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Abstract An algorithm for computing the linear noise approximation (LNA) of the
reaction–diffusion master equation (RDME) is developed and tested. The RDME is
often used as a model for biochemical reaction networks. The LNA is derived for a
general discretization of the spatial domain of the problem. If M is the number of
chemical species in the network and N is the number of nodes in the discretization
in space, then the computational work to determine approximations of the mean and
the covariances of the probability distributions is proportional to M2N 2 in a straight-
forward implementation. In our LNA algorithm, the work is proportional to M2N .
Since N usually is larger than M , this is a significant reduction. The accuracy of the
approximation in the algorithm is estimated analytically and evaluated in numerical
experiments.

Keywords Linear noise approximation · Spatially dependent · Fast algorithm

Mathematics Subject Classification 60J60 · 65C40 · 92C45

1 Introduction

Many biochemical networks are modeled by ordinary or partial differential equations
at a macroscopic level of fidelity. Such continuous models may not be sufficiently
accurate when the number of molecules involved in the chemical reactions is small.
This is often the case in molecular cell biology (Elowitz et al. 2002; McAdams and
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Arkin 1997; Raj and van Oudenaarden 2008; Tsimring 2014). Chemical reactions
are then best described as random events, and the discrete number of molecules is
important when the copy numbers are low at a mesoscopic level of modeling. The
macroscopic equation for the mean values is often satisfactory when the number of
molecules is large. Analytical solutions to the governing macroscopic or mesoscopic
equations can be obtained only for special systems. Computationalmethods are needed
for quantitative information about the behavior of the systems.

The master equation (ME) or Kolmogorov forward equation is an equation for
the time evolution of the probability density function (PDF) for the copy numbers of
different species in systems with an intrinsic noise (Gardiner 2004; Gillespie 1992;
van Kampen 2004). The systems are modeled as Markov processes with discrete
states defined by the copy numbers of the chemical species in continuous time. The
particular ME for spatially homogeneous, well-stirred problems in chemistry is the
chemical master equation (CME)where reactions between twomolecules occur with a
propensity that depends on the copy numbers of the species. The ME is generalized in
the reaction–diffusion master equation (RDME) to spatially heterogeneous chemical
systems by introducing a discretization of the reaction volume into compartments or
voxels (Gillespie et al. 2014; Gillespie and Seitaridou 2013). The state is then given
by the copy numbers in each one of the voxels.

The computational work and the storage requirements to solve the RDME grows
exponentially in the number of species and the number of voxels making the simula-
tion of biochemical systems with the ME prohibitive except for very small systems.
Analytical solutions are known only for limited classes of problems such as those
with linear propensities. Instead, sample trajectories of well-stirred systems are gen-
erated by Gillespie’s stochastic simulation algorithm (SSA) (Gillespie 1976, 1977).
The original algorithm has been improved in many ways, e.g., for efficiency (Cao et al.
2006; Gibson and Bruck 2000; Gillespie 2001) and for systems with slow and fast
reactions (Cao et al. 2005; E et al. 2007). The Gillespie algorithm is generalized to
problems with spatial variation due to diffusion in Elf and Ehrenberg (2004), Engblom
et al. (2009), Isaacson and Peskin (2006), Lampoudi et al. (2009) and implemented
in software (Drawert et al. 2012, 2016; Hattne et al. 2005). The computational effort
may be quite large to simulate a system with many chemical species, many molecules,
and many voxels, since many realizations of the process are required in a Monte Carlo
method like SSA due to slow convergence to the mean and other moments of the dis-
tribution. An introduction and an overview of Markov models of chemical reactions
are found in Goutsias and Jenkinson (2013). Recent reviews of computational meth-
ods at different levels of modeling are Engblom et al. (2017), Gillespie et al. (2013),
Mahmutovic et al. (2012) and Sokolowski et al. (2017).

There are ways to approximate the solutions to the CME with deterministic equa-
tions. The linear noise approximation (LNA) is obtained from the CME by deriving
the equations for the moments and then expanding the solution in a large parame-
ter �, representing the size of the chemical system (van Kampen 1976, 2004). The
means and covariances in LNA are exact for chemical systems with at most first-order
reactions where the propensities are constants or linear in the copy numbers. The first
and second moments are exact also for other systems with a special structure (Grima
2015). Different modifications have been proposed to improve the accuracy of LNA,
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see, e.g., Ferm et al. (2008), Grima (2012). Some of the improvements are compared
experimentally in examples in Schnoerr et al. (2015). The LNA and similar approx-
imations are used to quickly study biochemical networks in, e.g., Elf and Ehrenberg
(2003), Thomas et al. (2013), Ullah and Wolkenhauer (2009) and more recently as a
surrogate model to infer parameters in biochemical models from data in Fearnhead
et al. (2014), Fröhlich et al. (2016), Ruttor and Opper (2009), Stathopoulos and Giro-
lami (2013). A review of LNA and related methods and their use for inference are
found in Schnoerr et al. (2017).

An alternative to the LNA is the EMRE approximation in Grima (2010) extended
to spatial problems in Smith et al. (2017). The covariances satisfy the same Lyapunov
equation as we derive here. The spatial EMRE algorithm is applied to gene regulation
in a cell and to reactions in a aggregation of cells in two space dimensions in Smith et al.
(2017). More compartments than one are also found in Challenger et al. (2012). The
equations of LNA with spatial variation are derived in Scott et al. (2010) and applied
to the modeling of spatial patterns. The equation for the covariances is replaced by an
equation for the factorial cumulant. Equations similar to the LNA for spatial problems
are used in Butler and Goldenfeld (2009), Anna et al. (2010) to investigate oscillatory
systems. Turing patterns are studied in Asllani et al. (2013), Biancalani et al. (2010),
McKane et al. (2014), Woolley et al. (2011) with a spatially extended LNA.

Diffusive effects are important for thefidelity ofmodelswhen the chemical reactions
are localized in space in a cell and when the molecular transport is slow compared to
the reactions. Some examples where the spatial effects are crucial are found in Fange
and Elf (2006), Sturrock et al. (2013), Takahashi et al. (2010). The LNA is a level of
modeling suitable for such systems, e.g., to infer parameters for the diffusion and the
reactions from measurements, at least in the beginning of the iterative search process
for the parameters, thanks to the relative simplicity of LNA.

In this paper, we develop a fast algorithm for computing approximations of the
mean and the covariance of the PDF solving the RDME based on the LNA for spa-
tial problems with reactions and diffusion. The equation for the expected values is
a system of reaction–diffusion equations, and the equation for the covariances is a
time-dependent Lyapunov equation with a source term localized in space. Let M be
the number of chemical species and N the number of voxels. The structure of the
covariance equations is utilized to compute an approximation of the covariance and
to reduce the computational work and the memory requirements from being propor-
tional to M2N 2 in a straightforward implementation to M2N in our algorithm. Since
N usually is larger than M , this is a substantial reduction. A bound on the deviation
of the true covariance from our approximation is proved in a theorem. The accuracy
of the covariance approximation is demonstrated in numerical examples in one, two,
and three dimensions (1D, 2D, and 3D).

In the next section, the RDME is given and a splitting of the operator is introduced.
The equations of the LNA for spatially heterogeneous chemical systems are derived
for general shapes of the voxels in Sect. 3. A continuous approximation of the equation
for the covariances is analyzed in Sect. 4. The algorithm is presented in Sect. 5 for
computation of the mean and the covariance. Numerical results are found in Sect. 6.
Finally, some conclusions are drawn.
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The notation in the paper is as follows. The i th element of a vector v is denoted
by vi . The j th column of an array x with elements xi j is written as x· j , and xi · is
the i th row. The derivative of vi (x) with respect to x j is denoted by vi, j . The time
derivative ∂p/∂t of p(x, t) is written as ∂t p, and q̇ is a shorter notation for dq/dt .

