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ABSTRACT Cell division must be coordinated with DNA repair, which is strictly regu-
lated in response to different drugs and environmental stresses in bacteria. However,
the mechanisms by which mycobacteria orchestrate these two processes remain
largely uncharacterized. Here, we report a regulatory loop between two essential
mycobacterial regulators, McdR (Rv1830) and WhiB2, in coordinating the processes of
cell division and DNA repair. McdR inhibits cell division-associated whiB2 expression by
binding to the AATNACANNNnTGTNATT motif in the promoter region. Furthermore,
McdR overexpression simultaneously activates imuAB and dnaE2 expression to pro-
mote error-prone DNA repair, which facilitates genetic adaptation to stress conditions.
Through a feedback mechanism, WhiB2 activates mcdR expression by binding to the
cGACACGc motif in the promoter region. Importantly, analyses of mutations in clinical
Mycobacterium tuberculosis strains indicate that disruption of this McdR-WhiB2 feed-
back regulatory loop influences expression of both cell growth- and DNA repair-associ-
ated genes, which further supports the contribution of McdR-WhiB2 regulatory loop in
regulating mycobacterial cell growth and drug resistance. This highly conserved feed-
back regulatory loop provides fresh insight into the link between mycobacterial cell
growth control and stress responses.

IMPORTANCE Drug-resistant M. tuberculosis poses a threat to the control and preven-
tion of tuberculosis (TB) worldwide. Thus, there is a need to identify the mechanisms
enabling M. tuberculosis to adapt and grow under drug-induced stress. Rv1830 has
been shown to be associated with drug resistance in M. tuberculosis, but its mecha-
nisms have not yet been elucidated. Here, we reveal a regulatory role of Rv1830,
which coordinates cell division and DNA repair in mycobacteria, and rename it McdR
(mycobacterial cell division regulator). An increase in McdR levels represses the
expression of cell division-associated whiB2 but activates the DNA repair-associated,
error-prone enzymes ImuA/B and DnaE2, which in turn facilitates adaptation to stress
responses and drug resistance. Furthermore, WhiB2 activates the transcription of
mcdR to form a conserved regulatory loop. These data provide new insights into the
mechanisms controlling mycobacterial cell growth and stress responses.

KEYWORDS Mpycobacterium tuberculosis, stress response, drug resistance,
transcriptional regulation, Wbl, Rv1830

ycobacterium tuberculosis, one of the most successful bacterial pathogens, is a
major threat to global health (1). The difficulty in eradicating M. tuberculosis is
related to its complex transcriptional regulatory network controlling cell growth and sur-
vival under different stress conditions (2, 3). Cell division is one of the most important
physiological processes for bacterial growth and must be coordinated with DNA
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replication and repair to maintain the ploidy of offspring (4-6). However, the regulation
of these two fundamentally important processes in M. tuberculosis is largely unknown.

M. tuberculosis encodes approximately 200 transcriptional regulators (TRs) to con-
trol bacterial cell growth and, thus, cope with environmental stress responses. Previous
characterizations of transcriptional regulatory networks using chromatin immunopreci-
pitation sequencing (ChIP-seq) have identified the targets of most TRs in M. tuberculo-
sis (7, 8). However, the physiological roles of these regulatory target pairs have not
been characterized. Subsaturation levels of mutagenesis with a random transposon or
CRISPR interference screening have determined that a quarter of total genes are essen-
tial for growth in M. tuberculosis, including several TRs (9-14). This suggests that these
TRs participate in the regulation of essential mycobacterial growth processes.

MerR family proteins are widely known to increase adaptability in different bacterial
species (15). These proteins regulate gene expression by binding with repeat sequen-
ces in promoter regions and normally contain three domains: the N-terminal DNA-
binding domain, the C-terminal effector binding domain, and the linker region (15).
Most MerR proteins respond to metal ions, antibiotics, or drug-like compounds and
activate the transcription of detoxification-related genes to eliminate the toxicity of
substances (15, 16). However, some MerR proteins, such as HonC and GInR (17, 18), in-
hibit the expression of their target genes, indicating an alternative regulatory mecha-
nism of MerR proteins. Rv1830 is a MerR family protein that has been characterized as
an essential regulator in M. tuberculosis (9, 10, 19), but its regulatory role has not been
characterized. Recently, a whole-genome sequence comparison of clinically isolated M.
tuberculosis strains suggested a role for Rv1830 in drug resistance (20). However, the
link between the roles of Rv1830 in drug resistance and in essential growth processes
is not clear.

The WhiB-like (Wbl) family of proteins, which contain four invariant cysteine resi-
dues that form an O,- and NO-sensitive [4Fe-4S] cluster, are unique to actinomycetes
and play versatile regulatory roles in virulence (21) and antibiotic resistance (22, 23) in
M. tuberculosis. WhiB2 is an essential transcriptional regulator involved in the regula-
tion of cell division (24). Knockdown or overexpression of whiB2 resulted in the forma-
tion of filamentous cells (24-26). Furthermore, the expression of whiB2 was decreased
during M. tuberculosis infection in mice (27), and M. tuberculosis cells showed a filamen-
tous shape in macrophages (28). These results suggest that the expression of WhiB2 is
regulated in the process of M. tuberculosis infection.

