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Abstract16

The Biorepository and Integrative Genomics (BIG) Initiative in Tennessee has developed a17

pioneering resource to address gaps in genomic research by linking genomic, phenotypic, and18

environmental data from a diverse Mid-South population, including underrepresented groups.19

We analyzed 13,152 genomes from BIG and found significant genetic diversity, with 50%20

of participants inferred to have non-European or several types of admixed ancestry. Ances-21

try within the BIG cohort is stratified, with distinct geographic and demographic patterns, as22
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African ancestry is more common in urban areas, while European ancestry is more common23

in suburban regions. We observe ancestry-specific rates of novel genetic variants, which are24

enriched for functional or clinical relevance. Disease prevalence analysis linked ancestry and25

environmental factors, showing higher odds ratios for asthma and obesity in minority groups,26

particularly in the urban area. Finally, we observe discrepancies between self-reported race and27

genetic ancestry, with related individuals self-identifying in differing racial categories. These28

findings underscore the limitations of race as a biomedical variable. BIG has proven to be an29

effective model for community-centered precision medicine. We integrated genomics educa-30

tion, and fostered great trust among the contributing communities. Future goals include cohort31

expansion, and enhanced genomic analysis, to ensure equitable healthcare outcomes.32

1 Introduction33

The history of human genetic research, from foundational concepts of genetic mapping to the de-34

velopment of genome-wide association studies, highlights how how a series of technical break-35

throughs have progressively dismantled biases, and paved the way for more inclusive studies.36

Comprehensive human linkage studies began in the 1980s with the discovery that restriction length37

fragment polymorphisms could map Mendelian loci [1]. Several years before the human genome38

was sequenced, Risch and Merikangas proposed that genotyping large numbers of ’diallelic poly-39

morphisms’ could uncover the genetic basis of common diseases [2], laying the foundation for40

genome-wide association studies in the early 2000s. However, limited genome data and infor-41

mative markers led early genetic studies to focus on low-heterogeneity populations like Finnish42

and Icelandic cohorts, in which power to detect linkage were well matched to informative Single43

Nucleotide Polymorphisms (SNPs) [3, 4, 5, 6]. The initial SNP arrays had relative low coverage44

— barely adequate for the most genetically tractable European populations —, and much more45

limited utility for more diverse populations, especially highly heterogeneous African cohorts[7, 8].46

Newer high density arrays has enabled the inclusion of non-European populations [9, 10, 11],47

but they have now been overshadowed by affordable whole exome and genome sequencing and by48

the welcome addition of deep sequencing of a much more representative swath of humanity [12, 13,49

14, 15, 16]. However, even supposedly unbiased sequencing suffers from a strong structural bias —50

namely the reliance on the procrustean expedient of using a single “reference” genome. These final51
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barriers to genetic equity were finally overcome last year with the publication of comprehensive52

human pangenome assemblies that do not reify a single haploid genome as “The Human” [17, 18].53

This advancement will allow a minimally biased exploration of genome-phenome-environment54

relations of almost any human population.55

Because of the slow progress in technology and data availability described above, along with56

other important contributing factors, to date most genetic data available for human research has57

predominantly originated from European populations, introducing a bias in medical research and58

healthcare that fails to accurately represent the genetic diversity of the global human population59

[19, 20, 21, 22, 23]. Genetic risk assessments based on European ancestry cohorts yield less accu-60

rate outcomes for non-European populations, as seen with CYP2C19 gene variants, which affect61

drug metabolism and increase risks of misdiagnosis or delayed treatment [24, 25, 26]. While the62

importance of including ethnically diverse populations in studies of quantitative trait evolution is63

well known [27], the underrepresentation of diverse populations in genetic research exacerbates64

health inequities and limits understanding of disease genetics across ancestries, further deepen-65

ing existing treatment disparities. This underrepresentation underscores the urgent need for more66

inclusive and diverse genetic studies to improve global health outcomes, leading to a surge of67

initiatives aimed at addressing these disparities (e.g., [16, 28, 29, 30]).68

The Biorepository and Integrative Genomics (BIG) Initiative of Tennessee (US), is a multi-69

institute initiative that has developed a biorepository resource from a diverse Mid-South population70

in the US, including African Americans, and rural populations in Appalachia, which are dispro-71

portionately impacted by chronic diseases and the associated costs of healthcare [31, 32]. The BIG72

biospecimens and their genomic data are linked to de-identified electronic health records, with the73

purpose of creating a platform for genomics-based research that includes underrepresented popu-74

lations and to support future personalized healthcare delivery platforms [33]. The initial focus of75

BIG on building a large and diverse cohort for genetically informed treatment and prevention of76

pediatric conditions, has now been expanded to a state-wide program that enrolls participants of77

any age with the goal of building genome-phenome-environment data for 100,000 Tennesseans.78

Here we report on the analysis of 13,152 genomes from the BIG collection. We demonstrate79

that the BIG is a genetically diverse and ethnically rich study population, representing a unique80

and valuable resource for inclusive genomics. Our findings highlight ancestry-specific diversity81
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and genetic burden, underscoring the critical need of inclusive sets of data. Finally, we show that82

self-reported race does not accurately reflect genetic ancestry and should be cautiously applied as83

a covariate in genetic analyses.84

2 Results85

A robust foundation for inclusive genomics studies86

To date, the BIG initiative has consented over 42,000 participants with electronic health records87

and collected more than 15,000 biosamples from five collection sites (Fig 1A). The BIG cohort88

is predominantly pediatric, with 87% of participants under 18 years old. At the time of sample89

collection, participant ages ranged from infancy to 90 years, with an average age of 8.4 years and a90

median age of 6.2 years (Fig. S1). BIG stands out as one of the largest cohorts focused on diverse91

ancestries, providing a substantial representation of different ethnic backgrounds [34, 35, 36, 37,92

38, 39, 40] (Table S1). Notably, it is among the few cohorts specifically enriched for children93

with diseases, unlike most pediatric cohorts that typically recruit healthy mother-child pairs during94

pregnancy [41, 42, 43, 35, 36, 38, 40].95

Since 2017, the BIG initiative has developed the Memphis Genomics Educational Network96

