
Citation: Nakagawa, Y.; Nishikimi, T.

CNP, the Third Natriuretic Peptide:

Its Biology and Significance to the

Cardiovascular System. Biology 2022,

11, 986. https://doi.org/10.3390/

biology11070986

Academic Editor: Lemin Zheng

Received: 7 June 2022

Accepted: 27 June 2022

Published: 29 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biology

Review

CNP, the Third Natriuretic Peptide: Its Biology and Significance
to the Cardiovascular System
Yasuaki Nakagawa 1,* and Toshio Nishikimi 1,2

1 Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine,
54 Shogoin-Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan; nishikim@kuhp.kyoto-u.ac.jp

2 Department of Medicine, Wakakusa Tatsuma Rehabilitation Hospital, 1580 Ooaza Tatsuma,
Daito City 574-0012, Japan

* Correspondence: ynakagaw@kuhp.kyoto-u.ac.jp; Tel.: +81-75-751-4287

Simple Summary: CNP is the third natriuretic peptide to be isolated and is widely expressed in the
central nervous system, osteochondral system, and vascular system. The receptor that is mainly
targeted by CNP is GC-B, which differs from GC-A, the receptor targeted by the other two natriuretic
peptides, ANP and BNP. Consequently, the actions of CNP differ somewhat from those of ANP
and BNP. Research into the actions of CNP has shown that CNP attenuates cardiac remodeling in
animal models of cardiac hypertrophy, myocardial infarction, and myocarditis. Studies examining
CNP/GC-B signaling showed that it contributes to the prevention of cardiac stiffness. Endogenous
CNP, perhaps acting in part through CNP/NPR-C signaling, contributes to the regulation of vascular
function and blood pressure. CNP regulates vascular remodeling and angiogenesis via CNP/GC-
B/CGK signaling. CNP attenuates interstitial fibrosis and fibrosis-related gene expression in pressure
overload and myocardial infarction models. The clinical application of CNP as a therapeutic agent
for cardiovascular diseases is anticipated.

Abstract: The natriuretic peptide family consists of three biologically active peptides: ANP, BNP, and
CNP. CNP is more widely expressed than the other two peptides, with significant levels in the central
nervous system, osteochondral system, and vascular system. The receptor that is mainly targeted by
CNP is GC-B, which differs from GC-A, the receptor targeted by ANP and BNP. Consequently, the
actions of CNP differ somewhat from those of ANP and BNP. CNP knockout leads to severe dwarfism,
and there has been important research into the role of CNP in the osteochondral system. As a result,
a CNP analog is now available for clinical use in patients with achondroplasia. In the cardiovascular
system, CNP and its downstream signaling are involved in the regulatory mechanisms underlying
myocardial remodeling, cardiac function, vascular tone, angiogenesis, and fibrosis, among others.
This review focuses on the roles of CNP in the cardiovascular system and considers its potential for
clinical application in the treatment of cardiovascular diseases.

Keywords: C-type natriuretic peptide; CNP; GC-B; NPR-C

1. Introduction

The natriuretic peptide family consists of three bioactive peptides: atrial natriuretic
peptide (ANP), B-type natriuretic peptide (BNP), and C-type natriuretic peptide (CNP).
ANP was first isolated and identified in 1983–1984 from rat and human cardiac atria [1,2].
BNP was subsequently isolated from the porcine brain in 1988, and CNP was also isolated
from the porcine brain in 1990 [3,4]. The three peptides have similar structures and exert
their biological actions, which include natriuresis and vasodilatation, by binding to specific
receptors on the target organs. ANP and BNP are mainly synthesized in the heart. Currently,
ANP is widely used in the treatment of acute heart failure in Japan [5–7], while BNP
is used as a biomarker of heart failure worldwide [8–10]. CNP, by contrast, is widely
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expressed in the central nervous system, osteochondral system, and vascular system,
and the receptor mainly targeted by CNP differs from that targeted by ANP and BNP.
Consequently, the actions of CNP differ from those of ANP and BNP. As global CNP
knockout mice (CNP KO) reportedly showed severe dwarfism, due to the impairment
of endochondral ossification [11], research into CNPs has been preceded by studies on
their role in the osteochondral system. In fact, the CNP analog has been developed for
clinical application as a drug for achondroplasia [12]. In this review, we focus on CNP and
review its biology and physiology, its significance in the pathophysiology of cardiovascular
disease, and its therapeutic potential.

The CNP gene (Nppc) is used as a template for the transcription of PreproCNP. The
N-terminal signal peptide is cleaved from PreproCNP, yielding proCNP, which is processed
to form NT-proCNP, CNP-53, and CNP-22. CNP-53 is generated from proCNP by furin,
but the enzyme catalyzing the generation of CNP-22 is still unknown. Both CNP-53 and
CNP-22 are biologically active and bind to both NRP-B (GC-B) and NRP-C.

2. Structure and Physiology of CNP

CNP is translated as a 126-amino-acid prepropeptide and is then processed by a signal
peptidase into ProCNP, a peptide of 103 residues (Figure 1). ProCNP is thought to subse-
quently be cleaved by the processing enzyme, furin, into NT-proCNP and CNP-53 [13,14].
CNP-53 is then cleaved by an unknown protease to produce CNP-22 [15,16]. Both CNP-53
and CNP-22 are present in plasma and various tissues, where both exhibit biological ac-
tivity [17] (Figure 1). CNP-22 is highly homologous to ANP and BNP and is composed
of 22 amino acids with a conserved disulfide-linked 17-amino acid ring portion that is
required for biological activity [18] (Figure 2). However, CNP lacks a C-terminal tail and
has a cysteine residue at the C-terminus, which is different from ANP and BNP. CNP-53
has a 31-amino-acid N-terminal extension that cleaves to form CNP-22 [18] (Figure 2).
CNP is highly conserved across species. The amino acid sequence of CNP-22 is identical
in human, pig, rat, and mouse peptides, while human CNP-53 differs from the pig, rat,
and mouse peptides by only two amino acids [19,20] (Figure 2). CNP is expressed in a
variety of central and peripheral tissues, including the brain, chondrocytes, and vascular
endothelium [14]. In the heart, its expression has also been documented in the myocardium
and cardiac fibroblasts [14].

Nppc, the gene encoding CNP, is located on chromosome 2q24 in humans and chro-
mosome 1 in mice [14,18]. On the other hand, both the Nppa, encoding for ANP, and
Nppb, encoding for BNP, are located on chromosome 1 in humans and chromosome 4 in
mice. Because Nppc is physically separated from Nppa and Nppb, CNP is thought to be
functionally and evolutionarily distinct from ANP and BNP [18].

There are three natriuretic peptide receptors: guanylyl cyclase-A (GC-A) (or natriuretic
peptide receptor-A (NPR-A)), guanylyl cyclase-B (GC-B) (or natriuretic peptide receptor-B
(NPR-B)), and natriuretic peptide receptor-C (NPR-C). GC-A is the main receptor for ANP
and BNP and mediates their physiological action by generating the intracellular second
messenger cyclic guanosine-3′,5′-monophosphate (cGMP). GC-B is the main receptor for
CNP. Upon intravenous administration, CNP elicits a smaller increase in plasma cGMP
levels than does ANP, suggesting that GC-B is less available to intravenously injected
CNP than GC-A is to ANP [18]. NPR-C is not linked to guanylyl cyclase and appears
to act, in large part, to clear natriuretic peptides from the circulation. The affinity of the
natriuretic peptides for their receptors is as follows; GC-A, ANP > BNP >> CNP; GC-B,
CNP >> ANP > BNP; NPR-C, ANP > CNP = BNP [14].
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Figure 1. Schematic representation of CNP production and its receptors. Figure 1. Schematic representation of CNP production and its receptors.

CNP has similar binding affinities to GC-B and NPR-C, although the signaling path-
ways activated by the two receptors are remarkably different. GC-B catalyzes the conversion
of guanosine-5′-triphosphate to cGMP, which is a second messenger that initiates the ac-
tivation of the protein kinases G-I and G-II (PKG-1 and PKG-II). GC-B is predominantly
expressed in the brain [14] but is also found in kidney, lung, adrenal, uterus, and ovarian
tissue [14]. Within the cardiovascular system, GC-B is co-expressed with GC-A in nearly all
cell types [21].

NPR-C is mainly expressed in the kidney, lungs, and vasculature, and at low levels
in all other organs [21]. NPR-C is composed of 540 amino acids. It does not contain a
guanylyl cyclase domain and was initially thought to be a clearance receptor with no
signaling activity [14]. However, several studies have shown that NPR-C mediates the
effects of CNP, independently of cGMP. The mature NPR-C protein forms a homodimer
that is stabilized by intermolecular disulfide bonds. The intracellular region of each subunit
is composed of 37 amino acids, forming overlapping Gi/o binding sequences. Thus, in vitro
studies suggest that the binding of natriuretic peptides to NPR-C can be the trigger for
a G protein-linked process via a Gi-binding domain at its intracellular C-terminus. This
includes the inhibition of adenylyl cyclase activity (by the Gi α subunit) and the activation
of phospholipase-Cb3 turnover (by the Gi βγ subunit) [22]. In addition, it was reported that
NPR-C mediates the vascular actions of endothelial CNP, as described later in this review.
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Figure 2. Schematic representation of the amino acid sequence of CNP. The upper panel shows a
schema of the structure and amino acid sequence of CNP-22. The lower panels show the amino acid
sequences of CNP-53 and CNP-22 in human, mouse, rat, and pig models in comparison with those of
human ANP and BNP. Red- and blue-colored characters depict the amino acid residues that differ
between human CNP and pig, mouse, or rat CNP. Green-colored characters depict the amino acid
residues that are common among the three types of natriuretic peptides. Boxes indicate the amino
acid residues comprising the ring structures.

In addition to clearance via NPR-C, natriuretic peptides are also inactivated via cleav-
age by neprilysin. This protease cleaves ANP and CNP at the ring and at other sites,
resulting in their inactivation. Notably, neprilysin hydrolyzes CNP even more rapidly than
ANP [23]. By contrast, BNP is comparatively resistant to neprilysin-catalyzed degradation
in humans [24].

