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Backgrounds: Functional liver imaging can identify functional liver distribution
heterogeneity and integrate it into radiotherapy planning. The feasibility and clinical
benefit of functional liver-sparing radiotherapy planning are currently unknown.

Methods: A comprehensive search of several primary databases was performed to
identify studies that met the inclusion criteria. The primary objective of this study was to
evaluate the dosimetric and clinical benefits of functional liver-sparing planning
radiotherapy. Secondary objectives were to assess the ability of functional imaging to
predict the risk of radiation-induced liver toxicity (RILT), and the dose-response
relationship after radiotherapy.

Results: A total of 20 publications were enrolled in descriptive tables and meta-analysis.
The meta-analysis found that mean functional liver dose (f-MLD) was reduced by 1.0 Gy
[95%CI: (-0.13, 2.13)], standard mean differences (SMD) of functional liver volume receiving
≥20 Gy (fV20) decreased by 0.25 [95%CI: (-0.14, 0.65)] when planning was optimized to
sparing functional liver (P >0.05). Seven clinical prospective studies reported functional liver-
sparing planning-guided radiotherapy leads to a low incidence of RILD, and the single rate
meta-analysis showed that the RILD (defined as CTP score increase ≥2) incidence was 0.04
[95%CI: (0.00, 0.11), P <0.05]. Four studies showed that functional liver imaging had a
higher value to predict RILT than conventional anatomical CT. Four studies established
dose-response relationships in functional liver imaging after radiotherapy.

Conclusion: Although functional imaging modalities and definitions are heterogeneous
between studies, but incorporation into radiotherapy procedures for liver cancer patients
may provide clinical benefits. Further validation in randomized clinical trials will be required
in the future.

Keywords: liver neoplasms, functional liver imaging, radiotherapy, dose-response, radiation-induced liver
toxicity (RILT)
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the fifth most common cancer
and the third most common cause of cancer-related death globally,
and its incidence is increasing year by year (1, 2). Moreover, the liver
is the most common site of metastasis for other primary cancers (3).
The liver was considered a contraindication to radiotherapy in the
past because the radiation dose could not be safely delivered to the
whole liver and could lead to acute radiation-induced liver toxicity
(RILT) and even death (1, 4). Although, stereotactic body
radiotherapy (SBRT) can provide a highly conformal dose of
intense radiation to tumors while minimizing damage to organs
at risk (OARs) and has become an effective treatment for liver
tumors with excellent local control rates of 80% to 90% (5).
However, RILT was a complex condition with a wide range of
clinical symptoms ranging from an asymptomatic elevation of liver
enzymes to liver failure and death, with an G3+ incidence of 5% to
36% in SBRT patients, limiting the implementation of high-dose
radiotherapy (4–7). This risk was further increased by several pre-
existing factors in the liver parenchyma, including hepatitis B virus
and hepatitis C virus infection and cirrhosis (5). Until now, there
was no specific treatment for RILT (4).

HCC patients have significant heterogeneity in liver function,
which may be the result of organ structure, disease, or previous
treatment injuries (8). The clinical liver function assessment was
usually graded using Child-Turcotte-Pugh (CTP) tools, but it can
be influenced easily by clinician’s subjective and other confusing
factors (9). The further problem was that the widely used dose-
volume constraint of the normal liver relies on anatomical CT
imaging (which provides morphological information) and fails to
consider liver function inhomogeneities in planning (5, 9).

Currently, functional liver imaging modalities include dual-
energy CT, Magnetic Resonance Imaging (MRI), Single-Photon
Emission Computed Tomography (SPECT), and Positron
Emission Tomography (PET), all of which can provide
quantitative visualization of liver function distribution. Integrate
liver function 3-dimensional distribution information into
planning for optimization (such as changing beams direction) to
safely deliver a higher dose and minimize the ‘best functional’ (i.e.,
functional liver) liver dose (8, 10). Functional liver imaging
complements anatomical CT imaging and provides insight into
RILT beyond the existing anatomy-based dose-volume predictive
model. Though functional imaging studies have shown a higher
value in predicting radiation-induced lung injury than anatomical
CT planning parameters (e.g., functional lung mean dose greater
than lung mean dose), but its value in predicting RILT was
unknown (11). In addition, there was no clear consensus on
functional liver imaging modalities, functional liver definition,
and functional planning optimization. Therefore, this systematic
review was focused on evaluating the potential utility value of
functional liver imaging in liver cancer radiotherapy.
MATERIALS AND METHODS

The systematic review was performed using structured search terms
following the PRISMA guidelines (12). Our research questions
Frontiers in Oncology | www.frontiersin.org 2
regarding patients, interventions, comparisons, outcomes, and
study design (PICOS) methods are described in Supplemental A
(Table 1). This systematic review and meta-analysis had been pre-
registered on the PROSPERO (CRD42021257779).