The Euclidean vector norm is denoted by ‖v‖ =
√∑

i v
2
i and the subordinate spectral

norm for a matrix A is ‖A‖. The set of integer numbers is written asZ, andZ+ denotes
the nonnegative integer numbers. In the same manner,R denotes the real numbers and
R+ is the nonnegative real numbers.

2 The Master Equation

Consider a biochemical system with M chemically active species. The system evolves
on a line (1D), in an area (2D), or a volume (3D) V which is partitioned into N voxels
(or compartments) V j such that they cover V , V = ⋃N

j=1 V j , and are non-overlapping,
V j

⋂Vk = ∅, j �= k. The voxels are defined by a computational mesh constructed
for numerical discretization of partial differential equations, see Fig. 1. The size of a
voxel is Vi = |Vi |, and the diagonal matrixV has the elements Vi in the diagonal. Each
voxel has a node in the center with coordinates x ∈ R

d , d = 1, 2, 3 and the nodes are
connected by edges. The molecular copy number of species i in voxel j is a random
integer Yi j . The state of the system is time dependent and is given by y(t) which is an
array of nonnegative integers, y ∈ Z

M×N+ . The state changes randomly with reactions
between the species in a voxel and with diffusive jumps of the molecules between the
voxels.

The CME is a Kolmogorov forward equation for the PDF p(y, t) for a system to
be in the state y at time t (Gardiner 2004; van Kampen 2004). The state changes at
discrete time points after a chemical reaction in a voxel. If ỹ is the state before the

j
jk

k

l

e

e
j k

l

jk

(b)(a)

Fig. 1 Mesheswith edges (solid), nodes j, k, and l, and voxelV j (dashed). The nodes j and k are connected
by edge e jk . a An unstructured mesh, b a structured Cartesian mesh
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reaction and y is the state immediately after the reaction r , then the change in state in
V j can be written as

ỹ· j
wr (ỹ· j )−−−−→ y· j , nr = y· j − ỹ· j . (1)

The reaction occurs with the propensity wr , i.e., with probability wr�t in a short
time interval �t . The state change vector nr ∈ Z

M tells how the state is updated after
a reaction. Most entries of nr are zero and nri �= 0 only for those species involved in
the reaction. In a system with R different reactions, the CME for p(y, t) is

∂t p(y, t) =
N∑
j=1

R∑
r=1

wr (y· j − nr , t)p(y·1, y·2, . . . , y· j − nr , . . . , y·N , t)

−
N∑
j=1

R∑
r=1

wr (y· j , t)p(y, t) ≡ Mp(y, t), (2)

defining the master operator M.
Diffusion of the molecules is modeled as jumps between voxels with a common

boundary. Suppose that V j and Vk share a point in 1D, an edge in 2D, or a facet in 3D.
Then, a molecule of species i in V j jumps to Vk with propensity q jk ỹi j

ỹi j
q jk ỹi j−−−→ xik, n jk = yi · − ỹi ·. (3)

The probability for amolecule to jump is given by the jump coefficient q jk . The state
change vector has two nonzero components: n jk, j = −1, n jk,k = 1. The diffusion
master equation (DME) in a chemical system without reactions is

∂t p(y, t) =
M∑
i=1

N∑
j=1

N∑
k=1

q jk(yi j + 1)p(y1·, y2·, . . . , yi · − n jk, . . . , yM ·, t)

−
M∑
i=1

N∑
j=1

N∑
k=1

q jk yi j p(y, t) ≡ Dp(y, t), (4)

defining the diffusion operator D. The RDME for the PDF of the state of a system
with reactions and diffusion is then

∂t p(y, t) = (M + D)p(y, t). (5)

The jump coefficients q jk are determined by the geometry of V and the voxels V j

and the diffusion coefficient γ . If V is a rectangle in 2D or a rectangular hexahedron
in 3D and the voxels are squares or cubes, then the mesh partitioning V is Cartesian
as in Fig. 1b. When V j and Vk share a boundary and the size of an edge in the mesh
is �x , we have q jk = γ /�x2. If V j

⋂Vk = ∅, then q jk = 0. For a general shape
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of V , the voxels are defined by an unstructured mesh consisting of triangles (2D) as
in Fig. 1a or tetrahedra (3D) in Engblom et al. (2009). If there is an edge ei j between
node j in V j and node k in Vk , then q jk > 0.

The diffusion equation for u(x, t) with Neumann boundary conditions in d dimen-
sions is

∂t u = γ

d∑
i=1

∂2u

∂x2i
, x ∈ V, n · ∇u = 0, x ∈ ∂V, (6)

where ∂V is the boundary of V and n is the normal of ∂V . The equation is discretized
in space by a finite element method in Engblom et al. (2009) to derive qkj . Let ui j
be the concentration of yi j in V j such that ui j = yi j/Vj . Then, ui · for one species i
satisfies after discretization

u̇i j =
∑

k∈J ( j)

Djkuik + Dj jui j , (7)

whereJ ( j) is the set of nodes connected to node j by an edge. It is shown in Engblom
et al. (2009) that

Djk = S jk

Vj
, Dj j = −

∑
k,k �= j

D jk =
∑

k∈J ( j)

Djk, S jk = Skj , S j j = −
∑
k,k �= j

S jk .

(8)

With a mesh of good quality, S jk ≥ 0 for j �= k, see Meinecke et al. (2016). The
relation between the jump coefficients in (3) and the diffusion coefficients in (7) is

qkj = Vj

Vk
D jk = S jk

Vk
. (9)

To simplify the notation, the assumption here is that the diffusion speed is equal for
all species. Otherwise, qkj , Djk, and S jk in (9) would be scaled by γi/γ to account
for the different diffusion coefficients γi of the different species i .

A numerical solution of (5) is seldom computationally feasible due to the high
dimension of y ∈ Z

MN+ . Suppose that the lattice for y has L points in each coordinate
direction, i.e., yi j ∈ [0, 1, . . . , L]. Then, the lattice size for y is LMN . A simplification
is possible by first splitting the operatorM+D into two parts (Hellander et al. 2014;
MacNamara and Strang 2016; Strang 1968). Suppose that the solution is known at
tn . A timestep �t is chosen, and then, the reaction part (2) is integrated from tn to
tn+1 = tn + �t followed by integration of the diffusion part (4) in

1. ∂t p1(y, t) = Mp1(y, t), t ∈ [tn, tn+1], p1(y, tn) = p(y, tn),

2. ∂t p(y, t) = Dp(y, t), t ∈ [tn, tn+1], p(y, tn) = p1(y, tn+1). (10)
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The splitting error in p at tn+1 is of O(�t) in (10). Second-order accuracy is
obtained by evaluating the reaction equation at half the step at tn+1/2 = tn + 0.5�t ,
then solving the diffusion Eq. (4) for a full step, and finally taking half a step with (2)
(Strang 1968)

1. ∂t p1(y, t) = Mp1(y, t), t ∈ [tn, tn+1/2], p1(y, tn) = p(y, tn),

2. ∂t p2(y, t) = Dp2(y, t), t ∈ [tn, tn+1], p2(y, tn) = p1(y, tn+1/2),

3. ∂t p(y, t) = Mp(y, t), t ∈ [tn+1/2, tn+1], p(y, tn+1/2) = p2(y, tn+1). (11)

The solution has been advanced from tn to tn+1. The error in p(y, tn+1) is of
O(�t2).