In this study, we report that Rv1830 regulates mycobacterial cell division and sur-
vival under stress conditions; thus, we rename this protein McdR (mycobacterial cell di-
vision regulator). We show that McdR differentially regulates the expression of the cell
division-associated gene whiB2 and the DNA repair-associated genes imuAB and
dnaE2. Moreover, we demonstrate that WhiB2 regulates the expression of mcdR to
form a highly conserved feedback regulatory loop. Our study provides incentive to
investigate other feedback regulatory loops enabling mycobacterial cell growth in the
presence of stress.

RESULTS

McdR regulates mycobacterial growth and participates in stress responses.
Sequence alignments showed that McdR was conserved in both slow- and fast-growing
mycobacteria (see Fig. S1 in the supplemental material), and the identity of McdR proteins
among M. tuberculosis, Mycobacterium smegmatis (MSMEG_3644), and Mycobacterium
marinum (MMAR_2707) was greater than 75%. We first attempted to delete the M. smeg-
matis mcdR homologue named MSMEG_3644 but could not obtain any mutant clones.
However, this gene could be deleted when M. tuberculosis mcdR was expressed on an
integrating plasmid in M. smegmatis (Fig. S2). These data suggest that mcdR is an essential
gene in M. smegmatis, which is consistent with previous transposon screening in M. tuber-
culosis demonstrating essentiality (9, 10, 19). Therefore, we overexpressed M. tuberculosis
mcdR, M. marinum mcdR, or M. smegmatis mcdR in M. tuberculosis, M. marinum, or M.
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FIG 1 McdR regulates mycobacterial cell division and participates in stress responses. (A and B) Overexpression of mcdR inhibits
mycobacterial cell growth on 7H10 plates (A) or in 7H9 broth (B). The concentrations of ATc were 50 ng/mL for M. smegmatis or
200 ng/mL for M. tuberculosis H37Ra and M. marinum. Error bars indicate the SD (standard deviations) from three independent
experiments. (C) Microscopic observation of M. smegmatis when mcdR was overexpressed (McdR, ATc+) compared with the vector
control (Vec, ATc+) at the indicated times. (D) Cell length of M. smegmatis when mcdR was overexpressed compared with the vector
control at the indicated times. In the boxplots, the 25th and the 75th percentiles are boxed, and the lengths of individual bacteria
(1,000 cells) are shown as gray dots. Thick lines indicate the mean values in each group. (E) Survival rate of M. smegmatis when mcdR
was overexpressed compared with the vector control under RIF, INH, and H,0, treatments, as calculated by CFU counting. Error bars
indicate the SD from three independent experiments.

smegmatis and found that they all efficiently inhibited mycobacterial cell growth (Fig. 1A
and B). Morphological analysis showed that cells of McdR-overexpressing strains were fila-
mentous and longer than those of the vector control at different growth stages (Fig. 1C
and D and Fig. S3A and S3B). Together, these data suggest that overexpression of McdR
inhibits mycobacterial cell division.

Considering the close relationship between the filamentous phenotype and stress
responses (28, 29), we compared the survival rates of M. smegmatis with or without
mcdR overexpression in the presence of different stresses, i.e., isoniazid (INH; 60 wg/
mL), rifampicin (RIF; 30 wg/mL), or hydrogen peroxide (H,O,; 5 mM). As shown in
Fig. 1E, overexpression of mcdR in M. smegmatis significantly increased cell survival
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FIG 2 Overexpression of McdR inhibits cell division and promotes DNA repair in mycobacteria. (A) Gene expression changes
observed between overexpression and normal expression of mcdR in M. smegmatis. Genes associated with cell division are indicated
with blue dots, while those related to DNA replication and repair are indicated with red dots. (B) Log, fold changes in the genome-
wide mRNA levels (depicted by dark gray dots for each gene) and a 150-gene sliding window average (depicted by the red line) of
M. smegmatis with or without mcdR overexpression. (C) Relative copy numbers of genomic DNA located at differential regions in M.
smegmatis with or without mcdR overexpression. The locations of fragments a to g in the M. smegmatis chromosome are indicated.
The DNA copy number was tested by qPCR assay. The mean and SD were calculated from three independent measurements. (D)
Relative mRNA levels of whiB2, ftsZ, mtrA, MSMEG_5468, MSMEG_0833, imuAB, dnaE2, and recA in M. smegmatis with or without mcdR
overexpression. Bars and error bars show the means and SD calculated from three independent gqRT-PCR measurements. (E) The
mutation frequency of M. smegmatis with (McdR) or without (Vec) mcdR overexpression induced by treatment with 15 wg/mL INH.