Search Strategy
We performed a systematic literature search in five electronic
databases on April 10, 2021: PubMed, Embase, Cochrane,
Sinomed, Chinese National Knowledge Infrastructure (CNKI).
All eligible literature with a publication date between 1990 and
search date was included. In PubMed and Embase databases, the
search strategies of combining subject headings and free text
words were adopted. The following subject headings searches
were used: “Liver Neoplasms” AND “Radiotherapy”. All the
‘Entry Terms’ of the subject headings were used as free text
words. These were finally combined with key words “functional
liver”, “liver function”, or “functioning liver”. Searches in
Embase database adopted a similar principle and were adjusted
according to the database’s thesaurus. While in the Cochrane
database, subject headings combined with keywords were used.
The keywords search strategy was used in two Chinese databases.
A manual secondary search of the reference list uncovered an
additional 18 studies. There were no restrictions on language.
The complete search strategy for each database was available in
Supplemental B.

Study Selection
The following study inclusion criteria were followed: (i)
Functional liver imaging utilized in external radiotherapy for
patients with liver cancer; (ii) Comparison of the differences in
dose-volume parameters (DVP) between the functional liver
sparing and the anatomical CT radiotherapy planning; or (iii)
Investigate the ability or parameters of functional liver imaging
to predict RILD (radiation-induced liver disease, defined as CTP
score increase ≥2), and the dose-response relationship; or (iv)
Exploring liver cancer patients’ RILD rate after delivery of
functional liver protection planning-guided radiotherapy.

Editorials, letters, reviews, and case reports were excluded.
When several publications on the same topic existed
simultaneously from the same research team, the article with
the wealthiest data or the latest publication was chosen. The
number of patients included in each study was not less than five.
Mean ± standard deviation (SD) or median (range) of the
planning parameters that cannot be obtained were excluded
from the meta-analysis.

Data Collection
Data were extracted independently from each article by two
reviewers and recorded in a prepared data collection form. Any
differences between the extracted data from the two were
resolved by negotiation or by a third reviewer.

Data collected included: first author, year of publication,
study type, functional liver imaging modality, patient
characteristics, number of patients, the definition of the
functional liver, functional liver imaging technology
parameters, information of radiotherapy planning, assessment
of the dose-response relationship, the association between the
June 2022 | Volume 12 | Article 898435
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functional liver dosimetric and clinical outcomes (RILT,
prognosis). The dosimetric (fV20: functional liver volume
receiving ≥20 Gy; f-MLD: mean functional liver dose) were
collected from comparative studies of functional liver sparing
and anatomical CT planning. Two reviewers evaluated literature
(non-randomized controlled trials) quality using the Newcastle–
Ottawa scale (NOS), and a score of seven or higher was
considered a high-quality study. Differences were resolved
through negotiation or by a third reviewer.

Meta-Analysis
Meta-analysis was performed for the differences in f-MLD and
fV20 between conventional anatomical and functional planning.
Not all studies provide mean ± SD, and if raw data are not
available, but median values and confidence intervals are
provided, then the method described can be used to calculate
(13). Some studies only provided the mean value without SD or
only the difference between anatomical and functional planning,
so these studies were also excluded.

Meta-analysis and corresponding plots were performed using
the statistical software - Review Manager (RevMan) Version 5.4
(The Cochrane Collaboration, 2020) or Stata 16.0. Heterogeneity
was assessed using the I2 statistic (I2 >50%, showed significant
heterogeneity). Random-effects models were more applicable to
mitigate heterogeneity than fixed-effects models, so random-
effect model was selected for meta-analysis. We evaluated
publication bias using funnel plots and Egger’s test checked
(when the number of studies included in meta-analysis was ≥
10, P value < 0.05 considered significant). Sensitivity analysis was
performed by exclude studies one-by-one.
RESULTS

A total of 66 publications were enrolled in the full-text
assessments. Forty-seven publications met the inclusion criteria
for descriptive analysis (Figure 1). Twenty-seven of them were
excluded because they were case reports, number of patients less
than five, had no available information or had already included
the latest or most informative publication of the same research
team (14–40). Finally, the remaining twenty articles met the
meta-analysis or descriptive tables (3, 5, 6, 9, 10, 41–55).