(MEMGEN) to engage the Memphis Shelby County Public School District (MSCPSD) commu-97

nity in genomics education. MEMGEN has reached students in seven public high schools (with98

plans to expand to 25), providing hands-on genomic experiences and ethical discussions that in-99

spire STEM careers and academic growth in underserved communities. Community engagement100

is strengthened through advisory boards like the Le Bonheur Family Partners Council, supporting101

the BIG initiative since 2015, and the UTHSC Community Advisory Board, representing seven-102

teen grassroots organizations. These boards ensure research and educational efforts align with103

community needs, fostering a community-centered approach to precision medicine and addressing104

health disparities.105
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Capturing broad diversity and several types of admixture106

Within the BIG cohort, we identified and phased 6.8 million high-confidence variable sites, evenly107

distributed across the genome (Fig S2) through exome sequencing and genotype-by-sequencing108

data from 13,152 individuals. We used this genetic information to understand the ancestry com-109

position of BIG by performing supervised ancestry deconvolution [44], with 1000 Genomes and110

HGDP as reference populations [12, 13]. While we observe a clear, uninterrupted continuum of111

ancestry, we subdivided the data set into seven ancestry groups to account for admixture and fur-112

ther characterize our cohort (Fig 1B). In practice, individuals were classified as not-admixed if113

more than 85% of their global ancestry corresponded to a single group. The choice of an 85%114

threshold reflects the understanding that genetic ancestry exists on a continuum, therefore defining115

discrete categories implies setting thresholds and making arbitrary decisions ([29] see Methods116

section). Furthermore, ancestral contributions over 10-15% are generally considered accurate and117

significant, while lower proportions are often linked to shorter ancestral segments and higher error118

rates [45].119

According to this ancestry-based grouping, 50% of participants relate to individuals of non-120

European origin in the reference data sets. In particular, 20% of the BIG individuals are similar121

to Africans in the reference sets, and 30% present admixed origins, with two-way and multiple-122

admixture patterns (Fig 1B). These figures, projected on all consented individuals, indicate that123

over 20k consented samples are likely of non-European or admixed origin, placing BIG among the124

largest pediatric cohorts with many admixed children (Table S1).125

The distribution of inferred ancestry groups by zip code shows ancestry stratification, with126

prevalence of European ancestry in the suburbs and areas surrounding Memphis (Fig 1C, S3).127

Stratification appears even more marked when visualized by single ancestry (Fig 1D). A high dis-128

similarity index [46] between EUR and AFR (0.67) is observed, highlighting relevant geographic129

difference, while AFR and EUR-AFR (0.24) are the most evenly distributed pair, indicating much130

closer spatial overlap (Fig S3C). This evidence indicates that BIG individuals with similar ancestry131

often share a similar environment, implying that geography could act as a confounding factor if132

not accounted for in association analyses.133
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Figure 1: Geographic distribution and global ancestry deconvolution of individuals from the
BIG initiative - (A) Overview of data collected across four sites in Tennessee, US. (B) Global an-
cestry deconvolution of 13,152 sequenced individuals, based on reference populations in the 1000
Genomes and HGDP data sets. Each vertical bar represents one individual, colors are proportional
to inferred ancestry. For further analyses, individuals were grouped based on the ancestry pro-
portions in seven categories (colored bar, number of individuals per category in parentheses), and
classified as admixed or not (black and gray bar) (C) Proportion of individuals corresponding to
each ancestry stratified by the zip code. (D) Prevalence of ancestries by zip code - EUR: European;
AFR: African; EAS: East-Asian; AMR: Indigenous-American.

Integrating genetic, phenotypic, and environmental information134

Electronic health records are an integral part of the BIG cohort, covering a range of Phecode135

categories [47], with gastrointestinal and respiratory medical conditions among the most repre-136

sented (Fig S4). We examined the prevalence of obesity, hypertension, diabetes and asthma, four137

health conditions commonly associated with minority groups and local environmental influences138

[48]. BIG children have a high incidence of diabetes and asthma (363 and 697 cases, respectively,139

Fig 2A), while adults have a more balanced incidence across these same four diseases (Fig S5).140

Ancestry categories such as AFR and EUR-AFR, are major contributors across conditions, and141

we observed higher odds ratios for obesity and asthma in minority groups (all individuals self-142

identified as belonging to non-White racial groups) compared to 200 randomly selected conditions143

(Fig 2B).144
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Figure 2: Prevalence of diseases common in health disparities populations. (A) Number of
cases stratified by inferred ancestry categories. (B) Odds ratios for asthma, diabetes, hypertension,
obesity compared to odds ratio of two hundred random diseases, observed among individuals self-
identifying as belonging to non-White racial groups. (C) Prevalence of obesity and asthma by zone.
This is defined as the proportion of cases in the total population. The 95% confidence intervals are
calculated using the Wald method. (D) The map displays zones color-coded by prevalence levels
in locations with more than 100 total individuals. The Memphis Metropolitan area, characterized
by high population density, is zoomed in.
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Analysis of disease prevalence by zip code suggests a notable environmental component for145

obesity and asthma. In particular, three suburban areas around Memphis exhibit above-average146

prevalence for both conditions, with asthma being 1.7 times more prevalent in these zones com-147

pared to the overall prevalence in BIG (≈ 20% versus 12.8% CI95 [12.51-13.19] Fig 2C). While148

these analyses are only preliminary, the resulting observations underscore the value of the BIG149

dataset in linking genetic, phenotypic, and environmental information, enabling a multidimen-150

sional understanding of health disparities.151

Ancestry-specific diversity and genetic burden152

Our joint principal component analysis (PCA) of the BIG and 1000 Genomes datasets (Fig 3A)153

reveals significant genetic diversity in the BIG dataset, with mixed ancestry groups contributing154

to the spread and overlap between clusters corresponding to African, American, East Asian, and155

European individuals in the 1000 Genomes. In contrast, the 1000 Genomes dataset exhibits more156

distinct clustering with minimal overlap, reflecting more clearly defined ancestral groups. These157

results underscore the BIG dataset’s value in capturing admixture and genetic diversity not repre-158

sented in the 1000 Genomes, highlighting the importance of including diverse and admixed popu-159

lations in genetic studies to better capture the full spectrum of human variation.160