Mean and SD calculated from three measurements are shown.

under each of these stresses. Consistent with this, the mcdR knockdown strain showed
increased cell sensitivity to INH, RIF and H,0, (Fig. S3C to E). Together, our data suggest
that McdR regulates mycobacterial cell division and susceptibility to anti-TB drugs and
oxidative stress.

McdR acts as a cell cycle checkpoint regulator. To further investigate what is regu-
lated by McdR at the global level, we employed RNA-seq to compare the gene expres-
sion profiles of M. smegmatis with or without mcdR overexpression. As shown in the
volcano plot in Fig. 2A and Table S2, overexpression of mcdR repressed cell division-
associated genes, including whiB2, mtrAB, ag85C, sepF, pirG, and several dcw (division
and cell wall) genes, like ftskWZ (30) (indicated with blue color), which is consistent
with the inhibitory effects of mcdR overexpression on mycobacterial cell division and
the filamentous phenotype (Fig. 1A to D). The mcdR overexpression also activated
genes involved in DNA replication and repair, including imuAB, dnak2, recA, dnaB and
dnaN (indicated with red color). In addition, genes located closer to the origin of repli-
cation (ori) generally showed higher mRNA levels in the mcdR-overexpressing strain
(Fig. 2B), suggesting that mcdR overexpression increases the DNA copy numbers near
the ori. In support of our hypothesis, genes closer to the ori had higher copy numbers
than those distal from the ori when mcdR was overexpressed, as tested by quantitative
PCR (gPCR) assay (Fig. 2C).
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We next confirmed the regulatory roles of McdR with genes associated with cell
division as well as DNA replication and repair by quantative reverse transcription-
PCR (gRT-PCR) (Fig. 2D). As previous studies have demonstrated roles for imuAB
and dnaE2 in mutagenesis and in in vivo survival (31-33), we next calculated muta-
tion frequency of M. smegmatis strains with or without mcdR overexpression. As
shown in Fig. 2E, overexpression of mcdR increased the mutation frequency by 70-
fold for INH resistance. Given the roles of McdR in the repression of cell division and
activation of DNA replication or repair, we propose that McdR functions as a cell
cycle checkpoint regulatory protein.

McdR regulates whiB2 expression by binding to an AATnACANnnnTGTnATT
motif. To further investigate the molecular regulatory mechanism of McdR, we per-
formed a DNA immunoprecipitation sequencing (DIP-seq) assay to characterize the
direct targets of McdR. Our results showed that McdR directly binds to the upstream
regions of the whiB2, MSMEG_0833, and MSMEG_5468 genes (Fig. 3A and Table S3),
whose expression was inhibited by McdR overexpression (Fig. 2A and D). These data
suggest the direct regulation of these targets by McdR. We next analyzed conserved
sequences in promoters of these genes (including their homologs in M. tuberculosis)
using multiple-sequence alignment and generated a potential McdR motif as
AATNACANNNNTGTNATT (Fig. 3B and C). We next screened the McdR motif in the
promoter regions of M. tuberculosis and M. smegmatis and found that, in addition to
these three targets, this motif also exists in several other genes (Table S4), suggest-
ing a broad regulatory role of McdR in mycobacteria.

Since WhiB2 has been shown to regulate bacterial cell division (24-26), we next
focused on characterizing the regulatory relationship between McdR and WhiB2. The
potential McdR motif AATNACANNNNTGTnATT is located around the previously identi-
fied transcription start site (TSS) (34); therefore, we constructed mutations to test the
role of this potential McdR motif in the regulation of McdR on the whiB2 promoter
(whiB2p) (Fig. 3D). McdR directly binds to the wild-type whiB2p to inhibit whiB2 expres-
sion (Fig. 3E and F), but this regulatory effect was abolished when the reverse comple-
mentary sequence in AATNACANnnnTGTnATT was mutated (whiB2p-M1 and whiB2p-
M2) (Fig. 3D to F) or the spacer length was changed (whiB2p-M4 and whiB2p-M5)
(Fig. 3D to F). However, mutating the spacer sequence without changing the spacer
length had no effect (whiB2p-M3) (Fig. 3D to F).

To further confirm the connection between McdR and the AATNACANNNNTGTnATT
sequence, we performed electrophoretic mobility shift assay (EMSA) to test the binding of
McdR with other promoters containing the AATnACANNNNTGTNATT motif (Fig. S4A). McdR
successfully binds with the promoter regions of MSMEG_0833 (Ms0083p), MSMEG_5468
(Ms5468p), and Rv0996 (Rv0996p, homologous of MSMEG_5468) but not with the Rv0340
promoter (Rv0430p, homologous of MSMEG_0083) (Fig. S4A), as only Rv0430p did not con-
tain the AATNACANNNNTGTNATT motif (Fig. 3B). DNA mutations of the McdR motif in
Ms0083p abolished McdR binding (Fig. S4B). These data further indicated that McdR
directly binds to the AATNnACAnNnnnTGTnATT motif to regulate the expression of its target
genes. Both McdR protein and the McdR motif AATNACANNNNTGTNATT in whiB2p are con-
served (Fig. S5A), suggesting that the regulation of McdR to whiB2p would be widely
applied in mycobacteria.

