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Epidemiological studies have demon-
strated the developmental neurotoxicity
associated with prenatal methylmercury
exposure (Grandjean and Landrigan,
2006); However, susceptibility to
methylmercury toxicity may be increased
by genetic factors. This observation
raises the question of possible depen-
dence of developmental neurotoxicity on
genetic predisposition. A few years ago, a
National Research Council (NRC) eval-
uation of the scientific background for
risk assessment concluded that “atten-
tion should be directed to vulnerable
individuals and subpopulations that
may be particularly susceptible or more
highly exposed” (National Research
Council, 2009). The panel also noted
that “variability in susceptibility and
vulnerability has received less detailed
evaluation in most EPA health effects
assessments.” A previous NRC review
estimated that, under certain circum-
stances, individual susceptibility could
range up to 50,000-fold, and as much
as 5% of the population could well be
at least 25-fold more susceptible than
the average (National Research Council,
2000).

In risk assessment, an uncertainty
factor of 10 is commonly used to take
into account intraspecies susceptibil-
ity. In regard to methylmercury, at the
recommendation of the NRC (National
Research Council, 2009), EPA used the
default 10-fold intraspecies uncertainty
factor. In contrast, the European Food
Safety Authority recently argued that,
for methylmercury, a partial uncer-
tainty factor of 2 would be sufficient

when a benchmark dose level (BMDL)
had been obtained from a birth cohort
that would represent the most vul-
nerable population (European Food
Safety Authority, 2012). The magni-
tude of the intraspecies uncertainty
factor therefore appears controversial,
and better scientific documentation
has been recommended (Dorne, 2010).
Given that gene-environment interac-
tion (GxE) may also play a role in regard
to disease pathogenesis in a more gen-
eral sense, as highlighted by a recent
NIH workshop (Bookman et al., 2011),
the variability in susceptibility to neu-
rotoxicity between population groups
appears to be an important research
priority.

The recent findings on GxE for
methylmercury neurotoxicity are sup-
ported by several previous studies. Thus,
mutations in certain genes seem to convey
a greater risk of elemental mercury-
associated neurobehavioral deficits or
symptoms in adults working in dental
clinics (Echeverria et al., 2006, 2010; Heyer
et al., 2008, 2009). This evidence was
recently extended to children exposed to
inorganic mercury from amalgam fillings
(Woods et al., 2012, 2013). The reasons for
such interactions are only partially under-
stood, but some gene variants may predict
a greater retention of mercury compounds
in the body.

Thus, gene mutations seem to affect
the retention of inorganic mercury and
methylmercury in the body, e.g., genes
that affect glutathione (GSH) and metal-
lothionein metabolism (Gundacker et al.,
2007; Schlawicke Engstrom et al., 2008;

Wang et al., 2012). Other studies have
also considered absorption-distribution-
metabolism-elimination (ADME) genes
that may be of importance. Thus,
methylmercury is eliminated from the
liver as GSH conjugates, and the rate-
limiting enzyme for GSH synthesis is
glutamyl-cysteine ligase (GCL), which is
composed of a catalytic subunit (GCLC)
and a modifier subunit (GCLM). Further,
the glutathione-S-transferases (GST) cat-
alyze the conjugation of GSH (Gundacker
et al., 2007). A recent study in Sweden
indicates that a GCLC polymorphism
affects methylmercury retention, and that
glutathione S-transferase pi 1 (GSTP1)
may play a role in conjugating methylmer-
cury with GSH (Schlawicke Engstrom
et al., 2008). The GCLC SNP (Single
Nucleotide Polymorphism) rs1555903 also
showed a highly significant (p = 0.007)
main effect on mercury retention in the
umbilical cord in a UK birth cohort (Julvez
et al., 2013). Mutations in glutathione S-
transferase mu 1 (GSTM1) and GCLM also
seem to affect the retention of methylmer-
cury from fish and seafood (Barcelos et al.,
2013).