As expected, the average number of genetic differences from the reference human genome161

varies by ancestry [12]. Individuals with African or admixed African ancestry typically have, on162

average, ∼85k more variable sites compared to other ancestry groups (Fig 3B). This observation163

underscores the risk of bias in using a single reference sequence and its associated genomic an-164

notations. The genetic diversity represented within BIG would be more accurately modeled by a165

pangenomic approach [17].166

Our dataset includes 771,717 novel single nucleotide variants (11.2% of the total), which are167

absent from major databases such as gnomAD, 1000 Genomes Project, or Human Genome Di-168

versity Project [12, 13, 49]. Novel variants are mostly rare and private to ancestries, as expected169

(Fig S6). The rough number of novel variants per individual is higher within inferred admixed170

ancestries, Americans, and Asians (Fig 3C). Some novel variants have important functional con-171

sequences on the gene product (Fig S6, VEP classification [50]: 2.8% high impact, including172
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Figure 3: Genetic variability and genetic burden in the BIG cohort - (A) Joint principal com-
ponent analysis of genetic data from individuals in the BIG and in the 1000 Genomes populations,
represented separately for clarity. Colors represent inferred genetic ancestry. The first two principal
components explain 76% of the variance captured by the first 20 PCs. (B) Number of variable sites
per genome compared to the reference sequence as a function of inferred ancestry. (C) Estimate of
the number of novel variants by individuals per ancestry with indication of variants private to the
ancestry (D) Proportion of known and novel variants across different impact categories. (E) Rare
deleterious-to-synonymous variant ratio across inferred ancestries. The peaks and spreads of these
distributions highlight variation in the frequency of deleterious mutations across ancestries, reflect-
ing potential differences in genetic diversity, mutation load, and evolutionary pressures. (F) Count
of rare deleterious variants in EUR-AMR admixed individuals, which have the highest deleterious-
to-synonymous ratio. Variant counts are assigned based on the inferred ancestry of the genomic
regions where they are found. This means individuals are counted twice: once for their AMR an-
cestry regions and once for their EUR ancestry regions.
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frameshift variants, stop/start gain/loss and splicing affecting variants; 19.7%: missense) and po-173

tential implications for disease association (11.0% predicted to be deleterious by SIFT [51]; 7.9%174

considered probably or possibly damaging by PolyPhen [52]). Notably, the rate of high impact175

annotation in novel variants is double compared to known (logistic regression coefficient β=0.95,176

p-value<0.001, Table S3, Fig. 3D)177

Genetic burden by ancestry was evaluated as the distribution of rare deleterious (alternate al-178

lele frequency <1% in the total BIG samples, predicted to have high impact or missense with179

SIFT<0.05 and Polyphen>0.85) versus rare synonymous genetic variants across different an-180

cestral groups. Among non-admixed groups, African individuals display the lowest deleteri-181

ous/synonymous ratio, whereas European individuals exhibit the highest (Fig 3C). Admixed popu-182

lations show broader distributions in deleterious/synonymous ratios, with the European-American183

group demonstrating the highest ratios. In EUR-AMR group, the average number of rare deleteri-184

ous variants per Gb is significantly higher in the AMR tracts compared to EUR ones (Fig 3D, Fig185

S7) as shown in other studies [53], likely due to demography and founder effect [54, 55].186

Overall, the remarkable breadth of genetic diversity observed underscores BIG’s value as a187

comprehensive resource for exploring genetic variation, enhancing disease association studies, and188

promoting equitable genomic research in underrepresented populations.189

Discrepancies between self-reported race and inferred genetic ancestry190

We compared counts of individuals in self-reported racial categories with those in inferred genetic191

ancestry categories, with some racial categories aggregated for simplicity (Table S2). The number192

of self-reported White individuals aligns closely with those inferred as Europeans, while partici-193

pants identifying as Black or African American appear distributed between two genetic ancestry194

categories: Africans and admixed African-Europeans. For other racial groups, the patterns are195

more diverse and complex (Fig 4A).196

We eavluated the fraction of the genome shared identical by descent (IBD) among all possi-197

ble pairs of individuals and compared with self-reported race. Predictably, IBD genome sharing198

was higher among individuals within the same self-reported race. However, we also detected IBD199

relationships greater than the 2nd degree (compatible with 1st cousin or uncle-nephew relation-200
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ship) between individuals of different self-reported races (Fig 4B). This observation suggests that201

genetically related individuals may self-identify differently with respect to socially constructed202

categories like race.203

The relationship between self-reported race and inferred ancestry was further examined among204

pairs of individuals who identified as belonging to the same race. In some instances, the self-205

reported race of a pair differed from that of other pairs within the same ancestry category (Fig206

4C)). For example, one pair of first-degree relatives (sharing approximately 50% of their genome)207

who both self-reported as White were found to have differing inferred ancestries: one individ-208

ual was classified as having African ancestry, while the other showed a mixture of African and209

European ancestries (represented by the orange triangle in the AFR; EUR-AFR category in Fig210

4C)). Similarly, among three pairs of individuals self-reporting as Black or African American, one211

member of each pair was inferred to have European ancestry (represented by the purple triangle212

in the EUR; EUR-AFR category in Fig 4C)). These findings highlight the limitations of using213

self-reported race as a category for analyzing genetic variation.214

3 Discussion215

The BIG cohort is a genetically diverse and ethnically inclusive pediatric resource, addressing216

the historic underrepresentation of non-European populations in genomics research. With 87% of217

participants under 18 and 50% of non-European ancestry—including 20% closely aligning with218

African reference populations and 30% exhibiting complex admixture patterns—it offers broad219

genetic variability and significant potential to represent human genomic diversity. Previous com-220

parative studies have shown that admixed African populations from Tennessee rank among those221

with the highest proportion of African ancestry in the United States [56]. Notably, individuals from222

Memphis exhibit the greatest genetic diversity within their African ancestry component compared223

to thirteen other similar populations [57]. Although our study is not explicitly comparative, these224

findings position the African and admixed African individuals in the BIG cohort as being among225

the most genetically diverse populations globally.226

This diversity facilitated the discovery of new genetic variants, many with clinical relevance.227