Nine functional liver imaging studies met inclusion criteria
for comparison of functional liver and conventional anatomical
planning dosimetric (3, 5, 41–44, 49, 50, 55) (Table 1). Almost all
studies showed statistically significant decrease of functional liver
dose in the functional liver-sparing planning compared to the
conventional anatomical planning, without significant change in
the target consistency index (CI), homogeneity index (HI), or
OARs dose. Some studies reported that f-MLD and fV20 were
associated with the collected data endpoints (RILD), and had
sufficient published data available for meta-analysis. According
to the NOS score, all studies were of high quality, and the
evaluation details are shown in Supplemental A (Table 2).

Eight publications were selected for f-MLD meta-analysis (3,
41–44, 49, 50, 56). Two articles used different thresholds to
Frontiers in Oncology | www.frontiersin.org 3
defined functional liver, and compared dose differences
between functional liver-sparing and conventional anatomical
planning (41, 50). Some studies were not included in the meta-
analysis because they were incomplete (only mean value or
percentage difference), and raw data were unavailable (44, 49,
53). When only one threshold was included from each study
(the threshold which showed the maximum difference between
conventional and functional liver-sparing planning), the f-
MLD was decreased by: 1.0 Gy [95%CI: (-0.13, 2.13), I2 =
0%] between functional liver-sparing and conventional
anatomical planning (Figure 2A). Sensitivity analysis found
the result was robust, and no significant publication bias was
identified by visual observation from the funnel plot
(Supplemental A Figure 1). Four papers were eligible for
fV20 meta-analysis (3, 5, 42, 55). The SMD was used because
the fV20 value in these four studies were expressed in different
forms (cc, cm3 and percentage). The fV20 SMD was decreased
by: [0.25, 95%CI:(-0.14, 0.65), I2 = 0%] between functional liver-
sparing and conventional anatomical planning (Figure 2B).
Currently, there were significant statistical difference in f-MLD
and fV20 between functional liver-sparing and conventional
anatomical planning (P >0.05).

Four of the studies showed that functional liver imaging was
statistically significant in predicting the endpoint of RILT, while
no correlation was found with anatomic planning (9, 44, 53, 54)
(Table 2). Although the endpoints used to evaluate RILD were
inconsistent across studies. Seven studies evaluated RILT after
functional liver-sparing planning-guided radiotherapy, six of
which were prospective and one retrospective (6, 44, 48, 51–53,
55) (Table 2B). A total of 180 patients were included, 111 had a
baseline CTP score A, and the rest had score B or higher (55
patients), and one publication did not describe baseline liver
function. Altogether, thirteen participants were described to have
developed RILD. Logan et al. (48) showed that patients who
developed RILD had poorer baseline liver function (both CTP B/
C). The single rate meta-analysis of the incidence of RILD in the
included studies showed an incidence of 0.04 [95%CI: (0.00,
0.11), I2 = 58.5%, P <0.05] when functional liver-sparing
planning-guided radiotherapy (after double-arcsine
transformations) (Figure 3). And three studies described
correlations between functional liver imaging and prognosis,
two of which demonstrated the functional liver dose-volume
parameters to predict prognosis (9, 47).

Four publications described the dose-response relationship
between radiation dose received and liver function decline (6, 10,
45, 46) (Table 3). Three studies used linear models (6, 10, 46),
and another study had a sigmoid-shaped dose-response curve.
Changes in liver function with dose were similar across the four
studies, despite differences in population heterogeneity,
radiotherapy techniques, prescription dose, time points, and
dose-response model parameters.

The most frequently utilized functional liver imaging
technique in included literature was SPECT (tracer: 99mTc-Sc,
99mTc- HIDA or 99mTc-GSA) with 14 publications, followed by
MRI (Gd-EOB-DTPA) with four papers, PET (18F-FDG) with
two studies, and dual-energy CT (Iodine) with one literature.
June 2022 | Volume 12 | Article 898435
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Thirteen studies provided functional liver imaging scans
parameters. Many studies used one or more methods to
suppress the effect of breathing motion in both the accuracy of
liver tumor volume measurements and image registration (e.g.,
end-exhale CT, four-dimensional CT, abdominal compression,
breathing-hold, or Calypso-guide gating). Several registration
systems or toolkits were mentioned in the literature. For
instance, Smartadapt/MIM software, Velocity software, insight
segmentation, and registration toolkit (Supplemental
A Table 3).
Frontiers in Oncology | www.frontiersin.org 4
DISCUSSION