In (2), the reactions occur independently in every voxel without being influenced
by the species in the other voxels. Introduce the ansatz

p(y·1, y·2, . . . , y·N , t) =
N∏
j=1

p(y· j , t) (12)

into (2) to arrive at

0 = ∂t p(y, t) −
⎛
⎝

N∑
j=1

R∑
r=1

wr (y· j − nr )p(y·1, y·2, . . . , y· j − nr , y·N , t)

−
N∑
j=1

R∑
r=1

wr (y· j )p(y, t)

⎞
⎠

=
N∑
j=1

N∏
k=1,k �= j

p(y·k, t)
(

∂t p(y· j , t) −
(

R∑
r=1

wr (y· j − nr )p(y· j − nr , t)

−
R∑

r=1

wr (y· j , t)p(y· j , t)
))

. (13)

Hence, for t ≥ tn and p(y· j , tn) given, N separate solutions of the CME can be
computed

∂t p(y· j , t) =
R∑

r=1

wr (y· j − mr )p(y· j − mr , t)

−
R∑

r=1

wr (y· j )p(y· j , t), j = 1, . . . , N , (14)

and then combined in (12) in the first step of (10) (or the first and third steps in (11)).
The solution is computed N times on a lattice of size LM . This is smaller than the
lattice for the full problem but may still be prohibitively large for numerical solution.
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In the same manner, the species diffuse independently of each other in the second
step in (10) and (11). Insert

p(y1·, y2·, . . . , yM ·, t) =
M∏
i=1

p(yi ·, t) (15)

into (4) and rearrange the terms as in (13) to arrive at M separate equations for the
diffusion of the species when t ≥ tn and p(yi ·, tn) is known

∂t p(yi ·, t) =
N∑
j=1

N∑
k=1

q jk(yi j + 1)p(yi · − n jk, t)

−
N∑
j=1

N∑
k=1

q jk yi j p(yi ·, t), i = 1, . . . , M. (16)

Since the propensity is linear in y in (16), there exist analytical solutions to the sub-
problems with multinomial and Poisson distributions for p, see Jahnke and Huisinga
(2007), but in practice they are not so useful due to the size LN of the lattice.

3 Linear Noise Approximation

The biochemical systems are assumed to have a scaling with a size parameter �

as in van Kampen (2004), Kurtz (1970), Kurtz (1971) where � 
 1. In chemical
applications, � can denote a volume or a typical copy number of the species. Then,
the copy numbers are rescaled by �, z = �−1y, and the propensities can be written
as

wr (y) = �vr (�
−1y) = �vr (z), r = 1, . . . , R. (17)

Equations for approximation of the PDF of a system are derived below. The compu-
tational complexity of their solution is polynomial in M and N instead of exponential
as in (5), (14), and (16).

3.1 The Mean Value Equation

Let mi j be the expected value E[Yi j ] of the copy number Yi j of species i in voxel j
with a PDF satisfying the master Eq. (2). Multiply (2) by yi j and sum over ZN+ . Then,
mi j satisfies the equation (Ferm et al. 2008; van Kampen 2004)

ṁi j =
R∑

r=1

nri E[wr (Y· j )]. (18)
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Suppose that every wr is linear in y. Then,

E[wr (Y· j )] = wr (E[Y· j ]) = wr (m· j ).

and Eq. (18) are exact for the mean values. If wr is nonlinear in y· j , then an approxi-
mation is

E[wr (Y· j )] ≈ wr (m· j ).

With this approximation, we obtain the reaction rate equations

ṁi j =
R∑

r=1

nriwr (m· j ). (19)

The mean value equations scaled by the size parameter μi j = mi j/� are

μ̇i j =
R∑

r=1

nrivr (μ· j ) ≡ νi (μ· j ). (20)

The mean concentration ui j = μi j/Vj satisfies

u̇i j = V−1
j

R∑
r=1

nrivr ((uV)· j ) = V−1
j νi (Vju· j ). (21)

3.2 The Linear Noise Approximation

The scaled state variable z·k in voxel k is split into a deterministic partμ·k and a random
part η by van Kampen in van Kampen (1976, 2004) for the chemical reactions. The
random term is assumed to be proportional to �−1/2. The relation between the copy
numbers y·k , the scaled copy numbers z·k , the fluctuations η, and the fluctuations in
the concentrations ψ = V−1

k η in Vk is

y·k = �z·k = �(μ·k + �−1/2η) = �Vk(u·k + �−1/2ψ). (22)

This expansion is inserted into master Eq. (2) with the propensities vr in (17)

∂t p(�z·k, t) =
∑
r

�(vr (z·k − �−1nr )p(�(z·k − �−1nr ), t)

−vr (z·k)p(�z·k, t)). (23)

Replace p in (23) by � in

�(η, t) = p(�μ·k + �1/2η, t) = p(y·k, t), (24)
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and expand the right-hand side of (23) in aTaylor series aroundμ·k . Terms proportional
to �1/2 vanish since μ·k satisfies (20). If � is the solution to

�t =
R∑

r=1

M∑
i=1

⎛
⎝�vr,i nri +

M∑
j=1

�,i nrivr, jη j

⎞
⎠+0.5

M∑
i=1

M∑
j=1

Wi j�,i j ,

Wi j (μ·k) =
∑
r

nri nr jvr (μ·k), (25)

then terms of O(1) cancel out. Terms of O(�−1/2) and smaller are ignored in the
expansion. This is the linear noise approximation (LNA) for the scaled copy numbers
subject to chemical reactions in Vk .

The solution to (25) is the PDF of a normal distribution

�(η, t) = 1

(2π)M/2
√
det�

exp

⎛
⎝−0.5

M∑
i=1

M∑
j=1

ηi (�
−1)i jη j

⎞
⎠, (26)

see Ferm et al. (2008), van Kampen (2004) and (Risken 1996, p. 156). The dimension
of η is M in the CMEs (14) for all N voxels. The matrix � for the covariance between
the species i and j in Vk is the solution of


̇i j =
M∑
l=1

νi,l
l j +
M∑
l=1

ν j,l
li + Wi j (μ·k). (27)

Since η is normally distributed with 0 mean and covariance �, η ∼ N (0,�), it
follows from (22) thatY·k, Z·k, and the concentrationU·k = V−1

k Z·k also have normal
distributions

Y·k ∼ N (�μ·k,��), Z·k ∼ N (μ·k,�−1�), U·k ∼ N
(
V−1
k μ·k,�−1V−2

k �
)

.

(28)

The covariance of U·k in (28) is denoted by �−1� = �−1V−2
k �. Then, the differ-

ential equation satisfied by � follows from (27)

�̇i j =
M∑
l=1

νi,l�l j +
M∑
l=1

ν j,l�li + V−2
k Wi j (Vku·k). (29)

There are M nonlinear ODEs to solve in (20) for μ·k in every voxel Vk . The
covariance matrix � is symmetric, and we have to solve (M + 1)M/2 linear ODEs in
(27) and (29). The structure of this equation is the same also for other approximations
of the CME, e.g., EMRE in Smith et al. (2017). The accuracy of mean value Eq. (20)
is improved in Ferm et al. (2008) by adding a term which is linear in the covariance.
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3.3 The Diffusion Equation

The notation is simplified if we assume here that there is only one species, M = 1,
but many voxels, N > 1. If M > 1, then the diffusion of the other species is treated
separately in the same manner, see (16). In diffusion master Eq. (16), the propensity
to jump from voxel k to j is linear in y ∈ Z

N+ with wr (y) = qkj yk and vr (z) = qkj zk .
The linearity implies that there are explicit expressions for the mean value equations,
νi,k in (27), and Wi j in (25).