We have indications of ancestry-specific burden in admixed individuals. While this is an intrigu-228
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Figure 4: Poor alignment between self-reported race and genetic ancestry. (A) Counts of
individuals per inferred ancestry (left) and self-reported race (right). (B) Genome segments shared
Identical By Descent (IBD) in centimorgans (cM) between all individual pairs in BIG, categorized
by whether individuals self-reported the same or different race. In some instances, individuals who
self-report as belonging to different races are related at the third-degree level (e.g., first cousins) or
even as close as second-degree relatives (e.g., half-siblings), as indicated by the IBD analysis. (C)
IBD genome sharing and inferred ancestry among individuals self-reporting the same race (color-
coded). In some cases the self-reported race of a pair deviates from the patterns observed in other
pairs within the same ancestry category.

ing observation, it certainly deserves further investigation before any definitive conclusions can be229

reached. We believe that several factors, including sample size, stratification effects, and demog-230

raphy, must be carefully considered to achieve a more solid conclusion. This again underscores231

the importance of ensuring that relevant populations are well represented, as failing to do so risks232

leading to erroneous conclusions.233

As a model for studying health disparities, the BIG cohort reveals higher odds ratios for obesity234

and asthma among minority groups, driven by genetic and environmental factors, as reflected in235

zip-code-specific disease patterns. We show that the BIG cohort has the potential to integrate ge-236

nomic data, electronic health records, and environmental information to thoroughly analyze these237

and other common diseases. [58] With relevance to disease mapping, our study highlights how self-238

identified racial categories often fail to align with genetic ancestry, as seen in other studies [59].239

The value of using race in biomedical research has been a longstanding topic of debate [60, 61].240

Race is predominantly a socio-cultural construct, reflecting identity and social experiences rather241

12

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 3, 2025. ; https://doi.org/10.1101/2025.01.03.25319944doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.03.25319944
http://creativecommons.org/licenses/by-nc/4.0/


than genetic heritage [62]. Nevertheless, race can serve as a useful framework for describing health242

disparities in societies where racial categories are deeply embedded in social structures [59], and243

there have been increasing calls for greater inclusion of underrepresented individuals in genetic244

and biomedical research to help clarify the relationship between race and ancestry [63, 64].245

A peculiar feature of the BIG cohort is the inclusion of many admixed individuals, encom-246

passing three distinct types of admixture. Admixed populations constitute a significant part of247

global genetic diversity and present unique statistical challenges in the analysis of genetic varia-248

tion, leading to their frequent exclusion from genomics and medical research. Admixture can be249

used to map quantitative traits and to detect positive selection [65, 66], requiring smaller sample250

sizes compared to other mapping techniques [67]. Admixture mapping leverages local ancestry251

inference to associate traits with an unusually high proportion of ancestry from one of the parental252

populations around the disease-causing locus [68, 69, 70] and it has been successfully used - as an253

example - to map Alzheimer’s disease [71].254

All the findings from the BIG study hold significant implications primarily for the scientific255

community, however, and most importantly, BIG pioneers a model for inclusive genomic studies,256

emphasizing community engagement to align research efforts with the needs of the contributing257

communities. Clinically, the insights gained from BIG can inform precision medicine initiatives for258

historically underserved populations, particularly in regions of Tennessee, where African Amer-259

icans and others face a disproportionate burden of chronic disease. Through MEMGEN local260

students and families engage with hands-on genomics education and ethical aspects of genetic re-261

search, which demystifies the science and inspires interest in STEM fields, promoting inclusivity262

by respecting cultural contexts and building trust.263

A future key priority for the BIG initiative is to expand its participant base to include adults,264

allowing for a comprehensive study across all age groups and an even broader spectrum of genetic265

diversity. Continued community education is also a priority to sustain engagement and participa-266

tion in the BIG initiative. Another important priority is to adopt a pangenomic approach in genetic267

data analysis to better represent the genetic diversity within the cohort. Moving toward an inclusive268

genome model that integrates multiple ancestries and population-specific variants will enhance the269

accuracy of variant identification and genetic association studies for individuals in the BIG cohort.270

By embracing this pangenomic approach, the BIG initiative can establish a new benchmark271
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for inclusive genomics, ensuring that research benefits all participants by reflecting their unique272

genetic backgrounds.273

In conclusion, the BIG initiative can continue to lead in inclusive genomics, creating a resource274

that supports equitable health outcomes and advances the field toward a truly representative model275

of precision medicine.276

4 Methods277

Ethics278

This study adhered to the ethical principles outlined in the Declaration of Helsinki for medical279

research involving human subjects. This study was conducted in accordance with ethical standards280

and is approved by the Institutional Review Board (IRB) of UTHSC (IRB number: 23-09204-281

NHSR). Written informed consent was obtained from all participants; for pediatric subjects, con-282

sent was provided by their legal guardians or next of kin. To ensure confidentiality, all data were283

de-identified prior to analysis.284

Sample collection sites285

Le Bonheur Children’s Hospital (LBCH, Memphis, TN) - LBCH is the primary pediatric care cen-286

ter in Memphis, and serves a predominantly African American population in an area marked by287

significant health disparities. Recruitment at this site was launched in October 2015 and spans288

inpatient rooms, ICUs, outpatient clinics, and the emergency department. Information from ge-289

nomic DNA extracted from leftover blood collected during routine care is linked to de-identified290

electronic health record data. Leftover samples are not always available for collection, although291

they can be collected on a subsequent visit. This explains the discrepancy between the number of292

consented participants and collected biosamples.293

Regional One Health (ROH, Memphis, TN) - ROH is a leading healthcare provider in Mem-294

phis, providing comprehensive care to underserved and vulnerable communities in the same ge-295

ographical area of LBCH. In May 2022, the BIG Initiative extended its reach to ROH, focusing296

on adult genomic research. Participants are recruited across hospital settings, with DNA collected297
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from leftover blood during standard care and linked to de-identified EHR data. This expansion298

complements BIG’s pediatric focus at LBCH by including a diverse adult population.299

East Tennessee State University (ETSU, Johnson City, TN) - The BIG Initiative expanded to300

ETSU in May 2023 to include the Appalachian region, emphasizing adult participant recruitment.301

DNA samples are collected through dedicated blood draws and linked to de-identified EHR data.302