The current evaluation of the liver radiotherapy planning was
based on the assumption of uniform and consistent liver
function. Although with the advancement of radiotherapy
technology, the dose distribution in the target area has been
improved, and radiation dose to surrounding OARs has been
reduced. However, there are still a minority of liver cancer
radiotherapy patients who will have a significant RILT, leading
to treatment interruption or even death by acute liver failure.
FIGURE 1 | The flow diagram illustrates the screening and evaluation process (adapted from the PRISMA guidelines).
June 2022 | Volume 12 | Article 898435
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However, previous studies have shown that functional liver
imaging can identify the distribution of liver function and
could be integrate it into radiotherapy planning to protect the
higher-functioning liver volumes. That is the first systematic
review and meta-analysis of functional liver imaging in
radiotherapy for liver cancer. Meta-analysis indicated that
functional liver preservation radiotherapy planning could
potentially reduce f-MLD and fV20, but no statistical
significance. Because some studies were abandoned before
meta-analysis due to incomplete data, so future functional
liver-sparing comparative planning studies should clearly state
the primary functional liver mean doses differences (± SD). Dose
constraints regimens and parameters optimization settings also
should be clearly provided for functional liver-sparing and
Frontiers in Oncology | www.frontiersin.org 5
conventional anatomical planning to guarantee consistency.
However, the single rate meta-analysis of the incidence of
RILD with functional liver-sparing planning-guided
radiotherapy showed that the incidence of RILD was only 4%,
which was lower than previously reported for the conventional
anatomical planning radiotherapy.

The maximum clinical significance of functional liver imaging
planning was to reduce the incidence of RILT without reducing
overall survival. In the included literature, studies showed that
functional liver dose-volume parameters (e.g., fV20) helped
predict the occurrence of RILT. In clinical, it was a challenge
to improve the survival rate, and reduce the incidence of RILT of
HCC patients with first portal vein tumor thrombus (PVTT).
However, Shirai et al. (18) showed that no RILD occurred in
TABLE 1 | Provides detailed descriptions of each study, including patients’ information, functional imaging/planning technique utilized, functional liver definition and key
findings.

Reference Patients ReferenceTypes Characteristics Technology,contrast
agent,RT technique

Definition FL Benefit of FL sparing
(% difference between means)

Comparing
planning
quality

Ohira et al.
(2020)
(3)

10 (15) Article HCC 86%
GTV: NS
36.8-65Gy

DECT (Iodine)
VMAT (SBRT)

NID<0.46 *f-MLD ↓ 1.9 Gy
*fV5 ↓ 58.7 cc, 53.8 cc, 27.2 cc,
13.3 cc

No SS change
CI, SS HI ↑;
No SS change
to OARs

Toya et al.
(2019)
(5)

11 Article HCC 100%
PTV: 42.9 cm3
(M)
50Gy

SPECT/CT (99mTc-
GSA)
VMAT (SBRT)

60%-80% of max *fV5-20 ↓ 1.5%, 2.1%, 1.4%,
0.7%

No SS
difference CI, HI;
No SS change
to OARs

Furukawa
et al.
(2020)
(41)

10 Article HCC 100%
GTV: NS
40-50Gy

SPECT (99mTc-HIDA)
SBRT

25%-100% max;
50%-100% max

*f-MLD↓ 2Gy/3Gy;
*fVD<15Gy ↓ 50%/41.9%

No SS
difference CI;
Dose to OARs
NS

Tsegmed
et al.
(2017)
(42)

20 Article HCC 100%
PTV: 16.2 cm3
48Gy

MRI (Gd-EOB)
IMRT (SBRT)

HBP L/S ≥1.5 *f-MLD ↓ 0.5 Gy
*fV5-20 ↓ 3%, 3%, 1.9%, 0.7%

SS CI ↑;
No SS change
to OARs

Bowen
et al.
(2015)
(43)

10 Article HCC 100%
GTV: (M) 88 cm3

37.5-60Gy

SPECT/CT (99mTc-Sc)
VMAT/PBS

43%-90% of L/S max *f-MLD ↓ 20% Dose to PTV or
OARs NS

Long et al.
(2018)
(44)