The equations for the scaled mean values are obtained from (8), (9), and (20)

μ̇ j =
N∑

k=1

S jkμk/Vk, j = 1, . . . , N . (30)

The diffusion equation for the mean concentration is derived from (21)

u̇ j = V−1
j

N∑
l=1

ql j Vlul =
N∑
l=1

S jlul/Vj =
N∑
l=1

Djlul , j = 1, . . . , N , (31)

cf. (7).
The equation for the covariance� (27) between voxels i and j depends on ν j,k and

Wi j in (25). The derivative νi,k in (27) and (29) is by (8) and (9)

νi,k =
R∑

r=1

nriwr,k(y) = qki = Sik/Vk, k �= i,

νi,i =
R∑

r=1

nriwr,i (y) =
∑

j∈J (i)

−qi j = −
∑

j∈J (i)

S ji/Vi = Sii/Vi , (32)

since nri = 1 for the jump from k to i and nri = −1 for all jumps from i to every j
connected to node i by an edge ei j . Let E be the set of all edges in the mesh. The state
change vector on edge ei j for a jump from i to j is ni j with the nonzero components
ni j;i = −1 and ni j; j = 1. The contribution to W in (27) from ei j jumps in two
directions: i → j and j → i . Hence, for all edges

W =
∑
ei j∈E

Si j
Vj

μ jn j inT
ji + S ji

Vi
μini jnT

i j =
∑
ei j∈E

Si j

(
μ j

V j
+ μi

Vi

)
ni jnT

i j . (33)

The nonzero elements of Ni j = ni jnT
i j are Ni j;i i = Ni j; j j = 1 and Ni j;i j =

Ni j; j i = −1. Therefore, the elements of the symmetric W are

Wi j = −Si j

(
μ j

V j
+ μi

Vi

)
, j �= i, Wii =

∑
j∈J (i)

Si j

(
μ j

V j
+ μi

Vi

)
. (34)
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The random component of the concentrations ψ = V−1η is normally distributed
N (0, V−1�V−1). The equation for � = V−1�V−1 is derived from (27)

�̇i j =
M∑
l=1

V−1
i νi,l Vl�l j +

M∑
l=1

V−1
j ν j,l Vl�li + V−1

i Wi j (Vu)V−1
j . (35)

The coefficients in (35) multiplying � are

V−1
i νi,l Vl = Sil/Vi = Dil , l �= i, V−1

i νi,i Vi = Sii/Vi = Dii . (36)

In (35), W is scaled by V

V−1
i Wi j V

−1
j = −V−1

i Si j V
−1
j (ui + u j ) = −Di j V

−1
j (ui + u j ), j �= i,

V−1
i Wii V

−1
i = 2

∑
j∈J (i)

V−1
i Si j V

−1
i ui = −2V−1

i Sii V
−1
i ui

= −2Dii V
−1
i ui . (37)

Then, the scaled W-term in (37) can be written in a symmetric form

V−1
i Wi j V

−1
j = −Di j V

−1
j (ui + u j ) = −Si j V

−1
i V−1

j (ui + u j )

= −
(
ui Di j V

−1
j + u j D ji V

−1
i

)
. (38)

The covariance equation corresponding to (29) for diffusion is by (35), (36), and
(38)

�̇i j =
N∑
l=1

Dil�l j +
N∑
l=1

Djl�li − fi j ,

fi j = ui Di j V
−1
j + u j D ji V

−1
i , i, j = 1, . . . , N . (39)

The copy numbers Yk· and Zk· are normally distributed as in (28). The covariance
of the concentrations in space of a species k, Uk·, is�−1� and Uk· ∼ N (uk·,�−1�).

In the stationary equation, �̇i j = 0 in (39) and it is a Lyapunov equation. A
stationary solution of (31) is ui = const. and of (39) is

�i j = ui V
−1
i δi j , (40)

where δi j is the Kronecker delta. If the initial data �i j (0) are symmetric, then the
solution to (39) is symmetric for all t > 0. At the stationary solution of (40)

� = V�V = diag(Vu), μ = Vu,

where diag(x) is a diagonal matrix with xi in the diagonal. Thus, the stationary distri-
bution of the copy numbers in the voxels Yk· for species k follows from (28)

Yk· ∼ N (�Vu,� diag(Vu)). (41)
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The stationary copy numbers in different voxels are uncorrelated, have a mul-
tivariate normal distribution and are therefore independent, and are approximately
Poisson distributed since Yki ∼ N (�Viui ,�Viui ) with equal mean and variance. If
�i j (0) = 0, then the time-dependent solutions to (39) will be proportional to ui/Vi
and the mean and the covariance of Yi j are both proportional to �Viui . The distribu-
tions of the solution to the DME in (4) are discussed in Engblom et al. (2017) based on
the theory for linear propensities in Jahnke and Huisinga (2007). Their distributions
are either multinomial, Poisson, or a combination. The stationary distribution is multi-
nomial according to Anderson et al. (2010) and approximately Poissonian (Engblom
et al. 2017).

The components of the solution u of (31) are the node values of the finite element
approximation of u(x, t) solving diffusion Eq. (6) for one species. Let �(x1, x2, t)
be the covariance between the solutions at the coordinates x1, x2 ∈ R

d . Then, �i j

in (39) can be interpreted as the value of �(x1, x2, t) at the nodes at x1i and x2 j .
The coefficient Di j in fi j in (39) is negative when x1i = x2 j , and positive when
x1i �= x2 j . When Di j is nonzero, the difference ξ i j = 1√

2
(x1i − x2 j ) is small. On a

regular mesh with a typical length of an edge equal to �x , the positive weight Di j

depends approximately only on ri j = ‖ξ i j‖ and Vi varies smoothly with a typical size

V . On such a mesh, Di j ∝ �x−2 and ui Di j V
−1
j is approximated here by a continuous

function u(x1, t)ϕ(ri j ) with

ϕ(r) = − γ

�x2V
exp

(−r2

σ 2

)
cos(πωr), (42)

and the solution u(x, t) to (6). The scalings σ and ω are chosen such that σ ∝ �x
and ω = �x−1. When r = 0 then Dii Vi ≈ ϕ(0) = −γ /�x2V and when r = �x we
have

Di j V
−1
j ≈ ϕ(�x) = γ

�x2V
exp

(
−

(
�x

σ

)2
)

< |ϕ(0)|.

Then, the continuous equation corresponding to discrete Eq. (39) is

∂t� = γ

d∑
i=1

∂2�

∂x21i
+ ∂2�

∂x22i
− (u(x1, t) + u(x2, t))ϕ(r). (43)

If exact initial conditions of the distribution of molecules are known, then
�(x1, x2, 0) = 0.

Let u∞(x) be the stationary solution to the diffusion equation. Then, one can show
that an approximate stationary solution to (43) is

�∞(x1, x2) = u∞(x1)
V

exp

(
−‖x1 − x2‖2

2σ 2

)
, (44)
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As �x → 0, this solution approaches u∞(x1)δ(‖x1 − x2‖) where δ is the Dirac
measure. The solution in (40) to discrete Eq. (39) is similar to (44).

4 Analysis of the Covariance Equation

A property of the continuous approximation �(x1, x2, t) of the covariance in (43) is
derived in this section. We show that � decays exponentially when ‖x1 − x2‖ grows,
indicating that the discrete variance �i j in (39) is small when ‖x1i − x2 j‖ > �x .