ETSU’s inclusion aligns with BIG’s commitment to engaging rural and underserved populations,303

complementing efforts at LBCH and ROH to create a robust, diverse genomic database for advanc-304

ing precision medicine across the Mid-South and Appalachia.305

Family Resilience Initiative (FRI, Memphis, TN) - Launched in January 2019, the Family Re-306

silience Initiative (FRI) examines the impact of adverse childhood experiences (ACEs) and social307

determinants of health on long-term outcomes. The program enrolls mother-child dyads from the308

Memphis region, collecting sputum and/or blood samples at four visits spaced six months apart.309

Samples are processed through BIG’s operational pipeline for DNA isolation, cortisol measure-310

ments, and clinical assessments. By linking biological and environmental data, FRI aims to under-311

stand ACEs’ physiological and epigenetic effects, providing insights to guide tailored interventions312

and improve family health in vulnerable communities.313

DNA sequencing314

The 13,152 samples were processed with NEB/Kapa reagents, captured with the Twist Comprehen-315

sive Exome Capture design, enhanced by Regeneron-designed spikes targeting sequencing geno-316

typing sites. Among the sequenced samples average coverage is 20X for 95.2%, with 99.3% above317

90%, highlighting the overall quality of the data. The genotyping spike targets an additional ≈1.4M318

variants in the human genome. Genotyping call rate (percentage of SNP / indels targeted geno-319

typing at which a call can be made) is 99.0%. CHIP targets mean coverage, crucial for detecting320

low-frequency variations, averages at 100X. All samples were sequenced on an Illumina NovaSeq321

6000 system on S4 flow cells sequencer using 2×75 paired-end sequencing.322
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Variant identification323

Sequence reads were aligned by the Burrows-Wheeler Aligner (BWA) MEM [72] to the GRCh38324

assembly of the human reference genome in an alt-aware manner. Duplicates were marked using325

Picard, and mapped reads were sorted using sambamba [73]. DeepVariant v0.10.0 with a custom326

exome model was used for variant calling [74], and the GLnexus v1.2.6 tool was used for joint327

variant calling [75]. The variants were annotated using a Variant Effect Predictor (VEP 110) [50].328

Phasing was performed using ShapeIT v5 [76].329

Global and Local Ancestry inference330

To characterize the genetic admixture within the BIG cohort, we performed a global and local an-331

cestry inference (LAI) analysis using RFMix v.2.0;https://github.com/slowkoni/332

rfmix [44]. Reference samples included those of the 1000 Genomes Project and the Human333

Genome Diversity Project (HGDP), using the recently developed joint call [77]. The merged334

genotyping dataset, which combined BIG participants with reference samples, consisted of au-335

tosomal variants. To select the reference samples, we followed a quality control previously used in336

other studies [78]. To exclude reference samples with extensive admixture, we performed an un-337

supervised cluster analysis using ADMIXTURE [79]. We selected 4 groups (k = 4), and reference338

samples with a major group proportion > 0.99 were considered for the analysis. Four-way LAI339

was performed with the number of terminal nodes for the random forest classifier set to 5 (-n 5),340

the average number of generations since the expected addition set to 12 (-G 12), and ten rounds341

of the expectation maximization algorithm (EM) (-e 10). Reference superpopulations selected at342

the continental level were African (AFR), American (AMR), European (EUR), and Asian (EAS).343

Specifically, AFR is represented by YRI (101), LWK (30), MSL (16), Mbuti (10), GWD (48),344

ESN (64), Bantu South Africa (3), Bantu Kenya (10) and Biaka (21) groups. EUR contains Tus-345

can (6), Sardinian (12), Orcadian (13), IBS (117), GBR (103), French (24), Bergamo Italian (9),346

Basque (17) and CEU (114). AMR by Surui (6), Pima (10), PEL (10), Maya (16), Karitiana (7),347

and CLM (7). Finally, EAS is represented by CHS (106) and CHB (39). Local ancestry inference348

with RFMix2 was used to classify rare alleles (AF <0.01), both synonymous and deleterious, by349

ancestry. A custom script was developed to process phased VCFs with local ancestry calls, assign-350
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ing each allele to an ancestral population and generating ancestry-specific haplotype counts. This351

approach enables the precise tracking of allelic ancestry in samples.352

Discrete ancestry categories (AMR, AFR, EUR, EAS, EUR-AMR, EUR-AFR, and Multiway)353

were defined based on the following criteria: (i) individuals with more than 85% of a single an-354

cestry were categorized into single-ancestry groups; (ii) individuals with at least 15% contribution355

from two ancestries, and a combined total of over 85%, were classified as two-way admixed; (iii)356

individuals with significant contributions (greater than 15%) from three or more ancestries were357

classified as Multiway. The number of individuals per ancestry group by ZIP code (based on358

ZCTA5 Code Tabulation Areas from the 2020 U.S. Census) was used to map the proportion of359

each ancestry within each location. The dissimilarity index [46] was calculated for ancestry cate-360

gories with populations exceeding 500 individuals. To ensure reliable calculations, ZIP codes with361

fewer than 100 total individuals were excluded from the analysis.362

About inferred population labels363

In this study, we use self-reported race and ethnicity, which are socially constructed and categori-364

cal, alongside genetic ancestry proxies derived from methods like RFMix [44]. Although race and365

ethnicity are discrete categories that reflect social and historical contexts, genetic ancestry arises366

from continuous biological processes that capture paths through the ancestral recombination graph367

[80]. To facilitate our analysis, we categorize genetic ancestry into regional groupings such as368

AMR (ancestries from the Americas) or EUR (ancestries from Europe), but it is important to clar-369

ify that these labels are not fixed or essentialized categories [81]. This grouping is useful only370

because it helps us explore the demographic and environmental histories that shape the variation371

of complex genetic traits. This discretization is merely one arbitrary scale, and in several anal-372

yses, we examine finer ancestral variation within these groupings using dimensionality reduction373

techniques (PCA), unsupervised clustering (ADMIXTURE) and relatedness (e.g., IBD segment374

analyses). We emphasize that such proxy cannot be equated with historical racial categories that375

have been used to justify inequality [82]. In fact, a part of the results section is focused on showing376

the discrepancies between both categories.377
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About self-reported race378