3. Distribution of CNP and Its Receptor in the Heart

The presence of CNP in the heart has been demonstrated using radioimmunoassays,
immunohistochemistry, and RT-PCR [25]. Using immunohistochemistry, for example, CNP
was detected in cardiac tissue sections and H9c2 cells from a rat cardiomyoblast cell line [25].
On the other hand, using HPLC, Horio et al. [26] found that cardiomyocytes do not express
CNP mRNA, whereas fibroblasts do so. Using a CNP radioimmunoassay in combination
with HPLC, they also observed that fibroblasts secrete CNP. The secretion of CNP by the
heart is described in detail below.

The distribution of receptor expression and the effect of CNP in target cells, includ-
ing cardiac myocytes and fibroblasts, have been described in several reports. ANP and
BNP (GC-A agonists) both induced cGMP generation in purified rat ventricular myocytes,
whereas CNP (a GC-B agonist) had no effect [27]. This suggests that rat ventricular my-
ocytes predominantly express GC-A. However, Tokudome et al. detected the significant
expression of both GC-A and GC-B in cultured rat cardiomyocytes, with greater expression
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of GC-B. Moreover, CNP increased the cellular cGMP levels in cardiomyocytes to a greater
extent than did ANP, and CNP dose-dependently decreased the incorporation of [3H]
leucine into cardiomyocytes under unstimulated conditions, whereas ANP did not do
so [28]. Increased CNP also attenuated the Ca2+ influx, mediated by endothelin-1 (ET-1),
the activation of calmodulin-dependent protein kinase II, ERK phosphorylation, and the
DNA binding activity of the transcription factors GATA-4 and myocyte enhancer factor-2
(MEF-2) in cultured cardiomyocytes [28]. Fujisaki et al. reported that both cardiomyocytes
and cardiac fibroblasts express natriuretic peptide receptor mRNA, that fibroblasts express
both GC-A and GC-B, and that ANP, BNP, and CNP similarly increased the intracellular
cGMP levels in cardiac fibroblasts [29]. Consistent with those findings, Cao and Gardiner
reported that GC-A, GC-B, and NPR-C mRNA are all expressed in cardiac fibroblasts and
that ANP, BNP, and CNP increase intracellular cGMP levels [30]. They also observed in the
same study that all three peptides suppress the DNA synthesis induced by angiotensin II,
ET-1, acidic and basic fibroblast growth factor, and insulin-like growth factor I. Tokudome
et al. also reported that CNP and 8-bromo cGMP attenuated the ET-1 secretion from cardiac
fibroblasts [28]. These observations suggest that CNP, like ANP and BNP, potentiates
antihypertrophic and anti-fibrotic effects in the heart.

4. Role of CNP in the Pathophysiology of the Heart

Several in vivo models have been used to evaluate the effects of CNP. Using a sub-
pressor angiotensin II-induced hypertrophy model in mice, Izumiya et al. showed that
the infusion of CNP (0.05 mg/kg/min), conducted simultaneously with an angiotensin
II treatment for 2 weeks, significantly attenuated the angiotensin II-induced increase in
left ventricular wall thickness, chamber dilatation, and the decrease in fractional short-
ening [31]. In addition, CNP reduced angiotensin II-induced increases in cardiomyocyte
size and suppressed hypertrophic-related gene expression, including the expression of
ANP, BNP, and the β-myosin heavy chain [31]. These cardioprotective effects occurred
without lowering systemic blood pressure. Soeki et al. examined the effects of CNP in a
rat myocardial infarction model [32]. Administration of CNP at 0.1 mg/kg/min markedly
attenuated the left ventricular remodeling and improved hemodynamics following the
induction of myocardial infarction by coronary artery ligation in Sprague-Dawley rats.
CNP significantly reduced the cross-sectional area of cardiomyocytes and reduced the
transcription of cardiac remodeling-related genes in non-infarct regions. In addition, Obata
et al. reported that CNP administration significantly improved the left ventricular sys-
tolic function and hemodynamics in a rat myocarditis model [33]. CNP also attenuated
myocarditis-induced necrosis and infiltration by inflammatory cells [33]. Again, all these
cardioprotective effects of CNP occurred without affecting arterial blood pressure. Wang
et al. used transgenic (TG) mice that were overexpressing CNP in cardiomyocytes, to
assess the effects of CNP in ischemia-reperfusion (I/R) and myocardial infarction [34].
They found that in the I/R model, the infarct size did not differ between wild-type and
TG mice. In the myocardial infarction model, the left and right ventricular hypertrophy
was attenuated in TG mice for 3 weeks post-infarction. There was also less post-infarction
necrosis, muscular degeneration, and inflammation in the TG mice [34]. Langenickel et al.
evaluated TG rats that were systemically overexpressing a dominant-negative GC-B mutant,
which selectively reduced GC-B signaling without affecting GC-A signaling [35]. These
rats showed progressive cardiac hypertrophy without fibrosis, as well as reduced bone
growth and a moderate increase in heart rate. On the other hand, there were no significant
differences in systolic, diastolic, or mean arterial pressure between TG and wild-type rats.
These in vivo findings suggest that CNP/GC-B signaling exerts protective effects in the
heart under various pathological conditions.

Recently, Michel et al. reported that by stimulating GC-B and cGMP/cGMP-dependent
kinase 1 (CGK1) signaling, CNP exerted potent protective effects in terms of heart failure,
with a preserved ejection fraction (HFpEF) [36]. HFpEF is associated with high morbidity
and mortality, comparable to heart failure, with a reduced ejection fraction (HFrEF) [37]. Al-
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though the development of new therapeutic agents has increased the treatment options for
patients with HfrEF, no specific treatment for HfpEF has yet been developed. Consequently,
there is an urgent need for the development of a therapeutic agent for the treatment of
HFpEF. Titin is known to be associated with the stiffness of cardiomyocytes and, therefore,
with overall myocardial wall tensibility and diastolic function [38]. Titin is modulated by
posttranslational modification, including the oxidation and phosphorylation of its spring
segment, while the phosphorylation of specific residues within titin by CGK1 decreases
cardiomyocyte stiffness (38). CGK1 activity and phosphorylation were markedly reduced
in tissues from patients with heart failure, in whom the passive myocyte stiffness was
increased [39]. Using a transverse aortic constriction (TAC) model in mice, Kuhn et al.
demonstrated that titin phosphorylation was enhanced in the model mice. In addition,
cardiomyocyte-specific GC-B KO mice that were subjected to TAC showed mild ventric-
ular dysfunction, together with cardiomyocyte stiffness, which effects were not seen in
wild-type mice [36]. In addition, recombinant CGK1 reduced titin phosphorylation and
ameliorated the passive stiffness of GC-B-deficient cardiomyocytes in vitro [36]. Taken
together, these observations suggest that the activation of GC-B/CGK1 pathways induced
in cardiomyocytes by CNP provides protection against the increases in cardiac stiffness
induced by pressure overload and may, thus, be effective against myocardial stiffness
in HFpEF.

Accumulating evidence suggests that heart rate (HR) is an important factor affecting
cardiac performance and prognosis in patients with heart failure. While severe bradycardia
results in low cardiac output and heart failure, sustained tachycardia worsens the prog-
noses of patients with heart failure. Large clinical trials have shown that lowering HR using
a hyperpolarization-activated cation (HCN) channel inhibitor and/or a beta-blocker im-
proves the prognosis of heart failure patients. Therefore, maintaining an optimal heart rate
is very important. Recently, Dorey et al. evaluated HR regulation and sinoatrial node (SAN)
function in heterozygous GC-B KO mice, which exhibit a slow HR, increased corrected SAN
recovery time, and slowed SAN conduction, without evidence of cardiac hypertrophy or a
change in cardiac function [40]. Hyperpolarization activated currents (If) and L-type Ca2+

currents (ICaL) were reduced due to lower levels of cGMP and the increased hydrolysis of
cAMP by phosphodiesterase III (PDE III) in the SAN. The application of 8-Br-cGMP, an
analog of cGMP, restored the If and ICaL as well as SAN conduction. These data suggest
that GC-B signaling is involved in the maintaining of normal HR and SAN function via the
cGMP/PDE III/cAMP signaling mechanism [40].

5. Role of CNP in the Regulation of Vascular Tone and Blood Pressure

CNP is mainly expressed by endothelial cells, whereas GC-B is co-expressed with
GC-A in nearly all cell types within the cardiovascular system [41]. Within the vascular
wall, high concentrations of GC-B are detected in endothelial cells, as well as the adjacent
smooth muscle cells and fibroblasts [42]. CNP induces vasodilatation, not only by stim-
ulating GC-B/cGMP but also by activating Gi-coupled NPR-C receptors, which leads to
the hyperpolarization of vascular smooth muscle cells [43]. However, the vasodilatation
and reduction of blood pressure induced by CNP are much smaller than those elicited by
ANP [44]. For that reason, it had previously been thought that the CNP/GC-B system is
less important than ANP/GC-A for the regulation of vascular tone. However, we recently
demonstrated that endogenous endothelial-derived CNP contributes to chronic blood
pressure regulation in vivo [45]. As mentioned above, systemic CNP KO leads to early
death due to osteochondral abnormality. We therefore generated and analyzed endothelial-
specific CNP KO (CNP ecKO) and vascular smooth muscle cell-specific GC-B KO (GC-B
smcKO) mice. These mice did not exhibit the skeletal abnormality or early death seen in
systemic CNP or GC-B KO mice. Instead, CNP ecKO mice showed significantly increased
systemic blood pressure and the enhanced acute response of blood pressure elevation to
nitric oxide synthetase inhibition. In addition, acetylcholine-induced and endothelium-
dependent vasorelaxation were impaired in rings of the mesenteric artery from CNP ecKO
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mice. By contrast, blood pressures in GC-B smcKO mice were similar to those in control
mice, and the acetylcholine-induced vasorelaxation of mesenteric arterial rings was pre-
served. However, CNP-induced acute vasorelaxation was almost completely abolished in
GC-B smcKO mice. These results suggest that endothelial-derived CNP contributes to the
chronic regulation of vascular tone and systemic blood pressure, independently of GC-B,
in the vascular smooth muscle [45].