Consider (43) in free space x1, x2 ∈ R
d and for t ≥ 0 with initial data�(x1, x2, 0).

The concentration u(x1, t) is nonnegative and is assumed to be bounded by Cu for all
x1 and t ≥ 0. Introduce a change of variables

(
ξ1 j
ξ2 j

)
= 1√

2

(
1 −1
1 1

) (
x1 j
x2 j

)
, j = 1, . . . , d. (45)

The diffusion equation in (43) is in the new variables

∂t� = γ

d∑
j=1

∂2�

∂ξ21 j
+ ∂2�

∂ξ22 j
− f (ξ1, ξ2, t)ϕ(‖ξ1‖). (46)

Here f (ξ1, ξ2, t) = u(x1, t) + u(x2, t) is nonnegative and bounded by 2Cu . The
factor ϕ in the source term vanishes quickly when ‖ξ1‖ increases.

With the fundamental solution of the diffusion equation in 2d dimensions (Evans
2010; Stakgold 2000), the solution of (46) can be written as a sum of two integrals
depending on the initial data and the source term

�(ξ1, ξ2, t) = Iini + Isrc, (47)

where

Iini =
∫

Rd

∫

Rd

1

(4πγ t)d
exp

(
−

(
‖ξ1 − ζ 1‖2 + ‖ξ2 − ζ 2‖2

)
/4γ (t)

)

�(ζ 1, ζ 2, 0) dζ 1 dζ 2, (48)

and

Isrc = −
∫ t

0

∫

Rd

∫

Rd

γ

(4πγ (t − s))d
exp

(− (‖ξ1 − ζ 1‖2 + ‖ξ2 − ζ 2‖2
)
/(4γ (t − s))

)

· f (ζ 1, ζ 2, t)

�x2V
cos(ω‖ζ 1‖)

d∏
j=1

exp(−ζ 2
1 j/σ

2) dζ 1 dζ 2 ds. (49)
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The integral with the source term is bounded by

|Isrc| ≤ 2Cuγ

�x2V

∫ t

0

1

(4πγ (t − s))d

∫

Rd
exp

(
−‖ξ2 − ζ 2‖2/(4γ (t − s))

)
dζ 2

·
∫

Rd
| cos(ω‖ζ 1‖)|

d∏
j=1

exp
(
−(ξ1 j − ζ1 j )

2/(4γ (t − s))
)

× exp
(
−ζ 2

1 j/σ
2
)
dζ 1 ds. (50)

The spatial integral Id2 over ζ 2 ∈ R
d in (50) is

Id2(t − s) =
d∏
j=1

∫

R

exp(−(ξ2 j − ζ )2/(4γ (t − s))) dζ =
d∏
j=1

2
√

πγ (t − s)

= (4πγ (t − s))d/2. (51)

The integral Id1 of the product over ζ 1 ∈ R
d in (50) is

Id1(t − s, σ )

=
∫

Rd

d∏
j=1

exp
(
−(ξ1 j − ζ1 j )

2/(4γ (t − s))
)
exp

(
−ζ 2

1 j/σ
2
)
dζ 1

=
d∏
j=1

∫

R

exp
(
−(ξ j − ζ )2/(4γ (t − s))

)
exp

(
−ζ 2/σ 2

)
dζ =

d∏
j=1

I1 j (σ ).

(52)

With τ = 4γ (t − s) and α = τ−1 + σ−2, we have

I1 j (σ ) =
∫

R

exp
(
−(ξ1 j − ζ )2/τ − ζ 2/σ 2

)
dζ

= exp
(
−ξ21 j/τ + ξ21 j/ατ 2

) ∫

R

exp
(
−α(ζ − ξ1 j/ατ)2

)
dζ

=
exp

(
−ξ21 j/(τ + σ 2)

)
√

α

∫

R

exp(−z2) dz

= σ
√

πτ√
τ + σ 2

exp
(
−ξ21 j/(τ + σ 2)

)
. (53)
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Using (53), (52), and (51), a bound on Isrc in (50) is

|Isrc| ≤ 2Cu

�x2V

∫ t

0

γ

(4πγ (t − s))d
Id1(t − s, σ )Id2(t − s) ds

= 2Cu

�x2V

∫ 4γ t

0

(πτ)d/2

4(πτ)d

d∏
j=1

I1 j (σ ) dτ

= Cuσ
d

2�x2V

∫ 4γ t

0

exp(−‖ξ1‖2/(τ + σ 2))

(τ + σ 2)d/2 dτ

≤ Cuσ
d

2�x2V
exp

(−‖ξ1‖2/(4γ t + σ 2)
) ∫ 4γ t

0

dτ

(τ + σ 2)d/2

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Cuσ
2

2�x2V
exp(−‖ξ1‖2/(4γ t + σ 2)) log

(
1 + 4γ t

σ 2

)
, d = 2,

Cuσ
2

�x2V (d − 2)
exp(−‖ξ1‖2/(4γ t + σ 2))

(
1 − 1/

(
1 + 4γ t

σ 2

)d/2−1
)

,
d = 1
d ≥ 3.

(54)

Assume that the initial data are localized close to ξ1 = 0 such that |�(x1, x2, 0)| ≤
�0 exp(−‖ξ1‖2/χ2) for some χ > 0. A bound on the integral in (47) due to the initial
data is then

|Iini| ≤ �0

(4πγ t)d

∫

Rd
exp

(
−

(
‖ξ1 − ζ 1‖2/4γ t + ‖ζ 1‖2/χ2

))
dζ 1

·
∫

Rd
exp

(
−‖ξ2 − ζ 2‖2/4γ t

)
dζ 2 = �0

(4πγ t)d
Id1(t, χ)Id2(t)

= �0

(4πγ t)d

d∏
j=1

I1 j (χ) · (4πγ t)d/2

= �0 exp
(
−‖ξ1‖2/(4γ t + χ2)

)
/

(
1 + 4γ t

χ2

)d/2

. (55)

Hence, a bound on the covariance solution in (47) is obtained by (54) and (55).
The assumptions and conclusions are summarized in a theorem:

Theorem 1 Assume that |u(x, t)| ≤ Cu and that the initial data satisfy

|�(x1, x2, 0)| ≤ �0 exp(−‖ξ1‖2/χ2).

The relations between the x and ξ coordinates are ξ1 = 1√
2
(x1 − x2), ξ2 = 1√

2
(x1 +

x2). Then, the solution of (46) with ϕ defined by (42) for t > 0 is bounded by

|�(x1, x2, t)| ≤ Cuσ
2

�x2V
fd

(
1 + 4γ t

σ 2

)
exp

(
−(‖ξ1‖/σ)2/(1 + 4γ t/σ 2)

)

+ �0

(1 + 4γ t/χ2)d/2 exp
(
−(‖ξ1‖/χ)2/(1 + 4γ t/χ2)

)
, (56)
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where

fd(ζ ) = 1

2
log(ζ ), d = 2, fd(ζ ) = 1

d − 2

(
1 − 1

ζ d/2−1

)
, d = 1, d ≥ 3.

(57)

��
The function fd depends on the dimension d and is 0 at t = 0. The first term in

(56) is proportional to Cu/V = sup u/V since σ ∝ �x . The solution in (56) decays
exponentially in ‖ξ1‖ = 1√

2
‖x1 − x2‖ for a fixed t in all dimensions and is small

when ‖ξ1‖ > σ ∝ �x . For a given ξ1, the first term in (56) increases slowly with t in
1 and 2 dimensions and is bounded by Cuσ

2/�x2V (d − 2) when d ≥ 3. The second
term in (56) decreases when t ≥ 0.5‖ξ1‖2 − 0.25χ2 for d = 1 and for all t ≥ 0 when
d ≥ 2.

