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Improved imputation accuracy of rare and
low-frequency variants using population-specific
high-coverage WGS-based imputation reference panel

Mario Mitt1,2,7, Mart Kals1,3,7, Kalle Pärn1,4,7, Stacey B Gabriel5, Eric S Lander5, Aarno Palotie4,5,
Samuli Ripatti4, Andrew P Morris1,6, Andres Metspalu1,2, Tõnu Esko1,5, Reedik Mägi1,8 and Priit Palta*,1,4,8

Genetic imputation is a cost-efficient way to improve the power and resolution of genome-wide association (GWA) studies.

Current publicly accessible imputation reference panels accurately predict genotypes for common variants with minor allele

frequency (MAF)≥5% and low-frequency variants (0.5≤MAFo5%) across diverse populations, but the imputation of rare

variation (MAFo0.5%) is still rather limited. In the current study, we evaluate imputation accuracy achieved with reference

panels from diverse populations with a population-specific high-coverage (30×) whole-genome sequencing (WGS) based

reference panel, comprising of 2244 Estonian individuals (0.25% of adult Estonians). Although the Estonian-specific panel

contains fewer haplotypes and variants, the imputation confidence and accuracy of imputed low-frequency and rare variants was

significantly higher. The results indicate the utility of population-specific reference panels for human genetic studies.
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INTRODUCTION

Genotype imputation is a method for statistically inferring untyped
genotypes in a sample of partially genotyped individuals, based on a
reference panel of individuals who have been more densely genotyped
or sequenced. Imputation methods attempt to identify haplotype
sharing between individuals in the sample and in an imputation
reference panel (IRP), and use this information to infer the alleles at
untyped loci in the sample.1 Imputation allows geneticists to study
variants that have not been directly genotyped in a sample and thereby
to increase power and resolution of genome-wide association studies
(GWAS). Imputation is particularly useful for combining association
results across studies that used different genotyping arrays2 and
facilitate fine-mapping to localise association signals by considering
all genetic variants in a region.
Publicly available IRPs from the International HapMap Project3,4

and 1000 Genomes Project (1000G)5 have been instrumental to the
discovery of thousands of loci affecting diseases and traits in individual
GWAS and collaborative meta-analyses. The first wave of studies
mostly used the HapMap II IRP, which used microarray-based
genotypes from 270 individuals at 3.1 million (M) variants.6–10 Later
studies used IRPs based on the 1000G project, which performed
whole-genome sequencing (WGS) on a diverse set of populations,
with 2504 individuals and up to 84.4 M variants.11–16 Although the
latter IRP allows robust imputation of common variants (minor allele
frequency (MAF) ≥ 5%) and low-frequency variants (0.5≤MAFo5%)
5 it has only limited imputation accuracy for rare (MAFo0.5%)
variants.17–19 A recent IRP from Haplotype Reference Consortium

(HRC)20 contains even more individuals (N= 32 488, mostly with
European ancestry) and should therefore enable better imputation of
both low-frequency and rare variants in European samples.
Recently, several studies have demonstrated that the use of

population-specific IRPs can further improve the imputation accuracy
of common and low-frequency variants, and improve the imputation
of rarer variants in the relevant population.21–24 By using an IRP
composed of related Dutch individuals, Deelan et al.23 showed that it
is possible to substantially improve the completeness and accuracy of
imputation of rare variants into a set of Dutch individuals. Gudb-
jartsson et al used long-range haplotype phasing in combination with
imputation to increase imputation accuracy for rare variants down to
MAF of 0.1% in the Icelandic population.22 Sidore et al. reported
several variants associated with circulating lipid levels in Sardinians
that were detected due to accurate imputation achieved by using a
Sardinian WGS-based IRP; these authors showed that the variants
would not have been identified if the analyses had been based on the
1000G IRP.24 Similar results were obtained in the UK10K project,
where the British population-specific IRP combined with 1000G
Project reference panel facilitated the discovery of several novel genetic
variants associated with medically relevant phenotypes.19,25,26