17 Article HCC: 100%
GTV: 29.5cc
27.5-50Gy

SPECT (99mTc-HIDA)
SBRT

50%-100% of max *f-MLD ↓ 1.18 Gy
*fVD<15Gy ↑ 0.15%

No SS
difference CI;
Dose to OARs
NS

Simeth
et al.
(2018)
(49)

10 Conference HCC 100%
GTV: NS
55Gy

MRI (Gd-EOB)
-

36% to max *f-MLD ↓ 10.5% Dose to PTV or
OARs NS

Fode et al.
(2017)
(50)

7 Article 6 mCRC/1 IHC
CTV: 25.1cc (M)
45-56.25Gy

PET/CT(18F-FDG)
VMAT (SBRT)

10%/20%/30% volume
with the highest SUV

*f-MLD↓ 0.8/0.6/0.4 Gy;
fVD<15Gy ↑ 6%/4%/3%

No SS
difference CI;
Dose to OARs
NS

Lin et al.
(2019)
(55)

10 Article HCC 100%
PTV: 122.7 cm3
50-62Gy

MRI (Gd-EOB)
IMRT

T1WI, high signal area in
HBP (20min)

*f-MLD ↓ 0.54 Gy
*fV5-20 ↓ 0.41cm3,0.32cm3,
0.22 cm3, 0.14 cm3

No SS
difference CI
and HI;
No SS change
to OARs
June 2022 | Volume 12
Key: *, denotes statistically significant result; No., number; FL, functional liver; mCRC, metastatic colorectal cancer; IHC, intrahepatic cholangiocarcinoma; 18F-FDG, 2-[18F] fluoro-2-
deoxy-D-galactose; SUV, standard uptake values; f-MLD, functional liver volume mean dose; fVD<15Gy, volume of functional liver receiving less than 15 Gy; SS, statistically significant; CI,
conformity index; OARs, organs at risk; NS, non-specified; HCC, hepatocellular carcinoma; 99mTc-HIDA, technetium-99-mebrofenin (Tc99m) hepatobiliary iminodiacetic acid (HIDA);
99mTc-Sc, 99mTc-Sulphur colloid; PBS, proton pencil beam scanning; L/S, liver-to-spleen ratio; DECT, Dual-energy computed tomography; NID, normalized iodine density; fVx, functional
liver volume receiving ≥x Gy; HI, homogeneity index; MU, monitor unit; SC, spinal cord; PTV, planning target volume; Gd-EOB-DTPA, Gadolinium ethoxybenzyl diethylenetriamine
pentaacetic acid; HBP, hepatobiliary phase; T1WI, T1 weighted image. ↑, increase; ↓, decrease.
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patients with large hepatocellular carcinoma (greater than 14
cm) or combined PVTT who received the functional liver-
sparing planning-guided radiotherapy (38). In terms of
prognosis, Shirai et al. (18) showed that median overall
survival in HCC patients with PVTT treated with functional
liver-sparing planning-guided radiotherapy was comparable to
the previously reported PVTT radiotherapy combined with
transcatheter arterial chemoembolization or surgical
hepatectomy. At present, there is not enough data to establish
a probability model of normal tissue complications. Future
publications should provide sufficient information on the value
of functional liver dosimetric and anatomical liver dosimetric to
predict RILT, which can be used to guide the establishment of
functional liver-based dose limitations.

A similar dose-response relationship was observed on the
functional liver imaging after radiotherapy, which decreased with
the increase of radiation dose. Most of the publications evaluated
the time points for evaluation were about one month after RT
treatment, and only one was evaluated at three months. The
functional imaging modality used in all publications was nuclear
medicine imaging. Currently, there was not enough data to assess
the best functional liver imaging modalities.

The definition of the functional liver was inconsistent in
included publications (e.g., for SPECT, functional liver was
defined as the percentage of maximum liver radioactivity
counts (ranging from 10%, 20%, 30%, 50% to 100% max), the
ratio to heart or spleen radioactivity counts, etc.), and no clear
clinical evidence to guide the optimal definition. Furukawa et al.
(41) showed that functional liver defined as > 50% of max
radioactive counts with f-MLD decreased beyond >25% of
maximum in functional liver-sparing planning (in SPECT/CT).
Theoretically speaking, it was best to avoid radiation doses to
liver tissue other than the tumor, but this was impossible with
Frontiers in Oncology | www.frontiersin.org 6
current radiotherapy techniques. However, it was possible to
establish non-overlapping functional liver regions by defining
different thresholds so that the more functional liver tissue
should give more weight to protection without sacrificing
conformity of tumor target volume and other OARs.