Other groups have also reported the significance of CNP in the regulation of vascular
tone and blood pressure. Moyes et al. reported that whereas female CNP ecKO mice
show endothelial dysfunction and hypertension, the males do not. Moreover, ApoE KO
mice showed a greater formation of atherosclerotic plaque and aneurysms than ApoE KO
mice crossed with CNP ecKO mice [46]. They also detected endothelial dysfunction in the
mesenteric arteries and a hypertensive phenotype in female NPR-C KO mice, but not in the
males. In addition, exogenous CNP-induced hypotensive responses were diminished in
NPR-C KO mice, suggesting that CNP/NPR-C signaling contributes to the maintenance of
vascular homeostasis. Spiranec et al. reported that CNP-induced GC-B/cGMP signaling in
microvascular smooth muscle cells and pericytes plays an essential role in the maintenance
of normal microvascular resistance and blood pressure [47]. These investigators evaluated
endothelial cell-specific GC-B KO mice, as well as precapillary arteriolar smooth muscle
cell- and capillary pericyte-specific GC-B KO mice. GC-B is normally expressed in both
endothelial cells and pericytes. The vasodilatory effect of CNP was abolished in mice
lacking GC-B in the microcirculatory smooth muscle and pericytes but was preserved in
mice lacking GC-B in the endothelial cells. CNP-mediated GC-B/cGMP signaling leads
to the activation of CGK1 and the inhibition of phosphodiesterase IIIA (PDE IIIA), which,
in turn, leads to the phosphorylation of vasodilator-stimulated phosphoprotein at both
Ser239 (the CGK1-specific) and Ser157 (the cAMP/PKA-specific site). All these effects
were abolished in GC-B-lacking pericytes. In mice lacking GC-B in the microcirculatory
smooth muscle cells and pericytes, both peripheral vascular resistance and elevated blood
pressure were elevated [47]. Despite some differences, these results indicate that CNP
contributes to the maintenance of blood pressure, although further investigation of the
target receptors and cell types involved is needed. Until now, no therapeutic agents
have targeted CNP-related signaling. However, as mentioned above, CNP is degraded
by neprilysin and its affinity is rather higher than that of other natriuretic peptides, so
inhibiting NEP may enhance the action of CNP. Indeed, it has been reported that the plasma
concentration of CNP in healthy subjects increases when sacubitril/valsartan, which is an
angiotensin receptor–neprilysin inhibitor (ARNI), is administered [48]. Recently, ARNI
has been clinically applied for hypertensive patients and has actually shown a favorable
blood-pressure-lowering effect [49]; CNP, as well as ANP, may be involved in this effect.
In combination with the data from the basic research described above, it is possible that
CNP-related signals could be applied as a drug for blood-pressure control.

6. Role of CNP in Vascular Remodeling and Angiogenesis

Yamahara et al. reported that CNP acts via CGK1 to play a key role in angiogenesis [50].
CGK1 KO mice that were subjected to hindlimb ischemia (HLI), a well-established ischemia
model, showed significantly poorer limb perfusion than wild-type mice throughout the
28-day follow-up after the induction of ischemia. Capillary density in the ischemic limb
was lower in the CGK1 KO mice than in CGK1-overexpressing transgenic mice. Moreover,
the adenoviral vector-mediated CNP gene transfer ameliorated the hindlimb ischemia.
They also found that CNP significantly enhanced capillary network formation in vitro and
that a CGK1 inhibitor blocked that effect [50]. Using HLI-model mice, Bubb et al. observed
that pronounced vascular remodeling activity to restore an adequate blood supply occurred
over the 28 days following the induction of ischemia [51]. On day 3 after HLI, the expression
of CNP and VEGF-A mRNAs was reduced in the ischemic tissues, while the expression
of hypoxia-inducible factor 1a, Bax, VCAM-1, and interleukin-6 mRNAs was enhanced.
On the other hand, in endothelial-specific CNP KO mice, the recovery of perfusion after
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HLI was significantly impaired, with reductions in both blood vessel density and muscle
fiber regeneration. These phenotypes were reversed by the administration of CNP [51],
suggesting that CNP exerts pro-angiogenesis effects in HLI models. Those investigators also
reported the effect of endogenous endothelial CNP in a mouse carotid artery wire-injury
model. Neointimal hyperplasia, induced in response to the wire injury, was enhanced in
endothelial-specific CNP KO mice as compared to control mice. In addition, global NPR-C
KO mice exhibited a similarly exacerbated response to wire injury.

7. Role of CNP in Fibrosis in Cardiovascular Disease

Horio et al. reported that cardiac fibroblasts from adult rats secrete immunoreactive
CNP in response to several humoral factors, including transforming growth factor-β1, basic
fibroblast growth factor, and endothelin-1 [26]. The expression of both CNP and GC-B
mRNA has been detected in cardiac fibroblasts and, by stimulating cGMP production, CNP
inhibited both DNA and collagen synthesis in cardiac fibroblasts to a greater extent than did
ANP and BNP [26]. It also appears that NPR-C may be involved in the anti-fibrotic effect of
CNP that is seen in cultured human cardiomyocytes [52]. The NPR-C antagonist cANF4-
28 blocked the BNP-mediated inhibition of cardiac fibroblast proliferation, but the GC-A/B
inhibitor HS-142-1 did not do so. Moreover, in a mouse angiotensin II infusion model, CNP
reduced the angiotensin II-induced increases in interstitial fibrosis and suppressed fibrosis-
related gene expression, including type I and type III collagen [31]. Soeki et al. reported that
the continuous infusion of CNP for 2 weeks after myocardial infarction suppressed cardiac
fibrosis and attenuated left ventricular dysfunction [32], while Sangralingham et al. found
that circulating CNP declined during aging and that the effect was strongly negatively
correlated with left ventricular levels of interstitial fibrosis in rats [53].

CNP also significantly attenuated bleomycin-induced pulmonary fibrosis in mice, as
indicated by significant decreases in Ashcroft scores (a histological indicator of lung fibrosis)
and lung hydroxyproline content [54]. Consistent with that finding, CNP significantly
reduced the number of macrophages, neutrophils, and lymphocytes, as well as interleukin
(IL)-1β levels in bronchoalveolar lavage fluid, suggesting the anti-fibrotic effect of CNP
reflects, in part, an anti-inflammatory effect. In addition, CNP markedly reduced the
numbers of Ki-67-positive cells within fibrotic lesions in the lung, which suggests that CNP
may directly inhibit the proliferation of pulmonary fibroblasts [54].

8. Increased Plasma CNP Levels in Heart Failure

Given that the other two natriuretic peptides, ANP and BNP, are produced in the
heart and are increased in heart failure, the relationship between CNP and heart failure
has been well studied. Based on Northern blot analysis, Takahashi et al. reported an
absence of significant levels of CNP mRNA in the ventricles of failing hearts [55]. Soon
after, Wei et al. [56] used a radioimmunoassay (with the Peninsula antibody) to measure
plasma CNP levels in heart failure patients. They found that the plasma levels of ANP and
BNP were higher in heart failure patients than in healthy controls, but the CNP levels did
not differ between the heart failure patients and the controls. On the other hand, using
immunohistochemistry, they detected CNP in the myocardium of both the controls and
the heart failure patients, and the levels were higher in the latter [56]. Because all three
natriuretic peptides have a common 17-amino-acid ring structure and strong sequence
homology, antibodies against CNP may cross-react with ANP or BNP. Consequently, when
tissue or plasma concentrations of ANP or BNP are very high, measurements made us-
ing a CNP antibody must be interpreted cautiously, as even a slight cross-reaction with
ANP or BNP could erroneously enhance what is thought to be CNP staining [57]. When
Cargill et al. [58] measured plasma CNP levels in heart failure patients using a commercial
radioimmunoassay (Peninsula), they detected no increase in plasma CNP levels, compared
to controls. Likewise, Hama et al. [59] used a CNP radioimmunoassay developed in-house
and found that plasma CNP levels were not increased in heart failure patients, compared to
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controls. On the other hand, they showed that plasma CNP levels were elevated compared
to controls in patients with cor pulmonare, sepsis, or renal failure [58,59].

Within the tissues, ProCNP1-103, a CNP precursor, is processed by furin into N-
terminal proCNP1-50 (NT-proCNP) and CNP51-103 (CNP-53). CNP-53 is then further
processed by an unknown enzyme into CNP82-103 (CNP-22) and CNP51-81, after which
both are secreted into the blood. Prickett et al. measured plasma NT-proCNP levels in
heart failure patients using an NT-proCNP radioimmunoassay developed in-house, in
combination with size-exclusion HPLC and showed that NT-proCNP levels were higher
in heart failure patients than in controls [60]. Importantly, the NT-proCNP antibody did
not cross-react with N-terminal proANP or N-terminal proBNP, due to the low homology
among the three N-terminal peptides. Moreover, the longer half-life of NT-proCNP makes
it more detectable than CNP. The same group also investigated the potential for plasma
NT-proCNP to serve as a marker of heart failure in symptomatic patients with recent-
onset dyspnea and/or peripheral edema. They measured plasma NT-proCNP and other
plasma vasoactive hormones, as well as echocardiographic indices. They found that
plasma NT-proCNP is elevated in heart failure patients, compared with controls, and
that plasma NT-proCNP levels correlate with the levels of other hormones but not with
echocardiographic indices [61]. Karla et al. [62] measured plasma CNP and BNP levels in
the coronary sinus and aorta in heart failure patients and showed that there is a stepping-up
of plasma CNP levels in the coronary sinus compared to the aorta, indicating the production
of CNP in the failing heart. However, the increase in plasma CNP (+29%, 1.04 pg/mL) is
substantially smaller than the increase in plasma BNP (+57%, 49 pg/mL). The finding that
plasma CNP levels were higher in the coronary sinus than in the aorta was replicated in a
later study, although it remains unclear which cells in the heart secrete CNP [63,64]. Horio
et al. [26] examined the expression of CNP and GC-B mRNA in cultured cardiomyocytes
and fibroblasts. They found that fibroblasts express both CNP and GC-B mRNA, whereas
cardiomyocytes express only NPR-B mRNA. They then used a CNP radioimmunoassay,
combined with HPLC, to analyze a culture medium conditioned by fibroblasts and found
that fibroblasts secrete authentic CNP, as the elution time was the same as that of CNP-22.
Collectively, these results suggest that, unlike ANP and BNP, CNP is not a cardiac hormone
that is produced and secreted by cardiomyocytes.