Studies have shown that the genetic structure of European countries
correlates closely with their geographic origin.27,28 The Estonian
population, being located in Northeast Europe, is genetically most
similar to its neighbouring countries, including Finland, the North-
western part of Russia, and other Baltic countries.28–30 Notwithstand-
ing this overall genetic similarity, the Estonian population still has a
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substantial proportion of haplotypes that are not expected to be
covered by the more diverse IRPs. Moreover, the population-specific
differences are expected to increase as allele frequencies decrease.
In the current study, we first evaluated two most commonly used

phasing algorithms to create population-specific IRP based on high-
coverage (30×) WGS data from 2244 Estonian individuals. To impute
low-frequency and rare variants more accurately in a specific popula-
tion, one can take two approaches: (i) increase the size of IRPs
from diverse populations to capture more reference haplotypes or
(ii) employ population-specific IRPs. We assessed the utility of these
approaches for improving imputation in Estonian samples by compar-
ing the performance of (i) an Estonian-specific IRP, (ii) the commonly
used 1000G IRP, (iii) the much larger HRC IRP and (iv) combinations
of these panels.

MATERIALS AND METHODS

Cohort description
2304 geographically distributed individuals (selected randomly by county of
birth) from the Estonian Biobank of the Estonian Genome Center, University
of Tartu (EGCUT) were selected for WGS. EGCUT is a population-based
biobank, containing almost 52 000 samples of the adult population (aged ≥ 18
years), which closely reflects the age, sex and geographical distribution of the
Estonian population. A total of 6394 individuals (selected randomly and not
overlapping with WGS data set) from the Estonian Biobank were selected for
genotyping using Illumina HumanCoreExome (Illumina, San Diego, CA, USA)
array, whereas the subset of 505 of these individuals were also subject to whole-
exome sequencing (WES).

WGS and WES sequencing and variant calling
WGS samples followed a PCR-free sample preparation. Libraries sequenced on
the Illumina HiSeq X Ten (Illumina, San Diego, CA, USA) with the use of
150 bp paired-end reads to 30× mean coverage with a median insert size of
400 bp± 25%. WES samples DNA was enriched for target sequences (Agilent
Technologies, Santa Clara, CA, USA; Human All Exon V5+UTRs) according to
manufacturer’s recommendations.
Sequenced reads were aligned to the GRCh37/hg19 human reference genome

using BWA-MEM31 v0.7.7. SAMtools32 v1.2 was applied to compress SAM to
BAM (samtools view), sort (samtools sort) and index BAM (samtools index)
files. PCR duplicates were then marked using Picard (http://broadinstitute.
github.io/picard) v1.136 MarkDuplicates.jar. For further BAM improvements,
including realignment around known indels and base quality score recalibra-
tion, we applied Genome Analysis Toolkit (GATK)33,34 v3.4 (v3.4-46). Single-
sample genotypes were called by GATK HaplotypeCaller algorithm (-ERC
GVCF). All gVCF-files were combined (-T CombineGVCFs) and jointly called
(-T GenotypeGVCFs).

Quality control
Out of the total 2304 WGS samples submitted for sequencing, 4 samples did
not have enough input DNA (o1.2 µg), 7 samples failed in library preparation
three times and 9 samples had a contamination rate 410%. Thus, variants of
2284 WGS samples were jointly called. The GATK Variant Quality Score
Recalibration was used to filter variants with a truth sensitivity of 99.8%. Also,
variants with GATK inbreeding coefficient less than − 0.3 were filtered to
remove sites with excess heterozygous individuals. Only PASS sites were
considered in the further analysis.
The PLINK/SEQ (https://atgu.mgh.harvard.edu/plinkseq) v0.10 i-stats mod-

ule was used to calculate number of variants (NVAR), number of non-reference
(NALT) variants, number of heterozygous (NHET) variants, NHET/NALT
ratio, transition/transversion (TITV) ratio per sample and outlier (below or
above 3 SD from the population mean) samples were removed. In addition,
genotype and phenotype sex concordance was checked for each sample and
outliers were removed. The final WGS sample set contained 2244 individuals.
The final WES sample set, which passed all quality control filters and was
genotyped with Illumina HumanCoreExome array, contained 505 individuals.