Another possibility is that certain geno-
types are less resistant to particular toxic
effects. For example, in a study of den-
tists and dental assistants, deficits in
neuropsychological performance occurred
most frequently if the subject had a
mutation in the coproporphyrinogen oxi-
dase gene (CPOX4) (Echeverria et al.,
2006); the same SNP also showed a
significant main effect on general cog-
nitive function in a UK birth cohort
(Julvez et al., 2013). Recently, Woods
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et al. (Woods et al., 2012, 2013) published
two reports about GxEs in regard to
mercury exposure and child neurode-
velopment. The findings showed that
CPOX4 rs1131857 multi-variant status
modified the toxic effects of chronic mer-
cury (Hg) exposure in urine samples
of children and adolescents. Similarly,
an increased frequency of symptoms
occurred in those who had a mutation
(rs4680) in a gene that codes for cate-
chol O-methyltransferase (COMT) (Heyer
et al., 2009). A different COMT muta-
tion showed a significant main effect on
methylmercury levels in the UK cohort
(Julvez et al., 2013). Mutation of the
gene responsible for formation of metal-
binding metallothionein (MT) may also
result in a predisposition to adverse
effects from elemental mercury exposure
in children (Woods et al., 2013). In the
UK cohort, metallothionein 2A (MT2A)
rs10636 showed a significant main effect
on general cognitive functioning (Julvez
et al., 2013).

A recent prospective study of 2-year
old children suggested that apolipoprotein
E (APOE) variants modified the adverse
effects of cord blood mercury on neu-
rodevelopment (Ng et al., 2013). The
gene product, apolipoprotein E is a pro-
tein transporter expressed in the brain,
and the Epsilon4 allele is associated with
poor neural repair function and is a risk
factor for Alzheimer disease, it has also
been shown to affect the neurobehav-
ioral toxicity of lead in adults (Stewart
et al., 2002). In the UK birth cohort, the
APOE rs405509 showed significant main
effects on methylmercury levels (data not
shown).

None of these studies focused on
the potential environmental exposure
of methylmercury during pregnancy
and each study tested only a few SNPs,
with the exception of our recent study
(Julvez et al., 2013), which aimed to
assess prenatal methylmercury (MeHg)
exposure and genetic predisposition
to cognitive deficit in children of the
Avon Longitudinal Study of Parents And
Children (Bristol, UK). A subsample of
the cohort was selected, where mercury
concentrations could be measured in
freeze-dried umbilical cord tissue as a
measure of methylmercury exposure. The
potential modification effect of 66 genes

was analyzed; these genes were related
to four major biological pathways that
are considered important to neurode-
velopment or metal neurotoxicity: (a)
brain development and neurotransmitter
metabolism, (b) cholesterol metabolism,
(c) iron regulation, (d) peroxidative
defense and other miscellaneous pathways
(Gundacker et al., 2010). The findings sug-
gested that four SNPs (rs2049046, rs662,
rs3811647, and rs1042838) functionally
related to the Brain-Derived Neurotrophic
Factor (BDNF), Paraoxonase 1 (PON1),
Transferrin (TF) and Progesterone
Receptor (PGR) genes appeared to modify
the methylmercury-outcome associations
with cognitive deficits in children with the
minor alleles (mutations).

The gene-methylmercury interaction
findings from these studies suggest sev-
eral potential biological pathways may
play a role in the toxicity action. PON1
codes for an enzyme that inhibits oxi-
dation of lipoproteins through hydrolysis
of lipid peroxides. Such oxidative dam-
age can be induced by methylmercury
(Hernández et al., 2009; Ayotte et al.,
2011). BDNF, CPOX4, and PGR are related
to brain development and neurotrans-
mitter metabolism and methylmercury
could interact to their receptors and mod-
ify the beneficial and protective effects
derived from those genes during neurode-
velopment (Echeverria et al., 2006). Cord
serum concentrations of the BDNF protein
decrease at higher prenatal methylmercury
exposures (Spulber et al., 2010). Finally
another potential pathway suggested by TF
gene is through iron uptake mechanism
(Yokel, 2006). A neurotoxic effect could be
due to an increased level of exposure pass-
ing the blood-brain barrier (Woods et al.,
2013).