9. The Source and Clinical Significance of CNP in Heart Failure

To investigate CNP production in organs other than the heart, Charles et al. [65]
carried out trans-organ arteriovenous sampling in the liver, heart, hindlimb, and kidney
in both control and heart failure sheep and measured CNP, NT-proCNP, ANP, and BNP.
They found that ANP and BNP levels were significantly higher on the venous side of the
heart than on the arterial side and that ANP and BNP levels were lower on the venous side
in all other organs tested. This indicates that ANP and BNP are secreted from the heart,
while the other organs are targets of the two peptides. By contrast, CNP and NT-CNP
levels were both slightly higher on the venous side of the liver, heart, hindlimb, and kidney
than on the arterial side, suggesting the production of CNP and NT-CNP in all these
organs. That finding was consistent with an earlier study, in which arteriovenous samples
were collected from various organs to measure adrenomedullin [66]. Adrenomedullin
is highly expressed in vascular endothelial and smooth muscle cells, and the source of
plasma adrenomedullin is thought to be the vascular wall. Therefore, the results with CNP
and NT-proCNP are consistent with the hypothesis that the source of plasma CNP is the
endothelium. The levels of both CNP and adrenomedullin are increased in proportion to
the severity of heart failure; however, the magnitude of that increase is modest, and plasma
CNP and adrenomedullin often only modestly correlate with measures of cardiac function,
such as LVEF [61,67]. Furthermore, because both CNP and adrenomedullin mRNA are
strongly induced in vascular endothelial cells by cytokines, such as tumor necrosis factor-α
or interleukin-1β [68,69], increased plasma CNP levels may reflect a chronic inflammatory
state in heart failure [70]. The aforementioned observation that CNP or NT-proCNP is
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modestly elevated in heart failure and often correlates modestly with the indices of cardiac
function was replicated in later studies [71–73]. In addition, with exercise therapy, plasma
CNP levels reportedly decreased along with BNP levels and symptoms [74]. Lok et al.
investigated the prognostic power of the NT-proCNP in patients with chronic heart failure
and found that NT-proCNP is a strong independent marker of outcome in patients with
HFpEF, but not in those with HFrEF [75]. Among patients treated with sacubitril/valsartan,
it was observed that those with baseline CNP levels below the median exhibited an overall
increase in CNP levels at the end of the study, whereas those with CNP levels above the
median at baseline exhibited a decrease in CNP levels at the end of the study [76].

Thus, with advances in detection methods, it has become clear that low concentrations
of CNP and NT-proCNP, mainly of vascular endothelial origin, are present in the blood
and are increased in proportion to the severity of heart failure, but the change is modest. In
addition, a more recent study using a genetically engineered mouse model has shown that
a small amount of cardiac-derived CNP may affect cardiac structure and function in heart
failure [77]. The exact cause of the increased CNP in heart failure is still unknown, but it
may reflect the inflammatory status and may be a useful prognostic indicator in patients
with HFpEF. Further study will be needed to elucidate the exact meaning of the increased
plasma CNP that is seen in heart failure.

10. Role of CNP in Pathogenesis in Pulmonary Arterial Hypertension

Pulmonary arterial hypertension (PAH) is a progressive syndrome with a poor prog-
nosis. It is characterized by the marked remodeling of the pulmonary vasculature and a
progressive rise in pulmonary vascular load, leading to right ventricular hypertrophy and
remodeling [78]. The pathological features of PAH are the remodeling of the three layers of
the distal pulmonary artery, which involves the uncontrolled growth of endothelial and
smooth muscle cells and fibroblasts and infiltration by inflammatory cells, primarily into
precapillary vessels [78], which results in luminal narrowing or the complete occlusion of
small vessels. Currently, several therapeutic agents are available for the treatment of PAH.
However, their effect on prognosis has not been satisfactory, and there is an urgent need to
identify a novel therapeutic target and new drugs to act via that target.

Previous studies showed that ANP modulates pulmonary vascular tone in rats with
hypoxia-induced PAH [79,80]. Chronic intravenous infusion of ANP during chronic hy-
poxia slows the development of pulmonary hypertension and right ventricular enlarge-
ment [81], while the neutralization of endogenous ANP with a monoclonal antibody
exacerbates hypoxia-induced PAH in adult rats [82]. This suggests that ANP exerts protec-
tive effects against pulmonary hypertension. BNP also exerts potent diuretic and systemic
vasorelaxant effects via GC-A. An earlier study showed that BNP has a vasorelaxant effect
on preconstricted thoracic aortic rings and pulmonary arterial rings, similar to that of
ANP [83]. In addition, the chronic infusion of BNP reportedly prevents hypoxia-induced
PAH more effectively than does ANP [84]. Collectively, these results suggest that both
endogenous and exogenous ANP and BNP play an important role in preventing PAH. This
hypothesis is supported by the observation that chronic hypoxia induces a pronounced
and significantly greater increase in right ventricular hypertrophy and pressure in GC-A
KO mice than in wild-type mice [85]. In addition, Klinger et al. showed that although CNP
is a less potent vasodilator than ANP, chronic hypoxia increases plasma CNP levels [86].

Further investigations into the effectiveness of CNP in animal models of PAH have pro-
duced varying results. Itoh et al. reported that the continuous infusion of CNP ameliorated
methacholine challenge-test-induced PAH in rats through regenerative and anti-apoptotic
effects on endothelial cells, as well as anti-inflammatory and anti-fibrinolytic effects [87].
On the other hand, Casserly et al. reported that the continuous infusion of CNP did not
affect the development of hypoxia-induced PAH [88]. In those two studies, rats were
intravenously administered CNP in an identical fashion, using osmotic pumps. In addition,
Nawa et al. confirmed that PAH was relieved by a constitutively active form of GC-B,
which induced the massive simulation of cGMP synthesis, in a rat model where PAH was
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induced using the VEGF receptor inhibitor, SU5416, and hypoxia [89]. Thus, the effect of
CNP may also depend on the degree of intensity of its action and the pathophysiology of
pulmonary hypertension. A clear understanding of the role played by CNP in PAH will
require further investigation.

11. Conclusions and Perspectives

CNP was discovered to be the third natriuretic peptide, and its actions and biological
significance have been studied in various ways. However, because they were discovered
earlier, the status of the research and clinical applications of the ANP/ and BNP/GC-A
systems are much beyond that of the CNP/GC-B system. Nevertheless, CNP has been
shown not only to have similarities to ANP and BNP but also to have unique characteristics;
its effects on the bone cartilage system have led to its clinical application in that context.
In addition, with the recent advent of angiotensin receptor-neprilysin inhibitors (ARNI),
which increase the endogenous levels of natriuretic peptides, the importance of natriuretic
peptides, including CNP, is being reassessed (Figure 3). Therefore, we anticipate that
further research into the roles of CNP in both normal physiological and pathophysiological
processes will lead to its widespread application as a therapeutic and diagnostic agent,
used in the treatment of cardiovascular diseases.

Biology 2022, 11, x FOR PEER REVIEW 12 of 16 
 

 

physiological and pathophysiological processes will lead to its widespread application as 
a therapeutic and diagnostic agent, used in the treatment of cardiovascular diseases.  

 
Figure 3. Significance of CNP in the cardiovascular system. 

Author Contributions: Conceptualization, Y.N. and T.N.; writing—original draft preparation, Y.N.; 
writing—review and editing, T.N. and Y.N. All authors have read and agreed to the published 
version of the manuscript. 

Funding: This research was supported by Grants-in-Aid for Scientific Research from the Japan 
Society for the Promotion of Science, JP22K08099 (Nakagawa) and JP21K08126 (Nishikimi). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Acknowledgments: We thank Ayako Ohta for their excellent secretarial work. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Flynn, T.G.; de Bold, M.L.; de Bold, A.J. The amino acid sequence of an atrial peptide with potent diuretic and natriuretic 

properties. Biochem. Biophys. Res. Commun. 1983, 117, 859–865. https://doi.org/10.1016/0006-291x(83)91675-3. 
2. Kangawa, K.; Matsuo, H. Purification and complete amino acid sequence of alpha-human atrial natriuretic polypeptide (alpha-

hANP). Biochem. Biophys. Res. Commun. 1984, 118, 131–139. https://doi.org/10.1016/0006-291x(84)91077-5. 
3. Sudoh, T.; Kangawa, K.; Minamino, N.; Matsuo, H. A new natriuretic peptide in porcine brain. Nature 1988, 332, 78–81. 

https://doi.org/10.1038/332078a0. 
4. Sudoh, T.; Minamino, N.; Kangawa, K.; Matsuo, H. C-type natriuretic peptide (CNP): A new member of natriuretic peptide 

family identified in porcine brain. Biochem. Biophys. Res. Commun. 1990, 168, 863–870. https://doi.org/10.1016/0006-
291x(90)92401-k. 

5. Hata, N.; Seino, Y.; Tsutamoto, T.; Hiramitsu, S.; Kaneko, N.; Yoshikawa, T.; Yokoyama, H.; Tanaka, K.; Mizuno, K.; Nejima, J.; 
et al. Effects of carperitide on the long-term prognosis of patients with acute decompensated chronic heart failure: The 
PROTECT multicenter randomized controlled study. Circ. J. 2008, 72, 1787–1793. https://doi.org/10.1253/circj.cj-08-0130. 