Race is self-reported by enrolled patients at the time of admission to the hospital. The admission379

staff select the race code from a drop-down list of possible race categories according to HL7 stan-380

dards for race and ethnicity https://hl7-definition.caristix.com/v2/HL7v2.5/381

Tables/0005. It is possible to select multiple race codes from the drop-down list in case people382

associate themselves with multiple races.383

Clinical Data384

The clinical data associated with BIG participants are extracted from the EHR (Electronic Health385

Records) system in flat files and shared with UTHSC through a secure file transfer protocol. These386

data include demographics, visits, diagnoses, procedures, prescribed and administered medica-387

tions, labs, and vital signs. These data elements are converted to a limited data set (LDS) and388

mapped to a common data model, the OMOP (Observational Medical Outcomes Partnership)389

CDM. To support the analysis, the ICD9/10 diagnosis codes are assigned to PheCodes.390

Diversity and population structure analyses391

Joint PCA, considering BIG and 1000GP cohorts, was performed in order to compare genetic di-392

versity. We used the bigsnpr R package protocol for PCA analysis (https://privefl.github.io/bigsnpr)393

[83]. Briefly, this involved using King software [84] to estimate kinship coefficients and remove394

first and second-degree relatives (cutoff < 0.0884). LD clumping (r < 0.2) and exclusion of395

long-range LD regions were based on Mahalanobis distances. Outliers were identified with K-396

nearest-neighbor. The first 20 PCs were computed using truncated SVD. After excluding outliers,397

we projected related individuals in the PC space. Variants with MAF < 0.01 were excluded. For398

ADMIXTURE analyses, we performed unsupervised clustering with k = 3, 4, 5, and 6. We applied399

standard quality control filters, including LD pruning and removal of variants with MAF < 0.01.400

Logistic regression was performed in R.401
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Relatedness and Identical By Descent analysis402

To analyze relatedness and infer family relationships, we used KING software to calculate kinship403

coefficients and determine the probability of sharing zero IBD (identity by descent) [84]. Quality404

control for kinship inference included removing variants with high missingness, filtering by MAF405

> 0.01, and performing LD pruning.406

To identify IBD segments, we used hap-ibd in the phased data set comprising 13,152 genomes,407

focusing on autosomal loci [85]. Hap-ibd was executed with a minimum seed parameter of 2 cM408

to detect IBD segments of at least this length. The inferred IBD segments were post-processed409

using the protocol developed by Browning et al. [86], particularly the merge-ibd-segments tool,410

with default parameters. Gaps with at most one discordant homozygote and less than 0.6 cM were411

removed.412

Code availability413

The scripts used for QC, PCA, local and global ancestry deconvolution, and IBD analysis are414

available on https://github.com/SilviaBuonaiuto/BIG415

5 Data availability416

The BIG data presented here is potentially identifiable human data, and therefore its availability417

is somewhat restricted. However, we strongly support data availability in general. Data used for418

this study can be shared after University of Tennessee Health Science Center institutional IRB and419

BIG Research Oversight Committee review and approval https://uthsc.edu/cbmi/big/.420

Please contact the authors for further information.421

6 Acknowledgments422

We extend our gratitude to all the individuals and their families who generously contributed to423

the BIG initiative. We would like to thank Carol Hendrix and the consent teams in Memphis424

and in Johnson City for oversight of recruitment and sample collection; Kito Lord, from ROH;425

19

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 3, 2025. ; https://doi.org/10.1101/2025.01.03.25319944doi: medRxiv preprint 

https://github.com/SilviaBuonaiuto/BIG
https://uthsc.edu/cbmi/big/
https://doi.org/10.1101/2025.01.03.25319944
http://creativecommons.org/licenses/by-nc/4.0/


James Adkins, and Jonathan Patrick Moorman from ETSU; Jason Yaun, Sandra Arnold from FRI;426

Marcella Vacca; Scott Strome; Jon McCullers; David Haines; Peter Buckley, G. Nicholas Verne,427

and Pamela Beckley from UTHSC; Trey Eubanks from Le Bonheur Children’s Hospital; the BIG428

Community Advisory Board.429

The authors gratefully acknowledge support from the Center for Integrative and Translational430

Genomics at UTHSC (SB, FM, RWW, PP, VC); NIH/NIGMS (R01GM123489 to PP); NSF (PPoSS431

Award 2118709 to PP); the NIH/NHLBI (RO1 HL170151 to THF); The Rady Children’s Institute432

for Genomic Medicine (THF); the Children’s Foundation of Memphis (THF); the Urban Child433

Institute; the Children’s Foundation Research Institute, Children’s Foundation of Memphis; the434

Assisi Foundation (CWB).435

7 Author contribution436

SB, FM, PP, KM, RWW, RLD, THF, CWB, VC; Data curation: SB, FM, AM, LKC; Formal437

Analysis: SB, FM, AM, EKA, VC; Funding acquisition: PP, RJR, RWW, RLD, THF, CWB, VC;438

Investigation: SB, FM, VC; Methodology: SB, FM, VC; Project administration: ; Resources: PP,439

RWW, CWB; Software: PP; Supervision: PP, RJR, RWW, RLD, THF, CWB, VC; Validation: ;440

Visualization: SB, FM, VC; Writing – original draft: SB, FM, EKA, RWW, RLD, THF, CWB,441

VC; Writing – review & editing: SB, FM, AM, LKC, PP, KM, EKA, RJR, RWW, RLD, THF,442

CWB, VC.443

20

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 3, 2025. ; https://doi.org/10.1101/2025.01.03.25319944doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.03.25319944
http://creativecommons.org/licenses/by-nc/4.0/


Extended Affiliation [3]:444

3. Regeneron Genetics Center, Tarrytown, NY, USA.445

RGC Management & Leadership Team Aris Baras, Goncalo Abecasis, Adolfo Ferrando, Gio-446

vanni Coppola, Andrew Deubler, Aris Economides, Luca A Lotta, John D Overton, Jeffrey G447

Reid, Alan Shuldiner, Katherine Siminovitch, Jason Portnoy, Marcus B Jones, Lyndon Mitnaul,448

Alison Fenney, Jonathan Marchini, Manuel Allen Revez Ferreira, Maya Ghoussaini, Mona Nafde,449