Multi-allelic SNVs were removed and we further excluded variants with call
rate o0.95, minor allele count ≤ 2, Hardy–Weinberg equilibrium test P-
valueo1× 10− 6 and variants in low-complexity regions.35

Genotype array data was filtered sample-wise by excluding on the basis of call
rate (o98%), extreme heterozygosity (4mean± 3 SD), genotype and pheno-
type sex discordance, cryptic relatedness (IBD420%) and outliers from the
European descent from the MDS plot in comparison with HapMap reference
samples. SNP quality filtering included call rate (o99%), MAF (o1%) and
extreme deviation from Hardy–Weinberg equilibrium (P-valueo1× 10− 4).
Non-autosomal SNPs were excluded from the analysis.

Haplotype phasing
The EGCUT WGS data was phased with SHAPEIT2(ref. 36) (r837), using four
computer cores. Pre-phasing of genotype array data was made in similar
manner using SHAPEIT2 using four cores. As a separate test for pre-phasing
accuracy, we used chromosome 20 sequence of 2244 full genomes, which
were filtered beforehand to exclude any non-founder family members and
individuals with a genome-wide PI_HAT value above 0.5 (2195 individuals
remained) when compared to other individuals in the data set. To assess the
efficiency of various approaches to phasing of WGS data, we applied two
different tools: SHAPEIT2(ref. 36) and Eagle2.37,38 Both programs were engaged
with the default parameters with varying number of cores (1, 2, 4, 8, 16, 24 and
32). To verify the phasing accuracy for other data sets, the 1000G data was
phased using a similar pipeline (1, 8 and 32 cores).
In addition to the regular phasing functionality, the read-aware phasing

capability of SHAPEIT2 (ref. 39) was also assessed. The first step entailed creating
a phase informative read file on the basis of BAM files, using the module
ExtractPIRs v1 (r68) with default parameters provided by the authors. After the
generation of phase informative reads, the obtained file could be used in a
similar fashion to a map file as a reference point for SHAPEIT2 to phase the
data sets. Phasing was performed in three parallel runs after which the average
run time and accuracy were compared as indicators of phasing quality.
Phasing accuracy was defined as the number of switch errors present in the

phased data set. For this, the phased founder genotypes were compared with
the non-phased genotypes of their offspring to determine the heredity pattern
of heterozygous positions, any shifts in heredity from one parental haplotype to
another were counted as switches. Two families with one offspring and two
families with two offspring were used to estimate switch error rate in EGCUT
sample set, four families with one offspring were used for 1000G sample set.
The ratio of switch errors was calculated by dividing the number of haplotype
switches to the number of the heterozygous positions where the occurrence of
the switch can be reliably determined, after which the results were averaged
across the trios.

Genotype imputation
Imputation using EGCUT and 1000G reference panels separately and in
combination were performed in High Performance Computing Center,
University of Tartu using IMPUTE2 with default parameters. As IMPUTE2
allows to use two-phased reference panels in combination (the ‘imputation with
two phased reference panels’ option), we used the EGCUT and 1000G reference
panels also together (EGCUT+1000G and 1000G+EGCUT). In case of such
panel combining, IMPUTE2 imputes only genotypes for variants that are
present in the first (main) panel but in the process, uses additional haplotype
information from the second panel to improve the imputation accuracy
through larger set of reference haplotypes.40

Imputation with the HRC panel was carried out using IMPUTE2 with
default parameters except that the k_hap parameter that was set to 1000.
For all imputation panels, monomorphic SNVs were excluded. No further

filtering was performed based on IMPUTE2 info score, but most of the analyses
rest on well-imputed (INFO40.4) and confidently imputed (INFO40.8)
SNVs.