6. Kawase, Y.; Hata, R.; Tada, T.; Katoh, H.; Kadota, K. Effects of Carperitide on Degree of Pulmonary Congestion in Treatment of 
Acute Heart Failure. Circ. J. 2018, 82, 2079–2088. https://doi.org/10.1253/circj.CJ-18-0057. 

7. Nogi, K.; Ueda, T.; Matsue, Y.; Nogi, M.; Ishihara, S.; Nakada, Y.; Kawakami, R.; Kagiyama, N.; Kitai, T.; Oishi, S.; et al. Effect of 
carperitide on the 1 year prognosis of patients with acute decompensated heart failure. ESC Heart Fail. 2022, 9, 1061–1070. 
https://doi.org/10.1002/ehf2.13770. 

  

Cardiomyocyte

CNP Fibroblast 

Endothelial cell

Smooth muscle cell

Anti-fibrosis

Anti-hypertrophy

Anti-proliferation

Anti-hypertension

Anti-remodeling

Anti-cardiac dysfunction

Anti-inflammation

Anti-myocardial stiffness

Pro-angiogensis

Fibroblast 

Endothelial cell

Cardiomyocyte ?

Cardiovascular effects

Target cells
in cardiovascular 

system
Source

in cardiovascular 
system

etc.

etc.

etc.

Exogenous 
administration

or 
drug potentiating
endogenous CNP 

(ARNI?)
etc.

Figure 3. Significance of CNP in the cardiovascular system.

Author Contributions: Conceptualization, Y.N. and T.N.; writing—original draft preparation, Y.N.;
writing—review and editing, T.N. and Y.N. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was supported by Grants-in-Aid for Scientific Research from the Japan Society
for the Promotion of Science, JP22K08099 (Nakagawa) and JP21K08126 (Nishikimi).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank Ayako Ohta for their excellent secretarial work.

Conflicts of Interest: The authors declare no conflict of interest.



Biology 2022, 11, 986 12 of 15

References
1. Flynn, T.G.; de Bold, M.L.; de Bold, A.J. The amino acid sequence of an atrial peptide with potent diuretic and natriuretic

properties. Biochem. Biophys. Res. Commun. 1983, 117, 859–865. [CrossRef]
2. Kangawa, K.; Matsuo, H. Purification and complete amino acid sequence of alpha-human atrial natriuretic polypeptide (alpha-

hANP). Biochem. Biophys. Res. Commun. 1984, 118, 131–139. [CrossRef]
3. Sudoh, T.; Kangawa, K.; Minamino, N.; Matsuo, H. A new natriuretic peptide in porcine brain. Nature 1988, 332, 78–81. [CrossRef]
4. Sudoh, T.; Minamino, N.; Kangawa, K.; Matsuo, H. C-type natriuretic peptide (CNP): A new member of natriuretic peptide family

identified in porcine brain. Biochem. Biophys. Res. Commun. 1990, 168, 863–870. [CrossRef]
5. Hata, N.; Seino, Y.; Tsutamoto, T.; Hiramitsu, S.; Kaneko, N.; Yoshikawa, T.; Yokoyama, H.; Tanaka, K.; Mizuno, K.; Nejima, J.;

et al. Effects of carperitide on the long-term prognosis of patients with acute decompensated chronic heart failure: The PROTECT
multicenter randomized controlled study. Circ. J. 2008, 72, 1787–1793. [CrossRef] [PubMed]

6. Kawase, Y.; Hata, R.; Tada, T.; Katoh, H.; Kadota, K. Effects of Carperitide on Degree of Pulmonary Congestion in Treatment of
Acute Heart Failure. Circ. J. 2018, 82, 2079–2088. [CrossRef]

7. Nogi, K.; Ueda, T.; Matsue, Y.; Nogi, M.; Ishihara, S.; Nakada, Y.; Kawakami, R.; Kagiyama, N.; Kitai, T.; Oishi, S.; et al. Effect
of carperitide on the 1 year prognosis of patients with acute decompensated heart failure. ESC Heart Fail. 2022, 9, 1061–1070.
[CrossRef]

8. Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; Gonzalez-Juanatey, J.R.; Harjola, V.P.;
Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for
the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the
special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [CrossRef]

9. Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E., Jr.; Colvin, M.M.; Drazner, M.H.; Filippatos, G.S.; Fonarow, G.C.;
Givertz, M.M.; et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart
Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines
and the Heart Failure Society of America. Circulation 2017, 136, e137–e161. [CrossRef]

10. Tsutsui, H.; Ide, T.; Ito, H.; Kihara, Y.; Kinugawa, K.; Kinugawa, S.; Makaya, M.; Murohara, T.; Node, K.; Saito, Y.; et al. JCS/JHFS
2021 Guideline Focused Update on Diagnosis and Treatment of Acute and Chronic Heart Failure. J. Card. Fail. 2021, 27, 1404–1444.
[CrossRef]

11. Chusho, H.; Tamura, N.; Ogawa, Y.; Yasoda, A.; Suda, M.; Miyazawa, T.; Nakamura, K.; Nakao, K.; Kurihara, T.; Komatsu, Y.; et al.
Dwarfism and early death in mice lacking C-type natriuretic peptide. Proc. Natl. Acad. Sci. USA 2001, 98, 4016–4021. [CrossRef]
[PubMed]

12. Savarirayan, R.; Irving, M.; Bacino, C.A.; Bostwick, B.; Charrow, J.; Cormier-Daire, V.; Le Quan Sang, K.H.; Dickson, P.; Harmatz,
P.; Phillips, J.; et al. C-Type Natriuretic Peptide Analogue Therapy in Children with Achondroplasia. N. Engl. J. Med. 2019, 381,
25–35. [CrossRef] [PubMed]

13. Wu, C.; Wu, F.; Pan, J.; Morser, J.; Wu, Q. Furin-mediated processing of Pro-C-type natriuretic peptide. J. Biol. Chem. 2003, 278,
25847–25852. [CrossRef] [PubMed]

14. Hayek, S.; Nemer, M. Cardiac natriuretic peptides: From basic discovery to clinical practice. Cardiovasc. Ther. 2011, 29, 362–376.
[CrossRef]

15. Zakeri, R.; Sangaralingham, S.J.; Sandberg, S.M.; Heublein, D.M.; Scott, C.G.; Burnett, J.C., Jr. Urinary C-type natriuretic peptide:
A new heart failure biomarker. JACC Heart Fail. 2013, 1, 170–177. [CrossRef]

16. Matsuo, A.; Nagai-Okatani, C.; Nishigori, M.; Kangawa, K.; Minamino, N. Natriuretic peptides in human heart: Novel insight
into their molecular forms, functions, and diagnostic use. Peptides 2019, 111, 3–17. [CrossRef]

17. Moyes, A.J.; Hobbs, A.J. C-type Natriuretic Peptide: A Multifaceted Paracrine Regulator in the Heart and Vasculature. Int. J. Mol.
Sci. 2019, 20, 2281. [CrossRef]

18. Komatsu, Y.; Chusho, H.; Tamura, N.; Yasoda, A.; Miyazawa, T.; Suda, M.; Miura, M.; Ogawa, Y.; Nakao, K. Significance of C-type
natriuretic peptide (CNP) in endochondral ossification: Analysis of CNP knockout mice. J. Bone Miner. Metab. 2002, 20, 331–336.
[CrossRef]

19. Kojima, M.; Minamino, N.; Kangawa, K.; Matsuo, H. Cloning and sequence analysis of a cDNA encoding a precursor for rat
C-type natriuretic peptide (CNP). FEBS Lett. 1990, 276, 209–213. [CrossRef]

20. Tawaragi, Y.; Fuchimura, K.; Tanaka, S.; Minamino, N.; Kangawa, K.; Matsuo, H. Gene and precursor structures of human C-type
natriuretic peptide. Biochem. Biophys. Res. Commun. 1991, 175, 645–651. [CrossRef]

21. Kuhn, M. Molecular Physiology of Membrane Guanylyl Cyclase Receptors. Physiol. Rev. 2016, 96, 751–804. [CrossRef] [PubMed]
22. Murthy, K.S.; Teng, B.Q.; Zhou, H.; Jin, J.G.; Grider, J.R.; Makhlouf, G.M. G(i-1)/G(i-2)-dependent signaling by single-

transmembrane natriuretic peptide clearance receptor. Am. J. Physiol. Gastrointest. Liver Physiol. 2000, 278, G974–G980.
[CrossRef] [PubMed]

23. Kenny, A.J.; Bourne, A.; Ingram, J. Hydrolysis of human and pig brain natriuretic peptides, urodilatin, C-type natriuretic peptide
and some C-receptor ligands by endopeptidase-24.11. Biochem. J. 1993, 291, 83–88. [CrossRef] [PubMed]

24. Bayes-Genis, A.; Barallat, J.; Richards, A.M. A Test in Context: Neprilysin: Function, Inhibition, and Biomarker. J. Am. Coll.
Cardiol. 2016, 68, 639–653. [CrossRef]

http://doi.org/10.1016/0006-291X(83)91675-3
http://doi.org/10.1016/0006-291X(84)91077-5
http://doi.org/10.1038/332078a0
http://doi.org/10.1016/0006-291X(90)92401-K
http://doi.org/10.1253/circj.CJ-08-0130
http://www.ncbi.nlm.nih.gov/pubmed/18812677
http://doi.org/10.1253/circj.CJ-18-0057
http://doi.org/10.1002/ehf2.13770
http://doi.org/10.1093/eurheartj/ehw128
http://doi.org/10.1161/CIR.0000000000000509
http://doi.org/10.1016/j.cardfail.2021.04.023
http://doi.org/10.1073/pnas.071389098
http://www.ncbi.nlm.nih.gov/pubmed/11259675
http://doi.org/10.1056/NEJMoa1813446
http://www.ncbi.nlm.nih.gov/pubmed/31269546
http://doi.org/10.1074/jbc.M301223200
http://www.ncbi.nlm.nih.gov/pubmed/12736257
http://doi.org/10.1111/j.1755-5922.2010.00152.x
http://doi.org/10.1016/j.jchf.2012.12.003
http://doi.org/10.1016/j.peptides.2018.08.006
http://doi.org/10.3390/ijms20092281
http://doi.org/10.1007/s007740200048
http://doi.org/10.1016/0014-5793(90)80544-s
http://doi.org/10.1016/0006-291X(91)91614-I
http://doi.org/10.1152/physrev.00022.2015
http://www.ncbi.nlm.nih.gov/pubmed/27030537
http://doi.org/10.1152/ajpgi.2000.278.6.G974
http://www.ncbi.nlm.nih.gov/pubmed/10859228
http://doi.org/10.1042/bj2910083
http://www.ncbi.nlm.nih.gov/pubmed/8097089
http://doi.org/10.1016/j.jacc.2016.04.060