WhiB2 feedback regulates mcdR expression by recognizing the cGACACGc motif.
As mcdR is an essential gene in mycobacteria and its regulatory target, whiB2, is also
stringently regulated (24, 26), we used a bacterial one-hybrid system (35) to screen the
regulatory effects of transcriptional regulatory proteins on the mcdR promoter in E. coli
(Fig. 4A). Eight transcriptional regulatory proteins were found to regulate the expres-
sion of mcdR in this assay (Fig. 4B). Among them, overexpression of whiB2 successfully
activated the expression of mcdR in M. smegmatis using an mCherry reporter system
(Fig. 4C). Consistent with previous data showing that transcriptional regulation of Wbl
family proteins depends on their conserved cysteine residues (36), activation of WhiB2-
mediated mcdR expression was abolished when the four conserved cysteine residues
were mutated to serine (WhiB2-4CS) (Fig. 4D).
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FIG 3 McdR directly inhibits the expression of whiB2. (A) Relative counts of sequencing reads mapped to the M. smegmatis genome
excluding ribosome RNA regions in the DIP-Seq assay for groups using McdR with strep-tag (McdR) or without strep-tag (control). The
detailed locations of the five peaks specifically enriched in the McdR group are indicated on the right. (B) Analysis of McdR motif in
promoters of whiB2, MSMEG_0833, MSMEG_5468 genes in M. smegmatis and their homologues in M. tuberculosis. Triangles indicate TSSs
identified in M. tuberculosis. (C) The weblogo of McdR motif based on sequences shown in panel B. (D) Wild-type and mutated promoter
sequences of the whiB2 gene in M. tuberculosis used for EMSA. The proposed —35 element, —10 element, transcription start site (TSS), and
translation initiation site (TIS) are indicated. The nucleotides consistent with whiB2p-WT are simplified as dots. McdR-binding sites are boxed.
(E) Interaction between McdR and whiB2 promoters analyzed by EMSA. (F) Comparison of whiB2 promoter activities in M. smegmatis with or
without overexpression of McdR. Data shown are the mean RFU and SD calculated from three independent measurements.

Further multiple-sequence alignment of the promoter sequences of mcdR and its
homologous genes in M. marinum and M. smegmatis identified two conserved regions
(region_1 and region_2) upstream of the two characterized TSSs (34) (Fig. 5A). We
named the two —10 elements upstream of each TSS —10, and —10,. Mutation of
—10g (M2), but not —10, (M1), was activated by WhiB2 (Fig. 5B and C), indicating that
WhiB2 activation is dependent on —10, in the mcdR promoter. Deletion of region_1
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FIG 4 WhiB2 activated the expression of mcdR. (A) Diagram showing the bacterial one-hybrid
system. RNAP, RNA polymerase; «, RNA polymerase subunit alpha; TR, transcriptional regulator. (B
and C) The effects of different regulatory proteins on mcdR promoter activity in E. coli using bacterial
one-hybrid system (B) or in M. smegmatis using a promoter-mCherry reporter system (C). M.U.
represents Miller unit. (D) mcdR promoter activities in M. smegmatis when WhiB2 or WhiB2-4CS was
overexpressed in M. smegmatis. Means and SD from three independent measurements are shown.

(M3) had no effect on the activation, but deletion of both region_1 and region_2
(M4) abolished this activation (Fig. 5B and D). Furthermore, WhiB2 did not activate
the promoter containing a mutation in region_2 (M5) (Fig. 5E). These data suggest
that the WhiB2-mediated regulation of mcdR promoter (mcdRp) is facilitated by the
region_2 sequence TCGACACGC. In addition, the phylogeny of WhiB2 and the pro-
moter sequence of mcdR in mycobacterial species suggest that the WhiB2-mediated
regulation of mcdRp is conserved (Fig. S5B).

To obtain the overall targets regulated by WhiB2, we searched the promoters of M.
smegmatis and M. tuberculosis H37Rv (Table S4) for the characterized binding sequence
TCGACACGC. We identified several potential targets, including plcA, clpX, and Rv1405c.
Sequence alignments identified a putative WhiB2-binding motif as cGACACGc (Fig. S6A).
In agreement with this finding, the promoter activities of M. tuberculosis plcA, clpX, and
Rv1405c were activated by the overexpression of whiB2 but not by the mutated allele
coding for WhiB2-4CS (Fig. S6B).

Together, we conclude that WhiB2 binds to the cGACACGc sequence in the
mcdR promoter to activate the expression of mcdR. In turn, McdR binds to the
AATNACANNNNTGTNATT motif in the whiB2 promoter to inhibit the expression of
whiB2. This feedback regulatory loop is important for precise regulation of myco-
bacterial cell division (Fig. 5F).