Post-imputation filtering and concordance analyses
The GATK GenotypeConcordance tool was used to calculate imputation accu-
racy (concordance, non-reference sensitivity and non-reference discordancy)
for different imputation panels with WES data for overlapping individuals
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(N= 505) used as the gold standard. Low-complexity regions were filtered out
of WES data prior to analysis. PLINK v1.9 was used to convert IMPUTE2 files
(imputation output) to VCF format using hard-call threshold 0.9. BCFtools
filter option was used to keep genotypes imputed with INFO-value40.4 and
overlapping with WES-target regions. Comparison was performed in three
MAF bins (MAF≥ 5%, 0.5≤MAFo5% and MAFo0.5%) based on WES
minor allele frequencies and only well-imputed (INFO40.4) SNVs were
considered. Reference sequence in the concordance analyses was the same for
both WGS and WES analysis pipelines.
To assess more stratified imputation accuracy, an additional concordance

analysis was run for IRPs for well-imputed (INFO40.4) variants in WES-based
MAF bins of (0, 0.2), (0.2, 0.4), (0.4, 0.6), (0.6, 0.8), (0.8, 1), (1, 2), (2, 3), (3,
4), (4, 5), (5, 10), (10, 20), (20, 30), (30, 40) and (40, 50%).

Functional annotation of variants
We used Variant Effect Predictor41 version 84 to annotate the confidently
imputed variants in the 20 345 protein-coding genes in the Ensembl database
(with Gencode v19 on GRCh37).

RESULTS

Using high-coverage WGS data of 2244 Estonian individuals from
the Estonian Biobank,42 we created a population-specific IRP. After
variant calling and rigorous quality control steps (Materials and
Methods), we phased the Estonian WGS data and used the resulting
Estonian IRP (referred to here as the EGCUT IRP, for the Estonian
Genome Center at University of Tartu), together with the 1000G and
HRC IRP, to impute genotypes into 6394 Estonians who had been
genotyped on microarrays.

Phasing speed and accuracy of multi-threaded haplotype phasing
Haplotype phasing can be a time-consuming process, especially
for large WGS-based data sets. We therefore began by evaluating
haplotype-phasing algorithms. We compared three different
parallel, multi-threaded computational programmes—SHAPEIT2,36

SHAPEIT2-RA (for read-aware)39 and Eagle2(refs. 37,38) —utilised with

different number of processor cores (1, 2, 4, 8, 16, 24 and 32)
(Supplementary Figure 1A). These programmes were applied to data
from chromosome 20 in the EGCUT samples. Accuracy was assessed
by counting the number of haplotype switch errors (Materials
and Methods) in four families, for which haplotype phase could be
independently determined based on segregation of genetic markers.
While the speed of both SHAPEIT2 and SHAPEIT2-RA increased in

proportion to the number of cores used, the speed of Eagle2 increased
proportionally up to eight cores but not beyond. Up to this point,
Eagle2 was considerably faster than SHAPEIT2, by a factor of roughly
6-fold. The two versions of SHAPEIT2 showed similar accuracy, which
was slightly lower for Eagle2 (average haplotype switch error rate of
0.7% with SHAPEIT2 vs 0.81% with Eagle2; Table 1). In all cases, the
accuracy did not vary significantly with the number of cores used. To
validate that these results were not population-specific, we performed
similar analyses with four 1000G family trios (with 1, 8 and 32 cores)
and observed similar switch error rates in the corresponding phasing
results (Supplementary Table 1). While in our hands, SHAPEIT2
displayed slightly higher accuracy, it did so at the cost of increased
computing time, making Eagle2 a viable option for the researchers
who require time-efficient phasing of large data sets. However, because
the 1000G and HRC IRPs were phased with SHAPEIT, we used this
program computer program to phase the EGCUT data (Materials and
Methods).

Genotype imputation
To impute genotypes into 6394 Estonian individuals who had been
genotyped on Illumina HumanCoreExome microarrays, we used the
IMPUTE2 software43,44 together with three separate IRPs and two
combinations of IRPs (Table 2). The first IRP consisted of the 2244
whole-genome sequenced EGCUT individuals; these individuals were
selected to be geographically distributed across Estonia and did not
overlap with the set of genotyped individuals. The other two were

Table 1 Phasing speed and accuracy to phase chromosome 20 of the EGCUT WGS data

SHAPEIT2 SHAPEIT2 read-aware Eagle2
No of cores % of switch errors (no of errors) Time (h) % of switch errors (no of errors) Timea (h) % of switch errors (no of errors) Time (h)