William Salerno.450

Sequencing & Lab Operations John D Overton, Christina Beechert, Erin Fuller, Laura M Cre-451

mona, Eugene Kalyuskin, Hang Du, Caitlin Forsythe, Zhenhua Gu, Kristy Guevara, Michael Lat-452

tari, Alexander Lopez, Kia Manoochehri, Prathyusha Challa, Manasi Pradhan, Raymond Reynoso,453

Ricardo Schiavo, Maria Sotiropoulos Padilla, Chenggu Wang, Sarah E Wolf, Hang Du, Kristy454

Guevara.455

Clinical Informatics Amelia Averitt, Nilanjana Banerjee, Dadong Li, Sameer Malhotra, Justin456

Mower, Mudasar Sarwar, Deepika Sharma, Sean Yu, Aaron Zhang, Muhammad Aqeel.457

Genome Informatics & Data Engineering Jeffrey G Reid, Mona Nafde, Manan Goyal, George458

Mitra, Sanjay Sreeram, Rouel Lanche, Vrushali Mahajan, Sai Lakshmi Vasireddy, Gisu Eom, Kr-459

ishna Pawan Punuru, Sujit Gokhale, Benjamin Sultan, Pooja Mule, Eliot Austin, Xiaodong Bai,460

Lance Zhang, Sean O’Keeffe, Razvan Panea, Evan Edelstein, Ayesha Rasool, William Salerno,461

Evan K Maxwell, Boris Boutkov, Alexander Gorovits, Ju Guan, Lukas Habegger, Alicia Hawes,462

Olga Krasheninina, Samantha Zarate, Adam J Mansfield, Lukas Habegger.463

Analytical Genetics & Data Science Goncalo Abecasis, Manuel Allen Revez Ferreira, Joshua464

Backman, Kathy Burch, Adrian Campos, Liron Ganel, Sheila Gaynor, Benjamin Geraghty, Arko-465

pravo Ghosh, Salvador Romero Martinez, Christopher Gillies, Lauren Gurski, Joseph Herman,466

Eric Jorgenson, Tyler Joseph, Michael Kessler, Jack Kosmicki, Adam Locke, Priyanka Nakka,467

Jonathan Marchini, Karl Landheer, Olivier Delaneau, Maya Ghoussaini, Anthony Marcketta, Joelle468

Mbatchou, Arden Moscati, Aditeya Pandey, Anita Pandit, Jonathan Ross, Carlo Sidore, Eli Stahl,469

Timothy Thornton, Sailaja Vedantam, Rujin Wang, Kuan-Han Wu, Bin Ye, Blair Zhang, Andrey470

Ziyatdinov, Yuxin Zou, Jingning Zhang, Kyoko Watanabe, Mira Tang, Frank Wendt, Suganthi471

Balasubramanian, Suying Bao, Kathie Sun, Chuanyi Zhang.472

21

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 3, 2025. ; https://doi.org/10.1101/2025.01.03.25319944doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.03.25319944
http://creativecommons.org/licenses/by-nc/4.0/


Therapeutic Area Genetics Adolfo Ferrando, Giovanni Coppola, Luca A Lotta, Alan Shuldiner,473

Katherine Siminovitch, Brian Hobbs, Jon Silver, William Palmer, Rita Guerreiro, Amit Joshi,474

Antoine Baldassari, Cristen Willer, Sarah Graham, Ernst Mayerhofer, Erola Pairo Castineira,475

Mary Haas, Niek Verweij, George Hindy, Jonas Bovijn, Tanima De, Parsa Akbari, Luanluan476

Sun, Olukayode Sosina, Arthur Gilly, Peter Dornbos, Juan Rodriguez-Flores, Moeen Riaz, Manav477

Kapoor, Gannie Tzoneva, Momodou W Jallow, Anna Alkelai, Ariane Ayer, Veera Rajagopal, Sahar478

Gelfman, Vijay Kumar, Jacqueline Otto, Neelroop Parikshak, Aysegul Guvenek, Jose Bras, Silvia479

Alvarez, Jessie Brown, Jing He, Hossein Khiabanian, Joana Revez, Kimberly Skead, Valentina480

Zavala, Jae Soon Sul, Lei Chen, Sam Choi, Amy Damask, Nan Lin, Charles Paulding.481

Research Program Management and Strategic Initiatives Marcus B Jones, Esteban Chen, Michelle482

G LeBlanc, Jason Mighty, Jennifer Rico-Varela, Nirupama Nishtala, Nadia Rana, Jaimee Hernan-483

dez.484

Senior Partnerships and Business Operations485

Alison Fenney, Randi Schwartz, Jody Hankins, Anna Han, Samuel Hart.486

Business Operations and Administrative Coordinators487

Ann Perez-Beals, Gina Solari, Johannie Rivera-Picart, Michelle Pagan, Sunilbe Siceron.488

22

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 3, 2025. ; https://doi.org/10.1101/2025.01.03.25319944doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.03.25319944
http://creativecommons.org/licenses/by-nc/4.0/


8 Supplementary Figures489

23

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 3, 2025. ; https://doi.org/10.1101/2025.01.03.25319944doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.03.25319944
http://creativecommons.org/licenses/by-nc/4.0/


Figure S1: Age distribution. Distribution of age at sample collection (top) and at the last visit
(bottom). The right panels: bar plots illustrating the percentage distribution of demographic cate-
gories, stratified by inferred ancestry.

Figure S2: Distance between consecutive variable sites. Distribution of distances for all pair of
variants. The distribution is multimodal, roughly corresponding to modal distance for markers in
the coding (lower modes) and non-coding (higher mode) regions. Overall, the markers appear to
be evenly distributed, indicating good coverage across the entire genome.
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Figure S3: Demography of enrolled participants. (A) Number of enrolled participants by ZIP
code. The region surrounding Memphis City is zoomed in. (B) Proportion of individuals by zip
code for inferred ancestries with more than 500 individuals. (C) Pairwise Dissimilarity index
between ancestries, considering the proportion in each zip code. The dissimilarity index measures
the extent of segregation between two groups across geographic areas, indicating the proportion of
one group that would need to relocate to achieve an even distribution relative to the other group,
with values ranging from 0 (perfect integration) to 1 (complete segregation).
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Figure S4: Phenotypes prevalence in electronic health records in participants with sequence
data stratified by inferred ancestry (A) and self-reported race (B). Phenotypes are grouped into
Phecode categories. Distribution of ancestries in Phecode categories reflect the global distribution
of ancestry