Single nucleotide polymorphisms of mcdR influence its regulatory effect. Since
both McdR and WhiB2 are essential regulators and the feedback loop regulates the
fundamental process of cell division and participates in stress responses, we posited
whether this feedback regulation had been disturbed in some M. tuberculosis clinically
isolated strains. Hence, we analyzed the coding sequences and promoter regions of
mcdR and whiB2 in 7,991 sequenced clinical M. tuberculosis strains in the NCBI data-
base. We found that the McdR and WhiB2 binding sites are conserved in each other’s
promoters (Fig. 6A). However, the coding sequences (CDS) of McdR and WhiB2 contain
several SNPs, some of which lead to changes in amino acid sequences (Fig. 6B and C).
Subsequently, we tested whether the expression of whiB2 and the imuAB operon

March/April 2022 Volume 13 Issue 2

10.1128/mbio.03343-21

mBio

7


https://journals.asm.org/journal/mbio
https://doi.org/10.1128/mbio.03343-21

Feedback Regulatory Loop between McdR and WhiB2

mcdRp region_1 region_2 -10,
= : — ) — )

mBio

-10,

= —-

Mtb AAQGTCACGACTGCGTCTCATCTCTGGCTGCAATTG- [FGGACAGBEC TAGCGGT TAGTGCCTAATGCGCCCGGCGACCGCGATACT TTIGATCACGACCTGATAGT TAACCGGGAGCATCGCGCCCATCGAACAGCATATGCTICT
Mm  AACGTCACGGATCOOGTCTCATCTCGCAACATGCCATCTCGACACGCC TAGGGGATGECGCTCACGEGCCOGCGCAGOGTCCATACT TTGAAGGCGACT TGATGATCAACCCGOGGACCGCA - ACGGTCCAACAGCGTATGCTICT
--------- AGCCAGCAG- TCAGGACCCGGCGGGAAGCGATGCTICG

Ms TAGGTCACGGAAGCGTCTCAACTGGGACTATCGCGT - TCGACACGCEGT TGTGGTGGCATCCGAGEGGGAT TTCGGCAGCCATACTTT]- - TCACAGC

C 5. " Vec - WhiB2

a2
€9°"— (eg'O" " 10,

M2

o0-0-0®0

o8-0-000

WT < i M1

M1 < ‘)

M2 <

M3 o o =

M4 o :

M5 < o 0
D i% E F

o
o

activation

RFU (x1000)
o o
SN

RFU (x1000)

WhiB2
McdR

4 6 8 0 2 4 6 8

Time (hour) Time(hour)

RNAP

+++ ’_

S=N

gl ' ' ‘ sl | | inhibjtion - SRS
0 _4 8 12 0 _4 8 12 {-10){AATrACA TGTnATT):( whiB2_ )

Time (hour) Time (hour)
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would be influenced by SNPs in McdR. We replaced the mcdR gene in M. smegmatis
with M. tuberculosis mcdR carrying different SNPs using an integrated plasmid. As is evi-
dent in Fig. 6D and E, D26A and 173S in McdR had no significant effect on the expres-
sion of whiB2 and the imuAB operon. However, WhiB2 expression was inhibited by
SNPs 176V, T77P, Q80R, A85V, V90A, or A97V, and the expression of imuAB operon was
increased in these strains. Consistent with this, the growth of strains with SNP T77P or
V90A showed slower growth (Fig. 6F) and increased survival rate in the presence of
INH or H,0, (Fig. 6G and H) compared with the strain containing the wild-type mcdR
gene. Moreover, these two SNPs also increased the mutation rate for INH resistance
(Fig. 61). These data confirmed that disruption of McdR regulatory influences on myco-
bacterial stress responses.

DISCUSSION

In this study, we show that McdR forms a feedback regulatory loop with WhiB2 to
control mycobacterial cell division. Overexpression of McdR activates the expression of
recABCD, imuAB, and dnakE2 to increase DNA mutagenesis. Collectively, our results dem-
onstrate that McdR may function as a cell cycle checkpoint regulator in mycobacteria to
coordinate cell division and DNA repair during unfavorable environmental conditions.

Cell division is a key physiological process in bacteria that must be carefully coordi-
nated with DNA replication or repair and is strictly regulated (37). Through transcrip-
tome sequencing (RNA-seq) and phenotype analyses, we showed that McdR directly
regulates the expression of whiB2 (Fig. 2 and 3), which is a known essential regulator
of mycobacterial cell division (24-26). Furthermore, we showed that WhiB2 regulates
the expression of mcdR through a feedback mechanism by binding to the cGACACGc
motif located upstream of the —10 promoter element (Fig. 5), which is consistent with
the recently characterized model proposed for the mode of action of the WhiB family
of proteins (38, 39). Interestingly, the cGACACGc motif was also found in the promoters
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) or different SNPs of mcdR gene. Error bars indicate the SD from three tests.