1 0.72 (257) 179 0.70 (246) 293 (169) 0.81 (291) 29

2 0.71 (255) 98 0.71 (248) 216 (92) 0.81 (291) 15

4 0.70 (250) 51 0.70 (247) 174 (50) 0.81 (291) 8

8 0.71 (254) 28 0.71 (248) 150 (26) 0.81 (291) 5

16 0.71 (254) 16 0.70 (245) 139 (15) 0.81 (291) 5

24 0.70 (251) 12 0.71 (249) 136 (12) 0.81 (291) 10

32 0.70 (253) 11 0.69 (244) 135 (11) 0.81 (291) 9

Abbreviations: EGCUT, Estonian Genome Center, University of Tartu; PIR, phase informative read.
Phasing errors (measured as percentage and count of switch errors out of 35 780 haplotype switches) and running times for different number of processor cores (1, 2, 4, 8, 16, 24 and 32)
aTotal running time, including the extraction of PIRs from the raw sequencing data (BAM files). Haplotype-phasing time (without PIR extraction) is given in parenthesis.

Table 2 Description of compared IRPs

IRP 1000G HRC EGCUT EGCUT + 1000G 1000G + EGCUT

Description 26 cohorts worldwide 20 cohorts of mostly European ancestry Estonian diversity panel 1+26 cohorts worldwide 26+1 cohorts worldwide

Average sequencing coverage 7.4× 4–8× 29.8× 29.8× 7.4×

MAC filter MAC≥1 MAC≥5 MAC≥3 MAC≥1 MAC≥1

No of haplotypes 5008 64976 4488 9496 9496

No of autosomal SNVs 81 027 987 39 235 157 16 536 512 16 536 512 81 027 987

Abbreviations: HRC, Haplotype Reference Consortium; IRP, imputation reference panel; SNV, single-nucleotide variant.
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1000G IRP and the HRC IRP from large diverse populations. The
IMPUTE2 software also allows to improve imputation accuracy by
using two reference panels simultaneously by pooling haplotype
information across both IRPs.40 We used both combinations of the
EGCUT and 1000G panels with that option: EGCUT+1000G and
1000G+EGCUT. In such combinations, IMPUTE2 imputes only
genotypes for variants that are present in the first (main) IRP while
also considering haplotype information from the second IRP to
improve the imputation accuracy through larger set of reference
haplotypes. Thus, EGCUT+1000G should be viewed as an improve-
ment of the EGCUT reference panel (genotypes observed in the
EGCUT panel imputed while considering haplotypes inferred from the
EGCUT and 1000G panels) and 1000G+EGCUT should be considered
as an improvement of the 1000G panel (genotypes observed in the
1000G panel imputed while considering haplotypes inferred from both
panels).

Number of imputed variants
For each IRP, we studied the number of imputed single-nucleotide
variants (SNVs) as a function of the imputation confidence estimate—
INFO-value—assigned by the IMPUTE2 programme. The INFO-value
reflects the information in imputed genotypes relative to the informa-
tion if only the allele frequency were known.43,44 We counted the
total number of imputed SNVs, the number of ‘well-imputed’ SNVs
(INFO40.4)18 and the number of ‘confidently imputed’ SNVs
(INFO40.8). We also counted the number of imputed SNVs found
only with each IRP (Figure 1a).
Although the number of total variants and well-imputed variants

obtained with the larger diverse panels (1000G and HCR) exceeded
the corresponding numbers for the population-specific panel, the
situation was reversed for confidently imputed SNVs with 12.29 M
(75% of total number of imputed SNVs), 10.05 M (48%) and 9.44 M
(27%) of SNVs being confidently imputed with the EGCUT, HRC and
1000G panel, respectively (Figure 1b). The combined EGCUT+1000G
panel showed almost identical results to EGCUT panel alone, whereas
the 1000G+EGCUT panel showed considerable increase in the
number of confidently imputed SNVs (by considering additional
haplotype information from the population-specific IRP) as compared
to the 1000G panel alone. These results indicate that using a
population-specific IRP increases the number of confidently imputed
variants, due to more similar allele frequencies and greater relatedness
between the samples and the IRP. More diverse IRPs have a tendency