In the systematic review, 20 studies utilized different
functional imaging techniques and radioactive tracers
(contrast agents), most of which used nuclear medicine
imaging. SPECT provides three-dimensional imaging of
indirect or direct liver function by injecting different
radiotracers. SPECT combined with low-resolution CT can
improve tissue contrast and the accuracy of local radioactivity
uptake estimation (47). The radioactive tracer 99mTc-HIDA is
transported to hepatocytes via albumin to be taken up by
organic anion transport protein (OATP1 B1/B3) and excreted
in the biliary system without bio-metabolic conversion (55, 56).
To exclude individual metabolic differences, divided by body
surface area (liver uptake rate %/min/m2), De Graaf et al. (56)
suggested the functional liver defined as 30% of the maximum
radioactivity count. 99mTc-GSA is binding specifically to the
desialic acid glycoprotein receptor expressed on hepatocytes,
and suggested defining voxels below 54% of the maximum
radioactivity count as background (56). 99mTc-Sc is taken up
by Kupffer cells of the hepatic reticuloendothelial system, and its
activity is closely related to liver function (43). PET/CT
functional imaging provides better spatial and temporal
resolution than SPECT (57). 18F-FDG is a radio-labeled
galactose analogue that is metabolized by intrahepatic
galactokinase and can be used to noninvasively quantify local
hepatic metabolic function and visualize metabolic
heterogeneity (50, 58). MRI-based functional imaging
seamlessly connects to clinical examinations workflow, has a
higher temporal and spatial resolution, and does not rely on
A

B

FIGURE 2 | Forest plot of the difference in dose-volume parameters of functional liver between the functional liver-sparing and conventional anatomical plans.
(A) f-MLD (functional liver mean dose); (B) fV20 (functional liver volume receiving ≥ 20 Gy).
June 2022 | Volume 12 | Article 898435
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ionizing radiation (59). Gd-EOB-DTPA, which is also
selectively taken up by functional hepatocytes via OATP1 B1/
B3, resulted in a significant shortening of T1 values in the
functional liver. This leads to advancing the signal peak on
T1WI to 20 min in the hepatobiliary phase in the functional
liver (55, 60). DECT uses two different X-ray photon energies to
Frontiers in Oncology | www.frontiersin.org 7
quantitatively measure iodine density in tissues, which with
high spatial resolution, high reproducibility, and low cost (3).

The modalities and acquisition parameters of functional liver
images will affect the reconstruction and registration with
anatomical CT images. Of the included publications, twelve
described the image registration methods, most of which used
TABLE 2 | Description of functional liver imaging correlating with clinical liver function, radiation-induced liver disease and prognosis.

a) Conventional anatomical planning radiotherapy

Reference Patients ReferenceType Characteristics Imaging type,
Plan technique,
Definition FL

Morbidity or correlation with CTP
(RILD) after RT

Prognosis

Schaub
et al.
(2018)
(9)

47 – HCC: 95.7%
GTV: 33.43cm3

(M)
CTP: 29A 18B/
C

SPECT/CT (99mTc-
Sc)
SBRT/PRT
>30% of max

11 RILD (CTP +2)
TLF and L/Smean (*CTP +2).

f-MLD/fV20 (*RILD-special survival,
AUC 0.74/0.78, cutoff 23Gy/36%)

Bowen
et al.
(2016)
(47)

30 – HCC 100%
GTV: 15 cm3 (M)
CTP 16A, 12B,
2C

SPECT/CT (99mTc-Sc)
-
20%-70 % of max

– TLF (cutoff >0.30) (*OS)

Nakamura
et al.
(2015)
(54)

30 – HCC 100%
CTP 26A, 4B

MRI (Gd-EOB)
SBRT

W-LSC (*CTP +2, AUC 0.83, cutoff 1.88) –

b) Functional liver protection planning-guided radiotherapy
Reference Patients Reference

Type
Characteristics Imaging type, Plan

technique, Definition
FL

Morbidity or correlation with CTP (RILD)
after RT

prognosis

Fode et al.
(2017)
(7)

14 (15) PO mCRC 100%
-

PET/CT (18F-FDG)
IMRT (SBRT)
10%-30% volume with
highest SUV

No G3+ acute morbidity (No RILD) Last follow-up (M 16.6 mo), 10
survived

Long et al.
(2018)
(44)