Our bounded domain V for x1 and x2 has a boundary that is not taken into account
in (56). The bound on � is a good estimate when the main part of the solution is away
from the boundary, e.g., when t is not too large and u(x, t) is nonzero only in the
middle of V .

Since (43) is a continuous approximation of (39) we expect the discrete variance
�i j to behave in a similar way and be negligible when the nodes i and j are not
neighbors and not directly connected by an edge in the mesh. This property will be
exploited in the algorithm in the next section.

5 Algorithm

The algorithm to compute the solution to the LNA for both reactions and diffusion
is based on the operator splitting in Sect. 2, the derivations in Sects. 3.2 and 3.3, and
Theorem 1 in Sect. 4.

The mean value equation in (21) is added to the diffusion equation in (31) to obtain
the reaction–diffusion equation for the concentration uik of species i in voxel k with
MN components

u̇ik = V−1
k νi (Vku·k) +

N∑
β=1

Dkβuiβ, i = 1, . . . , M, j = 1, . . . , N . (58)

The covariance between the concentrations of the species i and j in voxels k and l is
written as �i j;kl and has M2N 2 components. The equation satisfied by the covariance
is obtained from (29) and (39)

�̇i j;kl =
M∑

α=1

νi,α�α j;kl +
M∑

α=1

ν j,α�αi;kl + δklV
−2
k Wi j (Vku·k)

+
N∑

β=1

Dkβ�i j;βl +
N∑

β=1

Dlβ�i j;βk − δi j

(
uik DklV

−1
l + u jl DlkV

−1
k

)
,

i, j = 1, . . . , M, k, l = 1, . . . , N . (59)
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The reaction source term vanishes if the concentrations are from different voxels,
since there is no reaction between molecules in separate voxels. The diffusion source
term is zero if the species are different since a diffusion event occurs when the same
species changes location between adjacent voxels by a jump.

The equations for the mean and the covariance (58) and (59) are solved by splitting
the operator on the right-hand side and advancing the solution one timestep from tn

to tn+1 = tn + �t as in (10) with uik(tn) and �i j;kl(tn) as initial data, cf. (10). The
algorithm is

Algorithm 1

1. ˙̃uik = V−1
k νi (Vk ũ·k), t ∈ [tn, tn+1], ũik(t

n) = uik(t
n) (60)

2. ˙̃
�i j;kk =

M∑
α=1

νi,α�̃α j;kk +
M∑

α=1

ν j,α�̃αi;kk + V−2
k Wi j (Vk ũ·k),

t ∈ [tn, tn+1], �̃i j;kk(tn) = �i j;kk(tn) (61)

3. ˙̃
�i j;kl =

M∑
α=1

νi,α�̃α j;kl +
M∑

α=1

ν j,α�̃αi;kl , k �= l,

t ∈ [tn, tn+1], �̃i j;kl(tn) = �i j;kl(tn) (62)

4. u̇ik =
N∑

β=1

Dkβuiβ, t ∈ [tn, tn+1], uik(t
n) = ũik(t

n+1) (63)

5. �̇i i;kl =
N∑

β=1

Dkβ�i i;βl +
N∑

β=1

Dlβ�i i;βk −
(
uik DklV

−1
l + uil DlkV

−1
k

)
,

t ∈ [tn, tn+1], �i i;kl(tn) = �̃i i;kl(tn+1) (64)

6. �̇i j;kl =
N∑

β=1

Dkβ�i j;βl +
N∑

β=1

Dlβ�i j;βk, i �= j,

t ∈ [tn, tn+1], �i j;kl(tn) = �̃i j;kl(tn+1) (65)

The discretization error in uik(tn+1) and �i j;kl(tn+1) will be ofO(�t). The ODEs
in steps 1, 2 and 3 update u and � in a voxel (steps 1, 2) and � between two adjacent
voxels (step 3) due to the reactions as in step 1 of (10) and (14). In the ODEs in steps
4, 5 and 6, u and � change due to diffusion between voxels without any influence
of the other species as in step 2 of (10) and (16). A more accurate splitting than in
Algorithm 1 with an error of O(�t2) is possible in the same manner as in (11).

It follows from Theorem 1 that if �i j;kl(tn) decays rapidly when the nodes xk and
xl are separated then this property is preserved in �̃i j;kl(tn+1) where Cu > 0 in (56)
in step 2 and Cu = 0 without the source term in step 3. Using the same arguments in
steps 5 and 6, we find that if �i j;kl(tn) decays rapidly when ‖xk − xl‖ increases, then
after one timestep �i j;kl(tn+1) also decays rapidly in ‖xk − xl‖.
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Supported by the analysis in Sect. 4, we assume that �i j;kl is negligible when
node l and node k are not neighbors, l /∈ J (k), and we let �̂i j;kl = 0 in a sparse
approximation of �i j;kl . Then, only elements of �i j;kl when k = l and l ∈ J (k) need
to be stored and updated in �̂i j;kl by Algorithm 1. The sparsity (or nonzero) pattern
of �̂i j;kl for each pair i, j is the same as that of S and D in (8) since Skl and Dkl are
nonzero only on the diagonal and if nodes the k and l are neighbors connected by an
edge in the mesh and l ∈ J (k). Moreover, �i j;kl is symmetric in both i and j and k
and l. With M different species and N voxels, �i j;kl in general has 1

2MN (MN + 1)

different elements but �̂i j;kl has only CdM2N nonzero elements that are necessary to
store taking the symmetry into account. The coefficient Cd depends on the dimension
and the structure of the mesh. In a Cartesian mesh, Cd = 2(1D), 3(2D), or 4(3D)

and in an unstructured mesh Cd = 2 in 1D but Cd depends on the particular mesh in
2D and 3D. The mean value vectors u and ũ have the dimension MN .

In order to estimate the computational work in the steps of the algorithm,we assume
that νi depends on a limited number of u jk independent of M . Then, there are also a
limited number of derivatives νi, j different from zero and independent of M . Thus,
the work to compute the right-hand side (RHS) in step 1 in (60) is independent of M
and N and it is computed once for every species i and voxel k, i.e., MN times. Since
there are a limited number of nonzeros in νi,α , the sums and W in step 2 in (61) are
computed independently of M and N . Hence, the work is proportional to M2N for
the covariances between the species in every voxel. In step 3 in (62), M2 covariances
are computed for every combination of voxels k and l where �̃ is nonzero. This is the
case when k and l are neighbors and each k has a limited number of neighbors. This
number is independent of N . Therefore, the work to compute the full RHS in step 3 is
of O(M2N ). The number of Dkβ �= 0 in the RHS in step 4 in (63) is independent of
N according to the previous paragraph. The work to determine all derivatives of uik
is then proportional to MN . For �i i;kl to be nonzero in step 5 in (64), voxels k and
l are neighbors, l ∈ J (k). Furthermore, the products in the sums are nonzero only if
β ∈ J (k)∩J (l). The work to calculate the sums is independent of N , and the RHS is
computed O(MN ) times. In the same manner, the RHS in step 6 in (65) is computed
O(M2N ) times. The conclusion is that the work to determine the RHS in the ODEs
for uik and �̂i j;kl in the algorithm has linear complexity in N and is proportional to
M2N .

Since there are additional administrative costs in Algorithm 1, the straightforward
algorithm ignoring the sparsity of � will be faster when N < N∗ for some small N∗
which is problem dependent. However, for N > N∗ Algorithm 1 will be the winner
and its advantage is greater, the greater the N is.