of several other genes, including ftsBHW, picA, clpX, and Rv1405c (Table S4, Fig. S6), and
their expression was repressed when WhiB2 was inactivated by mcdR overexpression
(Table S2). Several dcw genes were repressed upon McdR overexpression (Table S2). In
addition to the WhiB2 binding site identified upstream of ftsBHW, we also identified
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one potential McdR binding site in the wag31 promoter (Table S4), suggesting McdR
also directly regulates the dcw genes in controlling mycobacterial growth. The MtrA/B
complex is known to regulate several genes, including, but not limited to, dacB1, sepF,
fbpB, ripA, and ftsl, which are associated with mycobacterial growth (40-42). The
expression of mtrAB together with their targets was also inhibited by McdR overexpres-
sion (Table S2), but no McdR binding site was observed in the mtrAB promoter.
Therefore, we hypothesize that McdR indirectly interacts with the MtrA/B regulatory
network and directly regulates the expression of WhiB2 and the dcw genes to control
cell division.

Causing DNA damage is a common mechanism by which antibiotics kill bacteria
(43-45). However, DnaE2 is an error-prone DNA polymerase involved in DNA repair
but lacks proofreading activity, which results in more mutations being introduced
during DNA repair (31, 32, 46). In M. tuberculosis, DnaE2 increases mutagenesis and
directly promotes the emergence of drug resistance, which plays a vital role in in
vivo survival (31). ImuA/B are essential accessory factors for DnaE2, as they interact
with DnaE2 and are required for mutagenesis in M. tuberculosis (32). Our data
showed that overexpression of McdR activates the expression of imuAB and dnaE2
and increases the DNA mutation rate for INH resistance (Fig. 2E). Consistent with our
data, a previous study analyzed the whole-genome sequences of 594 clinical M. tu-
berculosis strains and found that mutations in the mcdR gene are associated with
drug resistance (20). We propose that McdR acts as a bifunctional transcriptional
regulator by inhibiting mycobacterial division and concurrently activating DNA
repair mediated by imuAB and dnaE2.

M. tuberculosis can undergo dormancy in a nonreplicating state, causing latent
infection (47), in which state the bacteria were highly tolerant to antibiotics and
stresses (48, 49). It has been reported that the regulation of whiB2, ftskWZ, pbpB, and
ripA is important for filamentous cell formation, which promotes the development
of mycobacterial dormant cells (50). Our data show that overexpression of mcdR
effectively inhibits the expression of these genes, which may increase the tolerance
of mycobacteria to stressful environments. In the meantime, the activation of imuAB
and dnaE2 upon McdR overexpression may also protect mycobacteria against DNA
damage under stressful conditions. Together, those data suggest a role of McdR in
controlling the formation of dormant cells and stress responses. Although most of
our studies were performed in M. smegmatis, sequence alignments show that McdR
(Fig. S1) and WhiB2 (51) are highly conserved in M. tuberculosis and M. smegmatis,
and their binding sites are also conserved in most of their target promoters
(Table S4). Therefore, we hypothesize that our proposed regulation model of McdR
and WhiB2 in this study also work in M. tuberculosis, although further studies are
required to confirm it.

MerR family regulators are known to bind with a reverse complementary
sequence located in 19- or 20-bp spacer regions between promoter —35 and —10
elements, which in turn bends the promoter region for RNA polymerase recognition
and activates the expression of targeted genes (52, 53). However, our results showed
that McdR binds with the reverse complementary sequence AATNACANNNNTGTnATT
around the TSS but not in the promoter spacer region (Fig. 3), suggesting that McdR
acts in an way analogous to that of the nonclassical MerR family protein HonC (17).
These different characteristics imply that McdR acts uniquely to regulate the tran-
scription of its target genes. In this study, we characterized the repressive effects of
McdR on the whiB2 promoter, but whether and how McdR directly activates its tar-
gets requires further study.

In summary, we have revealed a previously uncharacterized feedback regulatory
loop mediated by two essential genes in mycobacteria. This conserved regulatory loop
not only plays a vital role in the coordination of cell division and DNA repair but also
participates in drug resistance and stress responses in mycobacteria. Our results
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provide fundamental insight into uncovering the link between mycobacterial cell
growth control and stress responses.

MATERIALS AND METHODS

Bacterial strains and growth conditions. The bacterial strains used in this study are summarized in
Table S1 in the supplemental material. Escherichia coli strains were cultured in Luria-Bertani (LB) broth or
on LB agar-solidified plates at 37°C. Mycobacterial cells were grown in 7H9 (Difco) liquid medium sup-
plemented with 0.2% (wt/vol) glucose, 0.015 M NaCl, 0.2% (vol/vol) glycerol, and 0.05% (vol/vol) Tween
80 or on 7H10 (Difco) agar plates supplemented with 0.5% (vol/vol) glycerol at 37°C. For M. tuberculosis
and M. marinum, 10% oleic acid-albumin-dextrose-catalase (Difco) was added.