These interactions are of interest, as
they suggest potential biological path-
ways that may have implications for our
understanding of the mechanisms of
action for developmental neurotoxicity
due to methylmercury. However, there are
also important implications in regard to
risk assessment. In our study, any overall
methylmercury toxicity was not detectable
at the low average exposure levels (mean:
26 ng/g in umbilical cord, corresponding
to about 0.5 µg/g hair), even when adjust-
ments for beneficial dietary factors from
maternal seafood intake and social class

were included in the models. One might
therefore assume that the developmen-
tal neurotoxicity was negligible. However,
adverse associations among genetically
susceptible groups were discovered in
analyses that were stratified by the SNP
allelic variants. While the wild type was
associated with benefits from increased
methylmercury exposure (as a marker of
maternal seafood diet) one or two muta-
tions in the genes led to lower IQs at age
8 years. Furthermore, the importance of
such genetic predisposition is illustrated
by the fact that 21 percent of the cohort
subjects had at least four minor alleles
in the four SNPs identified; this sub-
group showed methylmercury-associated
cognitive deficits with low p-values for
interaction (p-values for interaction =
0.002 and 0.0001). Given that the appar-
ent increase in IQ among those who
had no more than one mutation in the
four genes is likely due to the benefits
from maternal seafood diets, then the
much lower IQs in children with minor
alleles are worrisome. In some analy-
ses, the difference between the groups
suggests that children with at least four
mutations lose as much as 25 IQ point
more than wild type children at a 10-
fold increase in prenatal methylmercury
exposure. This finding suggests that cur-
rent exposure limits may be too lax for
a sizable fraction of the general popula-
tion. One caveat must be mentioned. As
some of the candidate genes may show
pronounced differences in allele frequen-
cies between ethnic groups, adjustment
for potential genetic confounding must be
considered. Because of the genetic back-
ground of the English and immigration
during recent decades, the ALSPAC cohort
can be considered an admixed popula-
tion. Heterogeneity of genetic background
can potentially lead to spurious asso-
ciations if ancestry is related to both
a candidate gene and the disease out-
come of interest, i.e., genetic confounding
due to population stratification (Ziv and
Burchard, 2003). In future studies, the risk
of genetic confounding should be based
on a set of ancestry informative mark-
ers to reveal latent population structures
within the study. Estimated proportions
can then be included in statistical mod-
els as covariates to adjust for potential
genetic confounding. However, the poor
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correlation between mutations of the four
genes identified in the ALSPAC study
would speak against genetic confound-
ing as an explanation. Thus, these findings
should inspire an increased interest in
GxE studies in regard to developmental
neurotoxicity caused by mercury
and, possibly, other environmental
chemicals.

In regard to organochlorine com-
pounds (OCs), Morales et al., observed
that GSTP1 Val105 polymorphism
modified effects of prenatal p,p′-
Dichlorodiphenyltrichloroethane (p,p′-
DDT) exposure on cognitive functioning
in preschoolers, thus suggesting oxidative
stress as a potential neurotoxicity mech-
anism (Morales et al., 2008). The same
GSTP1 Val105 polymorphism conferred
excess susceptibility to the cognitive effects
of cumulative lead exposure in a Boston-
based prospective cohort of men (Eum
et al., 2013). The two reports suggest sim-
ilar toxic pathways from lead and DDT
exposures, but further research is required
with a more complete set of candidate
genes.

In conclusion, environmental neu-
roepidemiology studies need to include
a new focus on genetically suscepti-
ble groups in order to assess a more
realistic potential risk of neurotoxicant
exposures at low levels. Meanwhile, the
regulatory agencies and risk assessment
professionals should consider a precau-
tionary approach taking into account the
likely existence of genetic predisposition to
neurotoxicity.
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