If the diffusion coefficient is different for different species i , then Dkβ and Dlβ in
steps 4, 5 and 6 would depend on i but the algorithm and its properties remain the
same.

In summary, the algorithm inwords is for one timestep�t from tn to tn+1 = tn+�t :

1. Solve the ODE in (60) numerically for the mean values with initial data u(tn) to
obtain ũ(t)

2. Solve the ODE in (61) numerically for the covariances between the species in the
same voxel k with ũ from step 1 and initial data �(tn) to determine �̃··;kk(t)
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3. Solve the ODE in (62) numerically for the covariances between the species in
different voxels k and l satisfying l ∈ J (k) with ũ from step 1 and initial data
�(tn) to determine �̃··;kl(t)

4. Solve the ODE in (63) numerically for the mean values with initial data ũ(tn+1)

from (60) to obtain u(t) and u(tn+1)

5. Solve the ODE in (64) numerically for the covariances between voxels k and l
satisfying l ∈ J (k) for the same species i with u from step 4 and initial data
�̃(tn+1) from steps 2 and 3 to determine �i i;··(tn+1)

6. Solve the ODE in (65) numerically for the covariances between voxels k and l
satisfying l ∈ J (k) for different species i and j with u from step 4 and initial data
�̃(tn+1) from steps 2 and 3 to determine �i j;··(tn+1)

In the first three steps, the mean values and the covariances change due to the
reactions and in the last three steps due to the diffusion.

Theorem 1 and numerical experiments in Sect. 6.1 indicate that the accuracy in
�̂ increases when the dimension grows. By storing and updating only the sparse
approximation in steps 3, 5 and 6 in Algorithm 1, considerable savings are possible
in computing time and computer memory when N is large, e.g., in 3D.

5.1 Example

Consider the reversible reaction for association and dissociation of the species A, B,

and C

A + B
k′
a�
k′
d

C, (66)

with copy numbers μT· j = (a j , b j , c j ) in voxel j and propensities and state change
vectors

v1 = k′
aa j b j , nT

1 = (−1,−1, 1), v2 = k′
dc j , nT

2 = (1, 1,−1). (67)

The macroscopic reaction coefficients are ka = Vkk′
a and kd = k′

d . Then, Eq. (21)
for the concentrations in step 1 of the above algorithm in Vk is

u̇·k =
⎛
⎝

−kau1ku2k + kdu3k
−kau1ku2k + kdu3k
kau1ku2k − kdu3k

⎞
⎠ , k = 1, . . . , N . (68)

Order the means and the covariances such that

u =
⎛
⎝

u1·
u2·
u3·

⎞
⎠ , � =

⎛
⎝

�11;·· �12;·· �13;··
�21;·· �22;·· �23;··
�31;·· �32;·· �33;··

⎞
⎠ . (69)

The Jacobian J of the propensities with Ji j = νi, j in (31) and the source term in
step 2 in Vk are
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J =
⎛
⎝

−kau2k −kau1k kd
−kau2k −kau1k kd
kau2k kau1k −kd

⎞
⎠ ,

gk(u) = V−1
k (kau1ku2k + kdu3k), V−2

k W = gk(u)n1nT
1 , (70)

since n1nT
1 = n2nT

2 . Introduce K and G using the identity matrix IN of size N , J, and
W in (70)

K =
⎛
⎝

−kadiag(u2·) −kadiag(u1·) kdIN
−kadiag(u2·) −kadiag(u1·) kdIN
kadiag(u2·) kadiag(u1·) −kdIN

⎞
⎠

=
⎛
⎝

−1
−1
1

⎞
⎠ ⊗ (kadiag(u2·)kadiag(u1·) − kdIN ),

G(u) = n1nT
1 ⊗ diag(g(u)), (71)

where ⊗ denotes the Kronecker product. Then, the equation in steps 2 and 3 in matrix
form is

˙̃
� = K�̃ + (K�̃)T + G(ũ). (72)

Define the matrices D3 and H by

D3 =
⎛
⎝

D 0 0
0 D 0
0 0 D

⎞
⎠ = I3 ⊗ D,

H(u) =
⎛
⎝

H1;·· 0 0
0 H2;·· 0
0 0 H3;··

⎞
⎠ , Hi;kl = DklV

−1
l (uik + uil). (73)

The submatrix D is the approximation of the Laplacian in (31) and (39). If the
diffusion varies between the species, then D in (73) would be replaced by γi/γ D, i =
1, 2, 3, on the diagonal. The sparsity or nonzero pattern in Hi;·· is the same as in D.
The diffusion equation for the mean values in step 4 in Algorithm 1 is as in (31)

u̇ = D3u. (74)

The matrix form of steps 5 and 6 in Algorithm 1 is (cf. (38) and (39))

�̇ = D3� + (D3�)T − H(u). (75)

In 1D, D is a tridiagonal matrix and if V = �x is constant then

Dαk = Dkα = γ /�x2, α = k + 1, k = 1, . . . , N − 1,

Dkk = −2γ /�x2, k = 2, . . . , N − 1, D11 = DNN = −γ /�x2.
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6 Numerical Results

The algorithm is tested for computing the mean and the approximation of the covari-
ance in the LNA of systems with diffusion in 1D, 2D, and 3D and a system in 2D with
the reversible reaction (66).

6.1 Diffusion

A Cartesian grid in d dimensions is generated with a constant step size �x and a
diffusion coefficient γ = 0.01. The number of dimensions is d = 1, 2, 3, and the
domain is the unit cube [0, 1]d . The number of grid points is n = 1/�x + 1 in each
dimension yielding N = nd components in u. A straightforward implementation of
Algorithm 1 in steps 5 and 6 will generate N 2 elements in �. By updating only those
elements of� that correspond to nonzeros inD and S, the number of nonzero elements
in the approximation �̂ will be of O(N ).

The initial data u(0) are sampled from a uniform distribution uk(0) ∼ U[0, 1] and
� = 0. The ODEs in (74) and (75) are solved numerically for t ≥ 0 by the forward
Euler method for simplicity. Then, the RHS in each step of Algorithm 1 is evaluated
once requiring a computational work proportional toM2N in every timestep from tn to
tn+1. Better numerical accuracy is achieved by splitting the computations according to
Strang (1968) as in (11) and by using a higher-order method. Better numerical stability
is obtained by an implicit method.

6.1.1 1D

The covariance �(x1, x2, t) is computed in 1D on a grid with �x = 0.025 and
N = n = 41 using the full � without zeros, the sparse �̂ with the same nonzero
pattern as S, i.e., the diagonal, the subdiagonal, and the superdiagonal are nonzero
in a tridiagonal matrix as proposed in Sect. 6.1, and the sparse �̌ where another two
diagonals below and above the diagonal are nonzero in a pentadiagonal matrix. One
row of the three matrices is shown in Fig. 2. The approximations �̂(0.5, x2, t) and
�̌(0.5, x2, t) agree fairly well with �(0.5, x2, t) in particular for larger t in Fig. 2.

The PDF of the multivariate normal distribution N (u,�) is

p(η, t) = 1

(2π)N/2
√
det�

exp

(
−1

2
(η − u)T�−1(η − u)

)
. (76)

The covariance matrix is factorized by � = Q�QT where Q is orthogonal and
� has the positive eigenvalues of � on the diagonal. The expression in (76) in the
exponential defines surfaces of ellipsoids inRN with equal probability, and the eigen-
values of � are the lengths of the principal axes of the ellipsoids. Another way of
comparing � and its approximations is then to compare the eigenvalues to see the
difference between the lengths of these axes.