Plasmid constructions. The plasmids and oligonucleotides used in this study are listed in Table S1.
To construct recombinant plasmids, the target fragments and linearized vectors were amplified by PCR
and cloned using a ClonExpress Il one-step cloning kit (Vazyme, China). Mutations in the genes or pro-
moters cloned in plasmids were introduced by following the protocol provided by the QuikChange II XL
site-directed mutagenesis kit (Stratagene).

Mutant construction and complementation. M. smegmatis mutants were constructed as previously
described (54). Briefly, pMV306-Hyg-McdR-Rv expressing wild-type or mutated McdR protein was trans-
formed into M. smegmatis to form an McdR-overexpressing strain named Ms-mcdR. A pNILRB4 plasmid
(kanamycin resistance) (55) carrying two fragments upstream and downstream of the mcdR
(MSMEG_3644) gene then was transformed into Ms-mcdR. The single-crossed strains were selected by
plating on 7H10 agar plates containing kanamycin. The double-crossed strains were selected by plating
on 7H10 agar plates with 10% sucrose.

Protein purification. The McdR protein was expressed in E. coli BL21(DE3) with a C-terminal His tag
or with both His tag and Twin-Strep tag using pET21a-McdR or pET21a-McdR-SH plasmid, respectively,
and was purified as described previously (54). Briefly, bacterial cell pellets were collected and lysed by
ultrasonication. The supernatant was collected and the proteins were first purified using a 5-mL HisTrap
HP column (GE Healthcare). The elution fractions were collected and further purified using a Heparin col-
umn (GE Healthcare) and Superdex 200 Increase 10/300 GL column (GE Healthcare).

DNA-binding analysis. Electrophoretic mobility shift assays (EMSAs) were performed as described
previously (16), with minor modifications. Briefly, around 200-bp fluorescein-labeled promoter fragments
were amplified by PCR and extracted by a gel extraction kit (Omega). Promoter fragments (30 nM) were
incubated with McdR in TB buffer (20 mM Tris-HCI, pH 7.9, 50 mM NacCl, 5 mM MgSO,, 1 mM dithiothre-
itol, 0.1 mM EDTA, 5% glycerol) at 37°C for 15 min. Samples were then loaded on 6% native 0.5x TBE-
PAGE gel and run at 100 V. Gels were scanned by an Amersham Typhoon scanner (GE Healthcare).

Promoter activity analysis in mycobacteria. The promoter activity analysis in mycobacteria was
performed as described previously (54). Mycobacterial promoters were fused to a promoterless mCherry
gene in the pMV306 plasmid (56) and then cotransformed with the McdR overexpression plasmid based
on pUV15TetORm (57) into M. smegmatis. The expression of McdR was induced by adding 50 ng/mL
anhydrotetracycline (ATc) at an optical density at 600 nm (ODy,,) of ~0.4. The promoter activities were
indicated by relative fluorescence units (RFU; fluorescence intensities per unit of ODy,,) as detected by
Bio-TEK Synergy H1. Assays were performed in duplicate in three independent experiments.

Detection of genomic DNA copy numbers. To detect copy numbers of DNA fragments located in dif-
ferent genomic regions, genomic DNA was extracted from M. smegmatis cells with or without McdR overex-
pression (50 ng/mL ATc for 2 h) using a TIANamp bacterial DNA kit (Tiangen, China). The copy numbers of
seven different positions in the M. smegmatis genome were measured by qPCR, which was performed using
iTaq universal SYBR green supermix (Bio-Rad) with 10 ng genomic DNA. The locations of seven positions in
M. smegmatis genome (NC_008596) are the following: a, 2827073 to 2827178; b, 4304581 to 4304830; c,
5129805 to 5129950; d, 5336288 to 5336486; e, 1906450 to 1906563; f, 7476 to 7661; g, 6986398 to
6986515. Primers used for detection of fragments a to g are summarized in Table S1.

RNA extraction, qRT-PCR, and RNA-seq analyses. RNA extraction was performed as described previ-
ously (54, 58), with modifications. Cells with or without McdR overexpression (50 ng/mL ATc for 2 h) were
harvested and ground in liquid nitrogen. RNA was extracted using TRIzol (Invitrogen) by following the man-
ufacturer’s protocol. gRT-PCR was performed as previously described (54) using iTaq universal SYBR green
supermix (Bio-Rad). The expression level of the sigA gene was used as an internal control. The qRT-PCR data
were analyzed by CFX Manager (Bio-Rad). For RNA-seq experiments, rRNA was removed by a Ribo-off rRNA
depletion kit (Vazyme). RNA libraries were constructed by using the NEBNext Ultra directional RNA library
prep kit for lllumina (NEB). Sequencing was performed on the Illumina HiSeq X 10 platform using 2 x 150-
bp paired-end sequencing. FastQC (59) and Trim Galore were used to trim the raw data. Reads were
mapped to M. smegmatis genome (NC_008596) using BWA (60) and SAMtools (61). The gene expression
levels were analyzed by DESeq2 (62) in R package (version 3.2.2), and genes were considered differentially
expressed at fold change of =2 and adjusted P value of <0.05.