17 PO HCC: 100%
GTV: 29.5cc
CTP: 12A 5B

SPECT (99mTc-HIDA)
SBRT
50%-100% max

3 RILD (CTP +2, 6 mo);
10 patients developed decompensation
(*fVD<15Gy, AUC 0.929, cutoff < 2.915%/
min/m2)

–

Logan et al.
(2016)
(48)

10 PO HCC 100%
-
CTP: 5A, 5B

SPECT/CT (99mTc-Sc)
IMRT/PRT
20% to 50% of max

2 RILD (both CTP B8-9) OS (med) was 116 days;
FLV (*OS, SPECT thresholds of
30%, 35%, 40%, 43%, and 45% of
max)

Kudithipudi
et al.
(2017)
(51)

22 (39) PO HCC 100%
PTV: 293.0cm3

(M)
CTP: 14A, 8B

SPECT (99mTc-Sc)
SBRT/FSRT
Related body surface
area

No RILD
CTP score preservation rate 59% (1 year)

OS: 59% (2 years)

Hasan
et al.
(2016)
(52)

32 PO HCC 100%
CTP: 32A

SPECT (99mTc-Sc)
-

No RILD
73%/56% retained CTP A (1/2 years)

OS: 87%/63% (1/2 years)

Shirai et al.
(2015)
(53)

75 RO HCC with PVTT
GTV: 448.7cm3

(M)
CTP: 39A 36B/
C

SPECT (99mTc-GSA)
3D-CRT
Areas of uptake
exceeds tumor

8 RILD (CTP +2)
fV20 (*CTP +1 vs. +2, AUC 0.792, cutoff
26.4%)

1 year, 2 years, 5 years OS were
47.0%, 20.4%, 11.2%;

Lin et al.
(2019)
(55)

10 PO HCC 100%
PTV: 122.7 cm3

(M)
CTP: 9A 1B

MRI (Gd-EOB)
IMRT
T1, high signal area in
HBP (20min)

No RILD –
June
Key, *, functional liver imaging more predictive risk of CTP +1/RILD (CTP +2) or prognosis; PO, prospective; RO, retrospective; FL(V), function liver (volume); M, mean; Med, median; mo,
months; CTP, Child-Turcotte-Pugh; OS, overall survival; SS, statistically significantly; +2, score increase ≥2; G2+, grade ≥2+; HCC, hepatocellular carcinoma; GTV, gross target volume;
AUC, area under the curve; NS, non-specified; mCRC, metastatic colorectal cancer; 18F-FDG, 2-[18F] fluoro-2-deoxy-D-galactose; SUV, standard uptake values; 99mTc-Sc, 99mTc sulfur
colloid; TLF, FLV×L/Smean; L/Smean, liver-to-spleen uptake ratio; LM, liver metastases; f-MLD, functional liver volume mean dose; BBT, broad biochemical toxicity (defined as a 50%
increase in each of the 3 measured liver enzymes); PRT, proton radiotherapy; 99mTc-HIDA, technetium-99-mebrofenin (Tc99m) hepatobiliary iminodiacetic acid (HIDA); fVD<15Gy, volume of
functional liver receiving less than 15 Gy; fV20, functional liver volume receiving ≥20Gy; PVTT, portal vein tumor thrombus; 99mTc-GSA, Tc-99 m-galactosyl human serum albumin; Gd-
EOB-DTPA, Gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid; HBP, hepatobiliary phase; W-LSC, weighted liver-spleen ratio;
2022 | Volume 12 | Article 898435

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhou et al. Functional Liver Imaging in Radiotherapy
MIM software, Smartadapt software, Velocity software, and
insight segmentation and registration toolkit. The accuracy of
image registration was critical in which the registration error
between functional and anatomical CT images may lead to the
spared inaccuracy of functional liver volume. Fukumitsu et al.
(61) showed that for liver image registration, the performance of
MIM and Velocity was generally similar. Insight segmentation
and registration toolkit (ITK) was used to match image data, and
Frontiers in Oncology | www.frontiersin.org 8
the assessment results can be visualized and support different
matching tasks in a clinical setting (62).

There were also some limitations in our study. First,
published studies included in this review were in a small
number of patients cohort and heterogeneous (patients
characteristics, functional imaging modalities, radiotherapy
techniques). It might be that functional liver imaging is still in
the stage of clinical exploration and there are various treatment
FIGURE 3 | Forest plot of single rate mete-analysis in incidence of RILD for functional liver protection planning guided radiotherapy. (RILD, radiation-induced liver disease).
TABLE 3 | Description of dose–response relationship after radiotherapy.