Biology 2022, 11, 986 13 of 15

25. Del Ry, S.; Cabiati, M.; Vozzi, F.; Battolla, B.; Caselli, C.; Forini, F.; Segnani, C.; Prescimone, T.; Giannessi, D.; Mattii, L. Expression
of C-type natriuretic peptide and its receptor NPR-B in cardiomyocytes. Peptides 2011, 32, 1713–1718. [CrossRef]

26. Horio, T.; Tokudome, T.; Maki, T.; Yoshihara, F.; Suga, S.; Nishikimi, T.; Kojima, M.; Kawano, Y.; Kangawa, K. Gene expression,
secretion, and autocrine action of C-type natriuretic peptide in cultured adult rat cardiac fibroblasts. Endocrinology 2003, 144,
2279–2284. [CrossRef]

27. Nishikimi, T.; Maeda, N.; Matsuoka, H. The role of natriuretic peptides in cardioprotection. Cardiovasc. Res. 2006, 69, 318–328.
[CrossRef]

28. Tokudome, T.; Horio, T.; Soeki, T.; Mori, K.; Kishimoto, I.; Suga, S.; Yoshihara, F.; Kawano, Y.; Kohno, M.; Kangawa, K.
Inhibitory effect of C-type natriuretic peptide (CNP) on cultured cardiac myocyte hypertrophy: Interference between CNP and
endothelin-1 signaling pathways. Endocrinology 2004, 145, 2131–2140. [CrossRef]

29. Fujisaki, H.; Ito, H.; Hirata, Y.; Tanaka, M.; Hata, M.; Lin, M.; Adachi, S.; Akimoto, H.; Marumo, F.; Hiroe, M. Natriuretic peptides
inhibit angiotensin II-induced proliferation of rat cardiac fibroblasts by blocking endothelin-1 gene expression. J. Clin. Investig.
1995, 96, 1059–1065. [CrossRef]

30. Cao, L.; Gardner, D.G. Natriuretic peptides inhibit DNA synthesis in cardiac fibroblasts. Hypertension 1995, 25, 227–234. [CrossRef]
31. Izumiya, Y.; Araki, S.; Usuku, H.; Rokutanda, T.; Hanatani, S.; Ogawa, H. Chronic C-Type Natriuretic Peptide Infusion Attenuates

Angiotensin II-Induced Myocardial Superoxide Production and Cardiac Remodeling. Int. J. Vasc. Med. 2012, 2012, 246058.
[CrossRef] [PubMed]

32. Soeki, T.; Kishimoto, I.; Okumura, H.; Tokudome, T.; Horio, T.; Mori, K.; Kangawa, K. C-type natriuretic peptide, a novel
antifibrotic and antihypertrophic agent, prevents cardiac remodeling after myocardial infarction. J. Am. Coll. Cardiol. 2005, 45,
608–616. [CrossRef] [PubMed]

33. Obata, H.; Yanagawa, B.; Tanaka, K.; Ohnishi, S.; Kataoka, M.; Miyahara, Y.; Ishibashi-Ueda, H.; Kodama, M.; Aizawa, Y.;
Kangawa, K.; et al. CNP infusion attenuates cardiac dysfunction and inflammation in myocarditis. Biochem. Biophys. Res. Commun.
2007, 356, 60–66. [CrossRef] [PubMed]

34. Wang, Y.; de Waard, M.C.; Sterner-Kock, A.; Stepan, H.; Schultheiss, H.P.; Duncker, D.J.; Walther, T. Cardiomyocyte-restricted
over-expression of C-type natriuretic peptide prevents cardiac hypertrophy induced by myocardial infarction in mice. Eur. J.
Heart Fail. 2007, 9, 548–557. [CrossRef] [PubMed]

35. Langenickel, T.H.; Buttgereit, J.; Pagel-Langenickel, I.; Lindner, M.; Monti, J.; Beuerlein, K.; Al-Saadi, N.; Plehm, R.; Popova, E.;
Tank, J.; et al. Cardiac hypertrophy in transgenic rats expressing a dominant-negative mutant of the natriuretic peptide receptor
B. Proc. Natl. Acad. Sci. USA 2006, 103, 4735–4740. [CrossRef]

36. Michel, K.; Herwig, M.; Werner, F.; Spiranec Spes, K.; Abesser, M.; Schuh, K.; Dabral, S.; Mugge, A.; Baba, H.A.; Skryabin, B.V.;
et al. C-type natriuretic peptide moderates titin-based cardiomyocyte stiffness. JCI Insight 2020, 5, e139910. [CrossRef]

37. Tsuchihashi-Makaya, M.; Hamaguchi, S.; Kinugawa, S.; Yokota, T.; Goto, D.; Yokoshiki, H.; Kato, N.; Takeshita, A.; Tsutsui, H.;
Investigators, J.-C. Characteristics and outcomes of hospitalized patients with heart failure and reduced vs preserved ejection
fraction. Report from the Japanese Cardiac Registry of Heart Failure in Cardiology (JCARE-CARD). Circ. J. 2009, 73, 1893–1900.
[CrossRef]

38. Koser, F.; Loescher, C.; Linke, W.A. Posttranslational modifications of titin from cardiac muscle: How, where, and what for? FEBS
J. 2019, 286, 2240–2260. [CrossRef]

39. Van Heerebeek, L.; Hamdani, N.; Falcao-Pires, I.; Leite-Moreira, A.F.; Begieneman, M.P.; Bronzwaer, J.G.; van der Velden, J.;
Stienen, G.J.; Laarman, G.J.; Somsen, A.; et al. Low myocardial protein kinase G activity in heart failure with preserved ejection
fraction. Circulation 2012, 126, 830–839. [CrossRef]

40. Dorey, T.W.; Mackasey, M.; Jansen, H.J.; McRae, M.D.; Bohne, L.J.; Liu, Y.; Belke, D.D.; Atkinson, L.; Rose, R.A. Natriuretic peptide
receptor B maintains heart rate and sinoatrial node function via cyclic GMP-mediated signaling. Cardiovasc. Res. 2021, 118,
1917–1931. [CrossRef]

41. Vaandrager, A.B.; Bot, A.G.; Ruth, P.; Pfeifer, A.; Hofmann, F.; De Jonge, H.R. Differential role of cyclic GMP-dependent protein
kinase II in ion transport in murine small intestine and colon. Gastroenterology 2000, 118, 108–114. [CrossRef]

42. Kuhn, M.; Voss, M.; Mitko, D.; Stypmann, J.; Schmid, C.; Kawaguchi, N.; Grabellus, F.; Baba, H.A. Left ventricular assist
device support reverses altered cardiac expression and function of natriuretic peptides and receptors in end-stage heart failure.
Cardiovasc. Res. 2004, 64, 308–314. [CrossRef] [PubMed]

43. Chauhan, S.D.; Nilsson, H.; Ahluwalia, A.; Hobbs, A.J. Release of C-type natriuretic peptide accounts for the biological activity of
endothelium-derived hyperpolarizing factor. Proc. Natl. Acad. Sci. USA 2003, 100, 1426–1431. [CrossRef]

44. Lopez, M.J.; Garbers, D.L.; Kuhn, M. The guanylyl cyclase-deficient mouse defines differential pathways of natriuretic peptide
signaling. J. Biol. Chem. 1997, 272, 23064–23068. [CrossRef] [PubMed]

45. Nakao, K.; Kuwahara, K.; Nishikimi, T.; Nakagawa, Y.; Kinoshita, H.; Minami, T.; Kuwabara, Y.; Yamada, C.; Yamada, Y.;
Tokudome, T.; et al. Endothelium-Derived C-Type Natriuretic Peptide Contributes to Blood Pressure Regulation by Maintaining
Endothelial Integrity. Hypertension 2017, 69, 286–296. [CrossRef] [PubMed]

46. Moyes, A.J.; Khambata, R.S.; Villar, I.; Bubb, K.J.; Baliga, R.S.; Lumsden, N.G.; Xiao, F.; Gane, P.J.; Rebstock, A.S.; Worthington, R.J.;
et al. Endothelial C-type natriuretic peptide maintains vascular homeostasis. J. Clin. Investig. 2014, 124, 4039–4051. [CrossRef]

http://doi.org/10.1016/j.peptides.2011.06.014
http://doi.org/10.1210/en.2003-0128
http://doi.org/10.1016/j.cardiores.2005.10.001
http://doi.org/10.1210/en.2003-1260
http://doi.org/10.1172/JCI118092
http://doi.org/10.1161/01.HYP.25.2.227
http://doi.org/10.1155/2012/246058
http://www.ncbi.nlm.nih.gov/pubmed/22848833
http://doi.org/10.1016/j.jacc.2004.10.067
http://www.ncbi.nlm.nih.gov/pubmed/15708711
http://doi.org/10.1016/j.bbrc.2007.02.085
http://www.ncbi.nlm.nih.gov/pubmed/17336931
http://doi.org/10.1016/j.ejheart.2007.02.006
http://www.ncbi.nlm.nih.gov/pubmed/17407830
http://doi.org/10.1073/pnas.0510019103
http://doi.org/10.1172/jci.insight.139910
http://doi.org/10.1253/circj.CJ-09-0254
http://doi.org/10.1111/febs.14854
http://doi.org/10.1161/CIRCULATIONAHA.111.076075
http://doi.org/10.1093/cvr/cvab245
http://doi.org/10.1016/S0016-5085(00)70419-7
http://doi.org/10.1016/j.cardiores.2004.07.004
http://www.ncbi.nlm.nih.gov/pubmed/15485690
http://doi.org/10.1073/pnas.0336365100
http://doi.org/10.1074/jbc.272.37.23064
http://www.ncbi.nlm.nih.gov/pubmed/9287305
http://doi.org/10.1161/HYPERTENSIONAHA.116.08219
http://www.ncbi.nlm.nih.gov/pubmed/28049696
http://doi.org/10.1172/JCI74281