Figure S5: Count of cases across Asthma, Diabetes, Hypertension, and Obesity. Cases
are categorized by pediatric and adult populations and color-coded by inferred ancestry groups:
AFR (African), EAS (East Asian), EUR (European), EUR-AFR (European-African), EUR-AMR
(European-American), EUR-EAS (European-East Asian), and Multiway.
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Figure S6: Features of novel variants. (A) Allele frequency spectrum showing the prevalence of
rare variants. (B) Counts of variants by ancestry stratified by private and shared with another one
or more ancestries. (C) Counts of variants (log scale) by annotated consequences for novel and
known variants.
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Figure S7: Counts per individual of rare deleterious variant by ancestry. Rare deleterious
variants are defined as having alternate allele frequency <1% in the total BIG samples, and clas-
sified as high impact or missense with SIFT<0.05 and Polyphen>0.85. Variants counts take into
account the inferred ancestry of the genomic tract in which they are located, therefore individuals
in admixed groups individuals are represented twice. In panel (A) counts per ancestry tract are
normalized by the proportion of ancestry and therefore the y-axis represent the projection as the
ancestry tract was as long as the whole genome. In panel (B) we report counts per Gb.
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Table S1: Examples of large pediatric cohorts. Although the list is not exhaustive, it is intended to provide context for understanding
BIG’s position in terms of size, diversity, and data availability.

Reported Ancestry
Representation Cohort Name Size Start Date Reported Ancestry Study Group

Type
EHR

Availability Genetic Data

Predominantly one ancestry

Avon Longitudinal Study of
Parents and Children (ALSPAC)
[41]

14,000
children

1991
Predominantly European de-
scent, reflecting the population
of the Avon area in the UK

Mother-Child Has EHR
Has genetic

data

Copenhagen Prospective Stud-
ies on Asthma in Childhood
(COPSAC) [87]

700 children 1998
Primarily Danish, reflecting the
population of Denmark

Children Only No EHR
Has genetic

data

The Norwegian Mother and
Child Cohort Study (MoBa)
[42]

114,500
children

1999
Predominantly Norwegian, re-
flecting the population of Nor-
way

Mother-Child Has EHR
Has genetic

data

Longitudinal Study of Aus-
tralian Children (LSAC) [88]

10,000
children

2004
Predominantly Australian, with
representation from various eth-
nic backgrounds

Children Only No EHR
No genetic

data

All Our Families (AOF) Cohort
[43]

3,000 families 2008
Primarily of European descent,
reflecting the population of Cal-
gary, Canada

Mother-Child Has EHR
No genetic

data

Diverse ancestries

Children of Philadelphia
(CHOP)

100,000
children

2006
Diverse, reflecting the popula-
tion of Philadelphia

Mother-Child Yes
Has genetic

data
Childhood Cancer Survivor
Study (CCSS) [34]

24,000
survivors

1994
Diverse, reflecting the popula-
tion of North America

Children Only Has EHR
Has genetic

data

The Boston Birth Cohort [35] 8,000 births 1998
Predominantly African Ameri-
can and Hispanic participants

Mother-Child Has EHR
Has genetic

data

Generation R Study [36]
10,000

children
2002

Multi-ethnic urban population,
including Dutch, Surinamese,
Turkish, Moroccan, and others

Mother-Child Has EHR
Has genetic

data

Pediatric Imaging, Neurocog-
nition, and Genetics (PING)
Study [37]

1,400
children

2009
Diverse, including African
American, Asian, Hispanic, and
non-Hispanic White participants

Children Only No EHR
Has genetic

data

NICHD Fetal Growth Studies
[38]

2,400
pregnancies

2009
Diverse, including African
American, Asian, Hispanic, and
non-Hispanic White participants

Mother-Child Has EHR
Has genetic

data

Biorepository for Integrative
Genomics (BIG) [33]

42,000 -
Diverse, including African
American, Asian, Hispanic, and
non-Hispanic White participants

Children Only Has EHR
Has genetic

data

Healthy Brain Network (HBN)
[39]

10,000
children

2015
Diverse, with efforts to include
underrepresented populations

Children Only No EHR
Has genetic

data
Environmental Influences
on Child Health Outcomes
(ECHO) [40]

50,000
children

2016
Diverse, with efforts to include
underrepresented populations

Mother-Child Has EHR
Has genetic

data
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Table S2: Simplification of self-reported race entries in electronic health records. The purpose
of grouping is to simplify the analyses and eliminate the use of inaccurate or inappropriate termi-
nology [89].

Original Category Grouped Category
White or Caucasian

WhiteCaucasian
White
Black or African American

Black or African American
African American
Asian

Asian
Asian or Pacific Islander
Other/Unknown

Other/Unknown

Other
Declined
Patient Declined to answer
Unavailable
Multiple

Table S3: Prevalence of high impact variants among novel variants. Estimates from the logistic
regression.

Term Estimate Std. error Statistic p.value conf.low

Intercept -2.09 0.001 -1430 < 2e − 16 -2.10
HIGH 0.95 0.008 116 < 2e − 16 0.93
LOW -0.118 0.004 -30.3 < 2e − 16 -0.125
MODERATE 0.12 0.003 38.8 < 2e − 16 0.118
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tave Simo, et al. Characterization of cyp2d6 pharmacogenetic variation in sub-saharan african575

populations. Clinical Pharmacology & Therapeutics, 113(3):643–659, 2023.576

[27] Michael A McQuillan, Chao Zhang, Sarah A Tishkoff, and Alexander Platt. The importance577

of including ethnically diverse populations in studies of quantitative trait evolution. Current578

opinion in genetics & development, 62:30–35, 2020.579

[28] Edra K Ha, Daniel Shriner, Shawneequa L Callier, Lorinda Riley, Adebowale A Adeyemo,580

Charles N Rotimi, and Amy R Bentley. Native hawaiian and pacific islander populations in581

genomic research. NPJ Genomic Medicine, 9(1):45, 2024.582

[29] Mashaal Sohail, Marı́a J Palma-Martı́nez, Amanda Y Chong, Consuelo D Quinto-583

Cortés, Carmina Barberena-Jonas, Santiago G Medina-Muñoz, Aaron Ragsdale, Guadalupe584
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