Reference Study
Type

No. Characteristic Planning
technique

Imaging Type,contrast
agent

Time
points

Dose–response model and parameters

Fode et al.
(2017)
(6)

PO 14 Age: (M) 72
LM 100%
-

IMRT (SBRT)
45-60Gy

PET/CT
18F-FDG:100 (MBq)

1 month linear model
approximately -1.2% metabolic function per Gy, D50

of 22.9 Gy/3 F
Wang et al.
(2013)
(10)

PO 14 Age: 44-83
10 HCC, 3 CC,
1LM
-

SBRT (8) 33Gy
IMRT (3) 52Gy
3D-CRT 62Gy

SPECT
99mTc-HIDA (10 mCi)

1 month linear model
approximately -0.33% of HEF per Gy

Price et al.
(2018)
(45)

PO 15 -
HCC 100%

SBRT/PRT
NA

SPECT/CT
99mTc-Sc (-)

1 month Gompertz model
Maximum uptake median -0.11% per Gy, D50 13Gy.

De Bari
et al.
(2018)
(46)

PO 6 Age: (M) 69
3 LM and 3
HCC
PTV: 130 cc

SBRT 30 Gy SPECT/CT
99mTc-HIDA (200MBq)

3 months linear model
mean -0.78% of perfusion per Gy
Key, PO, prospective observational; M, mean; LM, liver metastases; HCC, hepatocellular carcinoma; 99mTc-HIDA, technetium-99-mebrofenin (Tc99m) hepatobiliary iminodiacetic acid
(HIDA); CC, cholangiocarcinoma; HEF, hepatic extraction fraction (obtained from SPECT data); 18F-FDG, 2-[18F] fluoro-2-deoxy-D-galactose. 99mTc-Sc, 99mTc-Sulphur colloid; PRT,
proton radiotherapy.
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options available for liver cancer (such as early stage mostly
choosing surgical resection, and local advanced stage opting for
systemic therapy combined with radiofrequency ablation or
intervention, etc.). Second, f-MLD and fV20 meta-analysis
showed that both exhibited no statistically significant
differences between functional liver preservation and
anatomical plans (although all studies indicated a significant
reduction). However, there was no significant heterogeneity or
publication of bias. It might be associated with the number of
patients, functional liver definition, and the difference of
optimization. Negative results do provide a stronger warning
to later investigators, reminding them to include larger study
samples, report data in detailed (mean ± SD) or provide raw data
in the appendix for data extraction, and give greater priority
(weight) to functional liver in functional liver-sparing planning
des ign . Third , most of the publ icat ions rev iewed
comprehensively did not report sufficient information to be
included in the meta-analysis (e.g., no SD). And different
studies reported inconsistent dose-volume parameters in
functional plans (e.g., fV15, fV<15Gy), and inconsistent
parameter units (such as cm3, cc, or percentage) compared
with anatomical plans. Fourth, although the single rate meta-
analysis of RILD incidence in the prospective observational
studies of functional l iver-sparing planning-guided
radiotherapy indicated the potential to decrease RILD (but
both SBRT and 3D-CRT were included, subgroup analysis was
not performed). However, the reported endpoints of RILT were
inconsistent (including CTP score increase 1 or 2 (RILD), or liver
function decompensation), which may be a weakness of the
current studies. In the future, sufficient randomized clinical
intervention trials should be established to examine the
differences in RILD incidence between functional liver-sparing
and conventional anatomical planning. Probabilistic modeling of
normal tissue complications should also be investigated to
provide the optimal dose-limiting regimens for functional liver
preservation planning-guided radiotherapy.
CONCLUSION

The 20 studies in this systematic review suggested that functional
liver imaging provided information on functional dose-volume
parameters that can more acuate predict the risk of RILT than
Frontiers in Oncology | www.frontiersin.org 9
anatomical CT (e.g., fV20). We found a similar dose-response for
functional liver imaging after radiotherapy, indicating the
potential to integrate functional liver imaging into treatment
planning to decrease functional dose metrics. The meta-analysis
showed that there were insufficient data to confirm that
functional liver-sparing planning significantly reduced f-MLD
and fV20 compared with anatomical CT planning. Different
studies have used a wide variety of functional liver thresholds,
and no standard threshold has been established. Functional liver-
sparing planning-guided radiotherapy could reduce the
incidence of RILD, but has yet to be validated in prospective
randomized clinical intervention trials.
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