Biology 2022, 11, 986 14 of 15

47. Spiranec, K.; Chen, W.; Werner, F.; Nikolaev, V.O.; Naruke, T.; Koch, F.; Werner, A.; Eder-Negrin, P.; Dieguez-Hurtado, R.; Adams,
R.H.; et al. Endothelial C-Type Natriuretic Peptide Acts on Pericytes to Regulate Microcirculatory Flow and Blood Pressure.
Circulation 2018, 138, 494–508. [CrossRef]

48. Thonsgaard, S.; Prickett, T.C.R.; Hansen, L.H.; Wewer Albrechtsen, N.J.; Andersen, U.O.; Terzic, D.; Plomgaard, P.; Gustafsson, F.;
Goetze, J.P.; Mark, P.D. Circulating Concentrations of C-Type Natriuretic Peptides Increase with Sacubitril/Valsartan Treatment
in Healthy Young Men. Clin. Chem. 2022, 68, 713–720. [CrossRef]

49. Ruilope, L.M.; Dukat, A.; Bohm, M.; Lacourciere, Y.; Gong, J.; Lefkowitz, M.P. Blood-pressure reduction with LCZ696, a novel
dual-acting inhibitor of the angiotensin II receptor and neprilysin: A randomised, double-blind, placebo-controlled, active
comparator study. Lancet 2010, 375, 1255–1266. [CrossRef]

50. Yamahara, K.; Itoh, H.; Chun, T.H.; Ogawa, Y.; Yamashita, J.; Sawada, N.; Fukunaga, Y.; Sone, M.; Yurugi-Kobayashi, T.; Miyashita,
K.; et al. Significance and therapeutic potential of the natriuretic peptides/cGMP/cGMP-dependent protein kinase pathway in
vascular regeneration. Proc. Natl. Acad. Sci. USA 2003, 100, 3404–3409. [CrossRef]

51. Bubb, K.J.; Aubdool, A.A.; Moyes, A.J.; Lewis, S.; Drayton, J.P.; Tang, O.; Mehta, V.; Zachary, I.C.; Abraham, D.J.; Tsui, J.; et al.
Endothelial C-Type Natriuretic Peptide Is a Critical Regulator of Angiogenesis and Vascular Remodeling. Circulation 2019, 139,
1612–1628. [CrossRef] [PubMed]

52. Huntley, B.K.; Sandberg, S.M.; Noser, J.A.; Cataliotti, A.; Redfield, M.M.; Matsuda, Y.; Burnett, J.C., Jr. BNP-induced activation of
cGMP in human cardiac fibroblasts: Interactions with fibronectin and natriuretic peptide receptors. J. Cell. Physiol. 2006, 209,
943–949. [CrossRef] [PubMed]

53. Sangaralingham, S.J.; Huntley, B.K.; Martin, F.L.; McKie, P.M.; Bellavia, D.; Ichiki, T.; Harders, G.E.; Chen, H.H.; Burnett, J.C., Jr.
The aging heart, myocardial fibrosis, and its relationship to circulating C-type natriuretic Peptide. Hypertension 2011, 57, 201–207.
[CrossRef] [PubMed]

54. Murakami, S.; Nagaya, N.; Itoh, T.; Fujii, T.; Iwase, T.; Hamada, K.; Kimura, H.; Kangawa, K. C-type natriuretic peptide attenuates
bleomycin-induced pulmonary fibrosis in mice. Am. J. Physiol. Lung Cell Mol. Physiol. 2004, 287, L1172–L1177. [CrossRef]
[PubMed]

55. Takahashi, T.; Allen, P.D.; Izumo, S. Expression of A-, B-, and C-type natriuretic peptide genes in failing and developing human
ventricles. Correlation with expression of the Ca(2+)-ATPase gene. Circ. Res. 1992, 71, 9–17. [CrossRef]

56. Wei, C.M.; Heublein, D.M.; Perrella, M.A.; Lerman, A.; Rodeheffer, R.J.; McGregor, C.G.; Edwards, W.D.; Schaff, H.V.; Burnett,
J.C., Jr. Natriuretic peptide system in human heart failure. Circulation 1993, 88, 1004–1009. [CrossRef]

57. Nielsen, S.J.; Rehfeld, J.F.; Goetze, J.P. Mismeasure of C-type natriuretic peptide. Clin. Chem. 2008, 54, 225–227. [CrossRef]
58. Cargill, R.I.; Barr, C.S.; Coutie, W.J.; Struthers, A.D.; Lipworth, B.J. C-type natriuretic peptide levels in cor pulmonale and in

congestive heart failure. Thorax 1994, 49, 1247–1249. [CrossRef]
59. Hama, N.; Itoh, H.; Shirakami, G.; Suga, S.; Komatsu, Y.; Yoshimasa, T.; Tanaka, I.; Mori, K.; Nakao, K. Detection of C-type

natriuretic peptide in human circulation and marked increase of plasma CNP level in septic shock patients. Biochem. Biophys. Res.
Commun. 1994, 198, 1177–1182. [CrossRef]

60. Prickett, T.C.; Yandle, T.G.; Nicholls, M.G.; Espiner, E.A.; Richards, A.M. Identification of amino-terminal pro-C-type natriuretic
peptide in human plasma. Biochem. Biophys. Res. Commun. 2001, 286, 513–517. [CrossRef]

61. Wright, S.P.; Prickett, T.C.; Doughty, R.N.; Frampton, C.; Gamble, G.D.; Yandle, T.G.; Sharpe, N.; Richards, M. Amino-terminal
pro-C-type natriuretic peptide in heart failure. Hypertension 2004, 43, 94–100. [CrossRef] [PubMed]

62. Kalra, P.R.; Clague, J.R.; Bolger, A.P.; Anker, S.D.; Poole-Wilson, P.A.; Struthers, A.D.; Coats, A.J. Myocardial production of C-type
natriuretic peptide in chronic heart failure. Circulation 2003, 107, 571–573. [CrossRef] [PubMed]

63. Nielsen, S.J.; Rehfeld, J.F.; Pedersen, F.; Kastrup, J.; Videbaek, R.; Goetze, J.P. Measurement of pro-C-type natriuretic peptide in
plasma. Clin. Chem. 2005, 51, 2173–2176. [CrossRef] [PubMed]

64. Del Ry, S.; Maltinti, M.; Piacenti, M.; Passino, C.; Emdin, M.; Giannessi, D. Cardiac production of C-type natriuretic peptide in
heart failure. J. Cardiovasc. Med. 2006, 7, 397–399. [CrossRef]

65. Charles, C.J.; Prickett, T.C.; Espiner, E.A.; Rademaker, M.T.; Richards, A.M.; Yandle, T.G. Regional sampling and the effects
of experimental heart failure in sheep: Differential responses in A, B and C-type natriuretic peptides. Peptides 2006, 27, 62–68.
[CrossRef]

66. Nishikimi, T.; Kitamura, K.; Saito, Y.; Shimada, K.; Ishimitsu, T.; Takamiya, M.; Kangawa, K.; Matsuo, H.; Eto, T.; Omae, T.; et al.
Clinical studies on the sites of production and clearance of circulating adrenomedullin in human subjects. Hypertension 1994, 24,
600–604. [CrossRef]

67. Nishikimi, T.; Saito, Y.; Kitamura, K.; Ishimitsu, T.; Eto, T.; Kangawa, K.; Matsuo, H.; Omae, T.; Matsuoka, H. Increased plasma
levels of adrenomedullin in patients with heart failure. J. Am. Coll. Cardiol. 1995, 26, 1424–1431. [CrossRef]

68. Suga, S.; Nakao, K.; Itoh, H.; Komatsu, Y.; Ogawa, Y.; Hama, N.; Imura, H. Endothelial production of C-type natriuretic peptide
and its marked augmentation by transforming growth factor-beta. Possible existence of “vascular natriuretic peptide system”. J.
Clin. Investig. 1992, 90, 1145–1149. [CrossRef]

69. Isumi, Y.; Shoji, H.; Sugo, S.; Tochimoto, T.; Yoshioka, M.; Kangawa, K.; Matsuo, H.; Minamino, N. Regulation of adrenomedullin
production in rat endothelial cells. Endocrinology 1998, 139, 838–846. [CrossRef]

70. Dick, S.A.; Epelman, S. Chronic Heart Failure and Inflammation: What Do We Really Know? Circ. Res. 2016, 119, 159–176.
[CrossRef]

http://doi.org/10.1161/CIRCULATIONAHA.117.033383
http://doi.org/10.1093/clinchem/hvac005
http://doi.org/10.1016/S0140-6736(09)61966-8
http://doi.org/10.1073/pnas.0538059100
http://doi.org/10.1161/CIRCULATIONAHA.118.036344
http://www.ncbi.nlm.nih.gov/pubmed/30586761
http://doi.org/10.1002/jcp.20793
http://www.ncbi.nlm.nih.gov/pubmed/16986166
http://doi.org/10.1161/HYPERTENSIONAHA.110.160796
http://www.ncbi.nlm.nih.gov/pubmed/21189408
http://doi.org/10.1152/ajplung.00087.2004
http://www.ncbi.nlm.nih.gov/pubmed/15285999
http://doi.org/10.1161/01.RES.71.1.9
http://doi.org/10.1161/01.CIR.88.3.1004
http://doi.org/10.1373/clinchem.2007.096172
http://doi.org/10.1136/thx.49.12.1247
http://doi.org/10.1006/bbrc.1994.1166
http://doi.org/10.1006/bbrc.2001.5419
http://doi.org/10.1161/01.HYP.0000105623.04382.C0
http://www.ncbi.nlm.nih.gov/pubmed/14656955
http://doi.org/10.1161/01.CIR.0000047280.15244.EB
http://www.ncbi.nlm.nih.gov/pubmed/12566368
http://doi.org/10.1373/clinchem.2005.053488
http://www.ncbi.nlm.nih.gov/pubmed/16244294
http://doi.org/10.2459/01.JCM.0000228688.94709.5a
http://doi.org/10.1016/j.peptides.2005.06.019
http://doi.org/10.1161/01.HYP.24.5.600
http://doi.org/10.1016/0735-1097(95)00338-X
http://doi.org/10.1172/JCI115933
http://doi.org/10.1210/endo.139.3.5789
http://doi.org/10.1161/CIRCRESAHA.116.308030