DIP-seq analyses. DIP-seq was performed as described previously (63), with modifications. The M.
smegmatis genomic DNA was sheared into fragments with a peak at 250 bp by ultrasonication (Covaris
M220). McdR (with or without Twin-Strep at the C terminus, 4 «M) and sheared DNA (4 uM) were incu-
bated in TB buffer at 37°C for 20 min and cross-linked using 1% formaldehyde. Magnetic beads (Strep-
Tactin XT; IBA) were added to select the McdR-DNA complex. DNA libraries were constructed by the
NEBNext Ultra Il FS DNA library prep kit (NEB). Sequencing was performed on the Illumina HiSeq X 10
platform using 2 x 150 bp paired-end sequencing. The analyses of sequencing reads were similar to
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those of RNA-seq. The relative intensity was calculated using reads counts of test groups (McdR with
Twin-Strep tag) related to those of control groups (McdR without Twin-Strep tag).

Microscopic observation. Cell pellets were collected and resuspended in phosphate-buffered saline
(PBS). Bacterial smears were applied on microscope slides, stained with crystal violet (1%), and observed
with an optical microscope (Olympus BX53F). Cell length of M. smegmatis was measured by cellSens
(Olympus). For scanning electron microscopy (SEM) observation, mycobacterial cells overexpressing
McdR for 2 h were collected and washed 10 times with PBS. Cells were fixed with glutaraldehyde (2.5%),
washed with PBS, and dehydrated again. Samples were then air dried, coated with gold, and scanned by
SEM (Hitachi SU8010). M. smegmatis cell length was measured by ImageJ (64).

Bacterial one-hybrid assay. The mcdR promoter was fused to the promoterless lacZ gene in the
PZT100 plasmid (65) and transformed into the E. coli K-12 AlacZ strain to obtain a reporter strain named
K-12 mcdRp-lacZ. The coding regions of 178 transcriptional regulators were fused to the rpoA gene in
the pOVR200 plasmid (58) and then transformed into the K-12 mcdRp-lacZ strain. The strains were cul-
tured to an OD of ~0.8 to test B-galactosidase activity as described previously (58). The data were calcu-
lated from three clones in duplicate.

Detection of survival rate and mutagenesis rate. To detect the survival rate under different stress
conditions, M. smegmatis cells were cultured to an ODy,, of ~0.4 and diluted into 7H9 medium to a con-
centration of approximately 107 CFU. Rifampicin (RIF), isoniazid (INH), or hydrogen peroxide (H,0,) was
added to final concentrations of 30 ug/mL, 60 wg/mL, and 5 mM, respectively. The number of CFU was
determined at different time points. To detect the mutation frequency, the number of CFU of M. smeg-
matis strains with or without mcdR overexpression was determined by spreading on 7H10 plates or
7H10 plates containing INH (15 wg/mL) at the indicated time points. The mutation frequency was calcu-
lated as number of CFU with INH divided by number of CFU without INH.

M. smegmatis mcdR knockdown strain construction. The M. smegmatis mcdR knockdown strain
was constructed using a CRISPRi system as described previously (66). Briefly, plasmids pTetint-dCas9 and
pGrna2-MsmcdR (targeting M. smegmatis mcdR gene) were cotransformed into M. smegmatis. Colonies
on plates with kanamycin (25 ug/mL) and hygromycin B (50 wg/mL) were selected and inoculated in
7H9 medium to a concentration of approximately 107 CFU. ATc (50 ng/mL) was used to induce the
expression of dCas9 and single guide RNA for 6 h to knock down the MSMEG_3644 expression, and then
RIF, INH, or H,0, was added to final concentrations of 30 ug/mL, 60 ng/mL, and 5 mM, respectively. The
number of CFU was determined at indicated time points.

Phylogenetic tree and SNP analyses. To construct the phylogenetic tree, the amino acid sequences
of McdR and WhiB2 from different strains were downloaded from NCBI and aligned using ClustalW (67).
Their neighbor-joining trees were created with MEGAX (68). The promoter sequences of the mcdR and
whiB2 genes were also aligned using ClustalW. For single nucleotide polymorphism (SNP) analysis, the
sequencing reads were downloaded from the NCBI Sequence Read Archive (SRA). FastQC and Trim
Galore were used to quality control raw data. Reads were mapped to the M. tuberculosis H37Rv genome
(NC_000962) using BWA and SAMtools. BCFtools (69) was applied for SNP calling.

Statistical analysis. The raw data or mean values and standard errors (SD) are shown in each figure.
The P values shown were calculated using two-tailed Student's t test: not significant (ns), P > 0.05; *,
P = 0.05; **, P = 0.01; ***, P < 0.001.

Data availability. The data set generated during this study is available upon reasonable request.
RNA-seq and DIP-seq data reads had been submitted to the NCBI Sequence Read Archive (SRA) under
accession numbers PRINA760667 and PRINA760668.
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