to employ incorrect allele frequency distribution and also to contain
divergent haplotypes, which are not present in the samples (eg.,
African haplotypes carrying variants that are not polymorphic in non-
African populations).
We next stratified these analyses according to the MAFs of the

imputed SNVs, dividing them into three groups: common (MAF≥
5%), low-frequency (0.5≤MAFo5%) and rare (MAFo0.5%) SNVs.
For common variants, the number of imputed SNVs was very similar
across the IRPs (Figure 2). For low-frequency variants, the number of
well-imputed SNVs was also very similar, whereas the number of
confidently imputed SNVs was larger for the population-specific IRP.
For rare variants, the results were even more pronounced, 3.48 M
(54% of well-imputed rare variants), 2.54 M (33%) and 1.86M (15%)
SNVs were imputed confidently from the EGCUT, HRC and 1000G
panels, respectively (Figure 2b,Supplementary Table 2). Notably, the
EGCUT panel outperformed the other panels on rare variants despite
the fact that the HRC panel contains the largest number of haplotypes
(64 976) and the 1000G panel contains the largest number of variants
(81 M SNVs on autosomes).
These results show that imputation confidence (measured as

INFO-value) decreases substantially as the allele frequency of the
imputed variants declines (Supplementary Figure 2). Despite the fact
that the larger and more diverse IRPs contained more variants,
they contained fewer matching haplotypes than the population-
specific panel. As a result, the HRC and 1000G panels yielded
genotypes imputed with lower confidence (INFO-value), especially
for rare SNVs (Supplementary Figure 3). For the combinations of
reference panels, the EGCUT+1000G showed almost identical results
in every aspect compared to EGCUT panel alone, while the 1000G
+EGCUT panel showed a slight gain for common and low-frequency
variants and a substantial gain for rare variants when compared to
1000G panel alone (Figure 2).

Imputation of loss-of-function and missense variants
Loss-of-function (LoF) variants that disrupt protein-coding genes and
missense variants that cause amino acid changes are of particular
interest because they are potentially clinically relevant. Considering
only confidently imputed SNVs (INFO40.8), we observed that all
three reference panels enabled imputation of a similar number of
common LoF and missense variants (Figure 3). However, the number
of low-frequency LoF variants was higher with the population-specific
IRP and the number of rare LoFs was almost twice as high (417, 439

Figure 1 Number of variants imputed from different IRPs. (a) Number of all shared and panel-specific variants in three distinct reference panels imputed
with INFO-value 40.4 (in bold) and 40.8 (given in brackets); (b) Total number of imputed SNVs (bars); the number of SNVs imputed with imputation
quality score (INFO-value)40.4 (coloured) and INFO40.8 (shaded areas).
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and 730 LoF SNVs with the 1000G, HRC and EGCUT, respectively;
Supplementary Table 3) with the population-specific IRP.

Imputation sensitivity and accuracy
Although imputation confidence estimates (such as INFO-values or
squared correlations r2)45,46 are useful for characterising the overall
success of the imputation process, high INFO or r2 values do not
guarantee that the corresponding genotypes are inferred correctly.
Therefore, it is important to directly assess the accuracy of the
imputed genotypes. We compared the ‘best guess’ genotypes imputed
from the different reference panels to WES data available for a subset
of imputed EGCUT individuals (N= 505; Supplementary Figure 1B).
Treating these WES-based genotype calls as ‘gold standard’, we
calculated two metrics for each imputed data set: (i) sensitivity,
defined as the proportion of WES-based non-reference (NR) variant
calls that were also obtained through imputation process; and
(ii) discordancy rate, defined as the proportion of imputed SNVs that
had incorrect genotype call.