Biology 2022, 11, 986 15 of 15

71. Del Ry, S.; Maltinti, M.; Cabiati, M.; Emdin, M.; Giannessi, D.; Morales, M.A. C-type natriuretic peptide and its relation to
non-invasive indices of left ventricular function in patients with chronic heart failure. Peptides 2008, 29, 79–82. [CrossRef]
[PubMed]

72. Del Ry, S.; Giannessi, D.; Maltinti, M.; Prontera, C.; Iervasi, A.; Colotti, C.; Emdin, M.; L’Abbate, A.; Neglia, D. Increased levels
of C-type natriuretic peptide in patients with idiopathic left ventricular dysfunction. Peptides 2007, 28, 1068–1073. [CrossRef]
[PubMed]

73. Del Ry, S.; Cabiati, M.; Stefano, T.; Catapano, G.; Caselli, C.; Prescimone, T.; Passino, C.; Emdin, M.; Giannessi, D. Comparison of
NT-proCNP and CNP plasma levels in heart failure, diabetes and cirrhosis patients. Regul. Pept. 2011, 166, 15–20. [CrossRef]
[PubMed]

74. Passino, C.; Del Ry, S.; Severino, S.; Gabutti, A.; Prontera, C.; Clerico, A.; Giannessi, D.; Emdin, M. C-type natriuretic peptide
expression in patients with chronic heart failure: Effects of aerobic training. Eur. J. Cardiovasc. Prev. Rehabil. 2008, 15, 168–172.
[CrossRef] [PubMed]

75. Lok, D.J.; Klip, I.T.; Voors, A.A.; Lok, S.I.; Bruggink-Andre de la Porte, P.W.; Hillege, H.L.; Jaarsma, T.; van Veldhuisen, D.J.; van
der Meer, P. Prognostic value of N-terminal pro C-type natriuretic peptide in heart failure patients with preserved and reduced
ejection fraction. Eur. J. Heart Fail. 2014, 16, 958–966. [CrossRef]

76. Ibrahim, N.E.; McCarthy, C.P.; Shrestha, S.; Gaggin, H.K.; Mukai, R.; Szymonifka, J.; Apple, F.S.; Burnett, J.C., Jr.; Iyer, S.; Januzzi,
J.L., Jr. Effect of Neprilysin Inhibition on Various Natriuretic Peptide Assays. J. Am. Coll. Cardiol. 2019, 73, 1273–1284. [CrossRef]

77. Moyes, A.J.; Chu, S.M.; Aubdool, A.A.; Dukinfield, M.S.; Margulies, K.B.; Bedi, K.C.; Hodivala-Dilke, K.; Baliga, R.S.; Hobbs, A.J.
C-type natriuretic peptide co-ordinates cardiac structure and function. Eur. Heart J. 2020, 41, 1006–1020. [CrossRef]

78. Hassoun, P.M. Pulmonary Arterial Hypertension. N. Engl. J. Med. 2021, 385, 2361–2376. [CrossRef]
79. Adnot, S.; Chabrier, P.E.; Brun-Buisson, C.; Viossat, I.; Braquet, P. Atrial natriuretic factor attenuates the pulmonary pressor

response to hypoxia. J. Appl. Physiol. (1985) 1988, 65, 1975–1983. [CrossRef]
80. Ou, L.C.; Yen, S.; Sardella, G.L.; Hill, N.S. Does atrial natriuretic factor protect against right ventricular overload? II. Tissue

binding. J. Appl. Physiol. (1985) 1989, 67, 1612–1616. [CrossRef]
81. Jin, H.; Yang, R.H.; Chen, Y.F.; Jackson, R.M.; Oparil, S. Atrial natriuretic peptide attenuates the development of pulmonary

hypertension in rats adapted to chronic hypoxia. J. Clin. Investig. 1990, 85, 115–120. [CrossRef] [PubMed]
82. Raffestin, B.; Levame, M.; Eddahibi, S.; Viossat, I.; Braquet, P.; Chabrier, P.E.; Cantin, M.; Adnot, S. Pulmonary vasodilatory action

of endogenous atrial natriuretic factor in rats with hypoxic pulmonary hypertension. Effects of monoclonal atrial natriuretic
factor antibody. Circ. Res. 1992, 70, 184–192. [CrossRef] [PubMed]

83. Hill, N.S.; Klinger, J.R.; Warburton, R.R.; Pietras, L.; Wrenn, D.S. Brain natriuretic peptide: Possible role in the modulation of
hypoxic pulmonary hypertension. Am. J. Physiol. 1994, 266, L308–L315. [CrossRef] [PubMed]

84. Klinger, J.R.; Warburton, R.R.; Pietras, L.; Hill, N.S. Brain natriuretic peptide inhibits hypoxic pulmonary hypertension in rats. J.
Appl. Physiol. (1985) 1998, 84, 1646–1652. [CrossRef] [PubMed]

85. Zhao, L.; Long, L.; Morrell, N.W.; Wilkins, M.R. NPR-A-Deficient mice show increased susceptibility to hypoxia-induced
pulmonary hypertension. Circulation 1999, 99, 605–607. [CrossRef] [PubMed]

86. Klinger, J.R.; Siddiq, F.M.; Swift, R.A.; Jackson, C.; Pietras, L.; Warburton, R.R.; Alia, C.; Hill, N.S. C-type natriuretic peptide
expression and pulmonary vasodilation in hypoxia-adapted rats. Am. J. Physiol. 1998, 275, L645–L652. [CrossRef]

87. Itoh, T.; Nagaya, N.; Murakami, S.; Fujii, T.; Iwase, T.; Ishibashi-Ueda, H.; Yutani, C.; Yamagishi, M.; Kimura, H.; Kangawa, K.
C-type natriuretic peptide ameliorates monocrotaline-induced pulmonary hypertension in rats. Am. J. Respir. Crit. Care Med.
2004, 170, 1204–1211. [CrossRef]

88. Casserly, B.; Mazer, J.M.; Vang, A.; Harrington, E.O.; Klinger, J.R.; Rounds, S.; Choudhary, G. C-type natriuretic peptide does
not attenuate the development of pulmonary hypertension caused by hypoxia and VEGF receptor blockade. Life Sci. 2011, 89,
460–466. [CrossRef]

89. Nawa, N.; Ishida, H.; Katsuragi, S.; Baden, H.; Takahashi, K.; Higeno, R.; Torigoe, F.; Mihara, S.; Narita, J.; Miura, K.; et al.
Constitutively active form of natriuretic peptide receptor 2 ameliorates experimental pulmonary arterial hypertension. Mol. Ther.
Methods Clin. Dev. 2016, 3, 16044. [CrossRef]

http://doi.org/10.1016/j.peptides.2007.10.022
http://www.ncbi.nlm.nih.gov/pubmed/18063200
http://doi.org/10.1016/j.peptides.2007.03.002
http://www.ncbi.nlm.nih.gov/pubmed/17428580
http://doi.org/10.1016/j.regpep.2010.08.004
http://www.ncbi.nlm.nih.gov/pubmed/20800621
http://doi.org/10.1097/HJR.0b013e3282f10e9b
http://www.ncbi.nlm.nih.gov/pubmed/18391643
http://doi.org/10.1002/ejhf.140
http://doi.org/10.1016/j.jacc.2018.12.063
http://doi.org/10.1093/eurheartj/ehz093
http://doi.org/10.1056/NEJMra2000348
http://doi.org/10.1152/jappl.1988.65.5.1975
http://doi.org/10.1152/jappl.1989.67.4.1612
http://doi.org/10.1172/JCI114400
http://www.ncbi.nlm.nih.gov/pubmed/2136863
http://doi.org/10.1161/01.RES.70.1.184
http://www.ncbi.nlm.nih.gov/pubmed/1530780
http://doi.org/10.1152/ajplung.1994.266.3.L308
http://www.ncbi.nlm.nih.gov/pubmed/8166300
http://doi.org/10.1152/jappl.1998.84.5.1646
http://www.ncbi.nlm.nih.gov/pubmed/9572812
http://doi.org/10.1161/01.CIR.99.5.605
http://www.ncbi.nlm.nih.gov/pubmed/9950655
http://doi.org/10.1152/ajplung.1998.275.4.L645
http://doi.org/10.1164/rccm.200404-455OC
http://doi.org/10.1016/j.lfs.2011.07.009
http://doi.org/10.1038/mtm.2016.44

	Introduction 
	Structure and Physiology of CNP 
	Distribution of CNP and Its Receptor in the Heart 
	Role of CNP in the Pathophysiology of the Heart 
	Role of CNP in the Regulation of Vascular Tone and Blood Pressure 
	Role of CNP in Vascular Remodeling and Angiogenesis 
	Role of CNP in Fibrosis in Cardiovascular Disease 
	Increased Plasma CNP Levels in Heart Failure 
	The Source and Clinical Significance of CNP in Heart Failure 
	Role of CNP in Pathogenesis in Pulmonary Arterial Hypertension 
	Conclusions and Perspectives 
	References

