation [123]. The effectiveness and success of biological
control may vary depending on the mycovirus mode of transmission. Horizontal transmission
is generally linked to increased biocontrol efficiency, since it leads to widespread coverage of the
biocontrol agent, whereas vertical transmission is associated with lower efficiency [124]. Mycoviruses
are completely dependent on their host due to their inability to survive in the environment and
vertical transmission may have evolved in cases of mutualism. Nevertheless, some cases of horizontal
transmission in mutualistic symbiosis have been reported [125]. The replication cycle of mycoviruses,
in general, lacks an extracellular phase and infectious virions; one notable exception is the novel
circular ssDNA virus, Sclerotinia sclerotiorum hypovirulence associated DNA virus 1 (SsHADV-1),
which can be transmitted extracellularly and use a mycophagous insect (Lycoriella ingénue) as a vector
for transmission [43,106]. This suggests the potential existence of other undiscovered mycoviruses that
might be transmitted extracellularly.

In R. solani, few studies have been reported on mycovirus transmission. Successful transfection
protocols were previously established for some mycoviruses, including members of the families
Partitiviridae, Megabirnaviridae, Reoviridae, and Totiviridae. This approach is generally based on the use
of polyethylene glycol (PEG) 4000 that promotes protoplast fusion and subsequent regeneration of the
virus-transfected protoplasts and contributes substantially to the understanding of virus-host interaction
and mycovirus-mediated biological control [17]. For instance, the alphapartitivirus RsPV2/GD-11
was successfully introduced into protoplasts of the virus-free R. solani strain GD-118 creating the
derivative virus-transfected strain GD-118T [17]. Despite the complexity of fungal cell walls which are
considered to be a substantial barrier to their spread, mycoviruses are generally capable of transmission
from one fungal isolate to another in nature [25]. Purified RsPV2/GD-11 particles were successfully
transmitted horizontally or vertically, although in some cases transmission via hyphal fusion failed
between different genotypes within the same R. solani anastomosis group [22]. In addition, members
of the family Endornaviridae, which do not produce virus particles, are transmissible at high rates
horizontally as well as vertically [14]. For instance, a betaendornavirus identified in R. solani Ra1 has
the ability to be transmitted vertically via basidiospores [7], while the alphaendornavirus RsEV1/GD-2
could be transmitted horizontally via hyphal anastomosis [39]. Furthermore, the M2 dsRNA and the
betapartitiviruses RsPV6/YNBB-111, RsPV7/YNBB-111 and RsPV8/YNBB-111 could be transmitted
horizontally via hyphal anastomiosis [37,40]. Moreover, CMV infecting R. solani was transmitted
horizontally through hyphal fusion, but not vertically via basidiospores [7].

4. Effects of Virus Infection on Rhizoctonia solani

Mycovirus infections are often cryptic (symptomless) but investigations focus on potential
hypovirulence, a phenomenon that may be exploited in the context of sustainable biological
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control of fungal diseases. The prime example is Cryphonectria hypovirus 1 (CHV1), used to
successfully control the plant pathogen Cryphonectria parasitica, the causal agent of chestnut blight,
in Europe [122]. This discovery revolutionized the world of fungal biological control and led to
the term hypovirulence [126]. Additionally, Rosellinia necatrix megabirnavirus 1 (RnMBV1) was
isolated from Rosellinia necatrix the causative agent of a worldwide devastating disease. RnMBV1
belongs to the family Megabirnaviridae, has a bi-segmented genome and is a potential virocontrol
agent since it confers hypovirulence by significantly reducing the virulence and mycelial growth
of its host [53,69]. The main effects include a decrease in the host growth rate, attenuation of host
virulence, lack of sporulation and reduction of basidiospore germination [127,128]. In addition,
other mycoviruses may have more deleterious effects, including the ‘La France’ disease of Agaricus
biporus caused by the ‘La France’ isometric virus (LIV) and the mushroom diseases caused by oyster
mushroom isometric virus (OMIV) and oyster mushroom spherical virus (OMSV) [21]. To investigate
the effect of mycoviruses on their hosts it is important to construct a virus-free isogenic line, either by
transmitting the mycovirus into a virus-free strain or by curing the virus-infected one [25]. For instance,
protoplast transfection of RsPV2/GD-11 into the R. solani virus-free strain GD-118 resulted in darker
mycelial pigmentation on potato dextrose agar (PDA) plates, and a reduction of mycelial growth rate,
sclerotia size and numbers [17]. Furthermore, RsPV2/GD-11 diminished lesion sizes on rice leaves,
indicating hypovirulence [17]. Similarly, horizontal transmission of RsEV5/GD-2 resulted in host
hypovirulence [39]. In contrast to RsPV2/GD-11 and RsEV5/GD-2, infection of R. solani with CMV does
not affect the growth rate and morphology of the fungus on PDA under laboratory conditions [7].
Additionally, M1 dsRNA is associated with enhanced virulence in the parental R. solani Rhs 1A,
while sectors of the parental strain harboring the M2 dsRNA and the derivative strains showed reduced
pigmentation and growth rate [41]. The RNA titers of M1 and M2 dsRNAs appear to be inversely
correlated [40]; the former can be found mainly in mitochondria [62] while the latter in the cytosol [40].
All these studies clearly illustrate the phenotypic variation of mycovirus infection.

5. Conclusions and Future Prospects

Viruses infecting R. solani are less well studied as compared to those in other fungal genera such
as C. parasitica. However, a range of RNA viruses infecting R. solani was described including members
of the families Barnaviridae, Benyviridae, Botourmiaviridae, Bromoviridae, Deltaflexiviridae, Endornaviridae,
Hypoviridae, Megabirnaviridae, Narnaviridae, Partitiviridae, Togaviridae, and Tymoviridae, together with
unclassified mycoviruses related to the orders Serpentovirales and Bunyavirales. These families include
dsRNA viruses, (+)ssRNA viruses and (−)ssRNA viruses and the majority of the viruses infecting
R. solani have dsRNA or (+)ssRNA genomes.

In addition to the discovery of novel viruses, future research on mycoviruses needs to focus
on the molecular mechanisms of mycovirus–host interactions and provide a better understanding
of mycovirus transmission mechanisms. Efficient mycovirus detection relies on NGS technology.
NGS allows the determination of mycoviruses previously unreported and contributes considerably
to the clarification of unknown molecular mechanisms of host-virus interactions since it can be used
to examine in detail changes in the R. solani transcriptome following mycovirus infection. Viruses
infecting R. solani are transmissible horizontally via anastomosis hyphal fusion or vertically via
sporulation [129], while successful transmission depends on the particular mycovirus under study.
For example, endornaviruses use both routes of transmission, horizontal and vertical [14], whereas CMV
was efficiently transmitted horizontally in R. solani CMV-free strains via hyphal fusion but failed to
transmit through basidiospores [7]. No specific vectors facilitating mycovirus transmission have been
reported although it is believed that yet undetermined insect vectors may play a key role and these
should be identified in the future. Mycovirus-related research focuses especially on the identification of
potential biological agents to combat plant pathogenic fungi. In the case of R. solani, some viruses such
as CMV have no discernible effects on their host, while others such as RsPV2/GD-11 were shown to
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cause hypovirulence and therefore are promising biocontrol agents and should be studied extensively
in the future.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/11/12/1113/s1,
Table S1: Additional mycoviruses reported to infect R. solani.
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