For well-imputed common SNVs, all of the IRPs gave similarly high
sensitivity (88.5–92.4%) (Figure 4a). For low-frequency SNVs, the
three panels that included data from the population-specific panel
(EGCUT, EGCUT+1000G, and 1000G+EGCUT) yielded in higher
sensitivity (~87%) than the more diverse panels (78% and 76%
for HRC and 1000G, respectively) (Table 3). For rare SNVs, the
proportional difference was even greater (40%, 42% and 49% for
1000G, HRC and EGCUT IRPs, respectively).
Similarly, the population-specific IRP performed better with respect

to discordancy rate (Figure 4b). Whereas all three panels had a low
discordancy rate for common variants (1.9–3.4%), the EGCUT panel
outperformed other panels for low-frequency and rare SNVs
(Table 3). Notably, one-quarter (24.7%) of rare SNVs imputed from
the 1000G IRP had incorrect genotype calls, whereas the proportion
was substantially lower with the EGCUT IRP alone (14.1%) or if it was
used in combination with the 1000G panel (13.6% and 14.3% for the
EGCUT+1000G and 1000G+EGCUT panels, respectively). Similar
results were seen for confidently imputed variants, for which both

Figure 2 Number of common (MAF≥5%), low-frequency (0.5≤MAFo5%) and rare (MAFo0.5%) variants imputed from different IRPs. (a) Number of well-
imputed SNVs (imputed with imputation confidence INFO40.4); and (b) number of confidently imputed SNVs (imputed with imputation confidence
INFO40.8).

Figure 3 Number of common (MAF≥5%), low-frequency (0.5≤MAFo5%) and rare (MAFo0.5%) LoF (a) and missense (b) variants imputed from different
IRPs with INFO-value40.4 (bars) and INFO-value40.8 (shaded areas).
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sensitivity and discordancy rate were better in case of the population-
specific reference panel (Supplementary Figure 4, Supplementary
Table 4). The better performance is due to a close match between
the EGCUT IRP and Estonian samples—owing to the fact that rare
variants tend to be more recent and thus more population specific.
We repeated these analyses of imputation accuracy by using finer

bins of MAF (Supplementary Figures 5–9). We found that although
the overall success of genotype imputation of well-imputed variants
decreased steadily with MAF in case of all compared IRPs, imputation
accuracy was, especially for rare variants, significantly better in case
of the population-specific IRP (Supplementary Figure 7) or if it
was used together with the 1000G reference panel (Supplementary
Figures 8 and 9).

DISCUSSION

Genotype imputation is a cost-efficient way to improve the power
and resolution of GWA studies. Although large IRPs from diverse
populations work reasonably well for imputation of common and low-
frequency variants, currently available reference panels allow only
limited imputation of rare variants.
WGS has become increasingly widespread in recent years and is

increasingly used in creating IRPs. The first step in the process of

creating an IRP is the correct assignment of polymorphic positions
regarding the individual haplotypes. Although the task can be
computationally demanding for large data sets, the advent of various
phasing algorithms has simplified this task considerably. We compared
the performance of the SHAPEIT2 and Eagle2 software, both of which
can increase the phasing speed by dividing the phased reference data
set into multiple subsets, which are then processed in parallel.
Similarly to previously published comparison,38 we found that Eagle2
was considerably faster than SHAPEIT2. However, the decrease in
phasing time resulted in a small increase in haplotype switch errors,
making SHAPEIT2 a better choice for those aiming at the highest
accuracy. Interestingly, we did not observe a difference in phasing
accuracy between SHAPEIT2 and SHAPEIT2’s read-aware mode. It is
possible that this was due relatively homogeneous nature of our
Estonian samples and that the SHAPEIT2 read-aware mode may
exhibit advantages for more heterogeneous data sets.
Consistent with previous studies, our results show that population-

specific IRPs can improve the genotype imputation, especially for
low-frequency and rare variants.21–24 By being genuinely reflective of
the study data set, population-specific IRPs can therefore facilitate
discovery of true associations in GWAS and subsequent fine-mapping

Figure 4 Imputation accuracy for common (MAF≥5%), low-frequency (0.5≤MAFo5%) and rare (MAFo0.5%) well-imputed variants (INFO40.4) imputed
from different IRPs. (a) Non-reference (NR) sensitivity—proportion of whole-exome sequencing (WES) based NR variant calls that were also retrieved through
imputation process. (b) NR discordancy rate—proportion of NR variants that were retrieved through imputation process but had incorrect genotype calls as
compared to the WES genotypes.