The eigenvalues of�, �̂, and �̌ are displayed in Fig. 3. They also agreewell except
for the one or two smallest ones in the figure. Using five diagonals and four neighbors
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Fig. 2 Comparison of the covariance �(0.5, x2, t) for diffusion in 1D with x2 ∈ [0, 1] on the abscissa
at different time points and different approximations: without sparse approximation (blue), with two extra
diagonals in �̂(0.5, x2) (red), and with four extra diagonals in �̌(0.5, x2) (yellow). The time is t = 8 (left),
t = 20 (middle), and t = 40 (right)
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Fig. 3 Comparison of the N eigenvalues of the covariance�(0.5, x2, t) for diffusion in 1D at different time
points and different approximations: without sparse approximation (solid blue), with two extra diagonals
in �̂ (dashed red), and with four extra diagonals in �̌ (dash-dotted yellow). The time is t = 8 (left), t = 20
(middle), and t = 40 (right). The curves for �̂ and �̌ at t = 40 are indistinguishable with the precision in
the figure

in �̌ improves the approximation somewhat compared to �̂. Including more than the
nearest neighbors in 2D and 3D with an unstructured mesh is possible but makes the
algorithm more complicated.

6.1.2 2D and 3D

In 2D, �(x1, x2, t) is computed with the full � matrix and with the approximation �̂

that has the same sparsity pattern as S on a grid with �x = 0.05 and N = n2 = 441.
One row of � corresponds to one coordinate x1k and its covariance with the 2D x2.
The variance is high at �(x1, x1, t), and the covariance �(x1, x2, t) is very low when
x1 �= x2. This is depicted in the left panel of Fig. 4 where x1 and x22 are fixed and
x21 varies in xT2 = (x21, x22). The differences in covariance between � and �̂ are
very small and not visible in the figure. Since � is symmetric, the result is similar in
other directions in x2 and for other x1. The steady-state solution (40) with u = 0.5
and V = 1/400 is here 200.

One section of the 3D covariances � and �̂ is shown in the right panel of Fig. 4.
As in 2D, x1, x22, and x23 in xT2 = (x21, x22, x23) are fixed and �(x1, x2, t) is plotted
as a function of x21. The step size in the grid is �x = 0.0833 and N = n3 = 2197.
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Fig. 4 The covariances �(x1, x2, t) for diffusion computed with the full matrix � and its sparse approxi-
mation �̂ in 2D (left) and 3D (right). The coordinate x1 chosen in the middle of the domain and with one
degree of freedom in x2 on the abscissa at t = 2.5 with �x2 = 1/20 (left) and t = 0.2 with �x2 = 1/12
(right). The difference between � and �̂ is not discernible in the figures

Fig. 5 Scaled difference ��i j of the covariance matrices � and �̂ in (77) when i, j = 1, . . . , N for
diffusion in 2D at t = 2.5 (left) and t = 5 (right)

After a short time, the covariances of� and �̂ agree very well as in 2D. The stationary
solution in (40) with the data here is 864.

The scaled difference �� between the covariances � and �̂ is defined by

� = �̂(IN + ��), �� = �̂
−1

(� − �̂). (77)

The dominant elements in �̂ are the variances on the diagonal. With small elements
in �� compared to 1, the difference between the covariances in � and �̂ is small
relative to the variances in �̂. In Fig. 5, �� for the 2D example is shown at two time
points. The values of �� are low in blue color in most parts of the matrix. The peaks
in the left panel are at 0.035 in isolated points. In the right panel, max��i j < 0.02.

The eigenvalues of � and �̂ in 2D and 3D are compared in Fig. 6. The sparse
approximation captures all the eigenvalues except for one or two of the smallest ones.

The covariance of the fluctuations in concentration between different parts of the
domain is well approximated by the sparse �̂, especially in 2D and 3D in Figs. 4
and 6. This is expected from Theorem 1 in Sect. 4 where the decay of �(x1, x2, t) is
slower in 1D than in 2D and 3D when ξ1 = 1√

2
(x1 − x2) is growing.
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Fig. 6 Comparison of the N eigenvalues of the covariance matrices� and �̂ for diffusion in 2D at t = 2.5
(left) and 3D at t = 0.2 (right) and different approximations: with sparse approximation (dashed red) and
without (solid blue)
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Fig. 7 Comparison of the MN eigenvalues of the covariance matrices � and �̂ for the reaction (66) and
diffusion in 2D at t = 0.25 (upper left), t = 0.5 (upper middle), t = 1 (upper right), t = 3 (lower left),
t = 6 (lower middle) and different approximations: with sparse approximation (solid blue) and without
(dashed red). The convergence of the solution to the steady state for the species A, B, and C as a function
of t (lower right)

6.2 Reactions and Diffusion in 2D

The time evolution of the chemical reaction (66) on the Cartesian mesh in 2D in
Sect. 6.1.2 is computed with the LNA as in the example in Sect. 5.1. The parameters
are ka = kd = 0.1, and the diffusion is low with γ = 0.01. The dimension of u is
MN = Mn2 = 1323, and the initial values in u(0) are uniformly distributed between
0 and 1 and �(0) = 0.

The eigenvalues of the covariances with the full matrix � and with the sparse
matrix �̂ are compared at different t in Fig. 7. An approximate stationary solution
u∞ is determined at t = 20. The convergence of the three subvectors u1·, u2·, and u3·
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in (69) corresponding to the concentrations of A, B, and C is displayed in the lower
right panel in the figure. The difference between u and u∞ is measured in ‖ · ‖ for
the species. In the resolution of the figure, it is not possible to distinguish between the
differences in convergence between the species. The balance equation kaāb̄ = kd c̄
is satisfied with a relative error less than 0.008 by the mean values ā, b̄, and c̄ of
the components in ui ·(20), i = 1, 2, 3. At ∞, u∞1·, u∞2·, and u∞3· are constant in
space.

The convergence plot in Fig. 7 shows that the variation in the solution is larger for
small t and decreases with t . The covariances� and �̂ agree well for large eigenvalues
for small t and they agree well for all eigenvalues when t grows. The off-diagonal
submatrices �i j;··, i �= j, in (69) are comparable in size to the diagonal submatrices
�i i;·· when t is small but as t grows �i i;··, i = 1, 2, 3, will dominate and be closer
and closer to diagonal matrices. There is a jump in the spectrum for larger t , e.g., at
t = 6. This is explained by the difference in the size of the stationary values ā, b̄, and
c̄where ā ≈ b̄, and c̄/ā ≈ 0.6. The approximation in the covariance equation behaves
in the same way with reactions as in Sect. 6.1.2 without the reactions.

7 Conclusions

The master equation is a model for biochemical reactions and diffusion but the numer-
ical solution of it is impossible except for simple, well-stirred systems with special
properties. An alternative for large systems with spatial variation is to use the linear
noise approximation (LNA). We have derived the equations for the LNA for diffu-
sion and chemical reactions on general meshes. The reactions involve M species, and
the mesh consists of N voxels. The covariance of the concentrations is approximated
by a sparse representation in an algorithm such that the computational complexity
is reduced from O(M2N 2) in a straightforward implementation to O(M2N ) here.
Also the memory to store the solution is reduced in the same way. The approximation
is supported by analytical expressions showing that the higher the dimension is, the
better the approximation is. Consequently, the quality of the approximation and the
savings in work and storage are more prominent in 3D when N is large. The accuracy
of the approximation is evaluated by comparing the elements and the eigenvalues of
the full covariance matrix and its sparse approximation in numerical examples with
only diffusion in 1D, 2D, and 3D and an example in 2D with a reversible reaction and
slow diffusion.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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