Table 3 Genotype concordance of well-imputed SNVs (INFO40.4)

Non-reference sensitivity and discordancy rate (number of NR genotypes analysed, in millions)

MAF 5% MAF 0.5–5% MAFo0.5%

Reference panel Sensitivity Discordancy rate Sensitivity Discordancy rate Sensitivity Discordancy rate

1000G 88.5% (24.3) 3.4% (22.0) 75.9% (2.4) 14.0% (2.1) 39.9% (0.7) 24.7% (0.4)

HRC 89.4% (24.1) 2.1% (21.9) 77.8% (2.4) 8.2% (2.0) 41.9% (0.7) 17.0% (0.4)

EGCUT 91.4% (24.3) 1.9% (22.5) 87.2% (2.4) 6.1% (2.2) 48.6% (0.7) 14.1% (0.4)

EGCUT+1000G 91.5% (24.3) 2.1% (22.6) 87.2% (2.4) 6.3% (2.2) 49.0% (0.7) 13.6% (0.4)

1000G+EGCUT 92.4% (24.3) 2.2% (22.8) 87.1% (2.4) 6.5% (2.2) 49.9% (0.7) 14.3% (0.4)

Abbreviations: EGCUT, Estonian Genome Center, University of Tartu; HRC, Haplotype Reference Consortium; IRP, imputation reference panel; MAF, minor allele frequency; NR, non-reference; SNV,
single-nucleotide variant; WES, whole-exome sequencing.
The ‘best guess’ genotype calls obtained with different IRPs were compared to the WES data while treating the WES-based genotype calls as ‘gold standard’. Imputation sensitivity—proportion of
WES-based non-reference variant calls that were also obtained through imputation process—and discordancy rate (proportion of NR variant calls that were obtained through imputation process but
which had incorrect genotype calls) were calculated.
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of causal variants, as demonstrated by others24,47,48 and also with the
Estonian population-specific reference panel.49

Although the large IRPs from more diverse populations led to the
imputation of a larger number of rare SNVs, a large proportion
of these genotypes were imputed with low imputation confidence
(IMPUTE2 INFO-value). Focusing only on confidently imputed
SNVs, the population-specific IRP outperformed the 1000G and
HRC IRPs. Although the overall imputation success and accuracy
depend on several different factors (including the size of the IRP and
the genetic structure of the reference panel and the genotyped sample),
these observations are expected to apply to other populations with
similar genetic background.
Beyond imputation quality, we also considered sensitivity and

discrepancy rate of the imputed genotypes. We found that the
population-specific IRP outperformed the large IRPs from diverse
populations—a finding that is also in line with other recent imputa-
tion accuracy comparisons.50 Using a large IRP that is not well
matched in terms of ancestry can thus not only limit the discovery of
associations in GWAS as observed previously24 but also introduce
variants that are not actually polymorphic in the imputed sample.50

Because short insertion-deletion (indel) variants were not part of
the HRC IRP and because calling indel variants is still more error-
prone than SNV calling, we did not include indels in our IRP and our
comparisons. Once technical limitations related to indel calling and
phasing are resolved, indels should be included in all IRPs.
In conclusion, we observe that, although currently publicly acces-

sible large diverse IRPs like 1000G and HRC enable imputation of
many low-frequency and rare variants in the Estonian population,
most of these variants are imputed with relatively low confidence and
furthermore, there is a significant proportion of population-specific
variation that cannot be imputed from these panels. Moreover,
imputation of low-frequency and rare variants is considerably more
accurate with a population-specific reference panel or if one is used in
combination with a publicly available reference such as the 1000G
panel. Our results also suggest that, given that the population-specific
reference panel size (number of haplotypes) is comparable to the
1000G panel size, the previous observations that reference sample size
is more important than precise population matching does not apply
equally well to all populations and population-specific panels can
outperform even an order of magnitude larger but more diverse
reference panels.
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