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Heterologous immunity (H.I.) is a consequence of an encounter with a specific antigen,

which can alter the subsequent immune response to a different antigen. This can happen

at the innate immune system level—often called trained immunity or innate immune

memory—and/or at the adaptive immune system level involving T memory cells and

antibodies. Viruses may also induce T cell-mediated H.I., which can confer protection

or drive immunopathology against other virus subtypes, related or unrelated viruses,

other pathogens, auto- or allo-antigens. It is important to understand the underlying

mechanisms for the development of antiviral “universal” vaccines and broader T cell

responses rather than just subtype-specific antibody responses as in the case of

influenza. Furthermore, knowledge about determinants of vaccine-mediated H.I. may

inform public health policies and provide suggestions for repurposing existing vaccines.

Here, we introduce H.I. and provide an overview of evidence on virus- and antiviral

vaccine-induced T cell-mediated cross-reactive responses. We also discuss the factors

influencing final clinical outcome of virus-mediated H.I. as well as non-specific beneficial

effects of live attenuated antiviral vaccines such as measles and vaccinia. Available

epidemiological and mechanistic data have implications both for the development of new

vaccines and for personalized vaccinology, which are presented. Finally, we formulate

future research priorities and opportunities.

Keywords: cross-protection, immune memory, molecular mimicry, TCR repertoire, T cell epitope, virus-induced

immunity, immunopathology, immunomodulation

INTRODUCTION

Heterologous immunity (H.I.) arises from previous infections, which alter the immune response
to a subsequent infection with a different pathogen (1). This mechanism is more likely to occur
between closely related antigens, but may also occur among unrelated antigens, including bacteria,
viruses, protozoa, and parasites. H.I. may alter the outcome of infections by providing sufficient
immune protection or, in other cases, aggravating immunopathology (2).

H.I. is mediated by T memory cells or antibodies (Figure 1). Immunoglobulins recognize
antigens when antigenic epitopes attach to paratopes (Table 1) at the antigen-binding site.
Antibodies are potentially polyspecific, capable of binding different epitopes to various antigens.
Furthermore, epitopes sharing similar sequences may bind to the same paratope, providing cross-
protection (4). In the context of molecular mimicry, antibodies may also react to self-antigens,
eliciting autoreactive immunopathology (5).
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FIGURE 1 | Humoral and cellular mediated heterologous immunity. (A) A single antibody has the ability to bind distinct antigens 1 and 2 by different paratopes at the

antigen-binding site. Furthermore, it is able to detect a cross-reactive antigen, whose epitope is similar to the one of antigen 1. (B) (i) T memory cells may be activated

by an unrelated second pathogen, which is cross-reactive with the first encountered pathogen. (ii) The appearance of a second pathogen may elevate cytokine levels,

which potentially lead to TCR-independent T cell activation. (iii) Simultaneous presence of cytokines and remaining antigens of previously encountered pathogens may

stimulate T cells. (iv) High levels of cytokines and tissue damage due to inflammation or chronic diseases result in increased concentrations of self-antigens, which

may be engaged by T cells. Created with BioRender.com, adapted from Welsh et al. (3). APC, antigen presenting cell; IFNγ, interferon γ.

Likewise, cellular-mediated H.I. plays a role in
immunomodulation. This may be elicited via T cell receptor
(TCR) cross-reactivity (one possible mechanism of H.I.),
recognizing similar but distinct antigens or even autoantigens.
T cells may also be activated non-specifically by cytokines
[reviewed in (3)]. Cross-reactive antigens elicit an expansion
of T memory cells, leading to a modified T cell memory pool,
a change in patterns of immunodominance, and an altered
hierarchy of T cell responses (6). This process heavily depends
on the individual private specificities of TCR repertoires and
ultimately results in a modified T cell response (7).

Trained immunity, also known as innate immune memory,

is a recently described adaptation of innate immune cells

following antigenic exposure. Epigenetic reprogramming

leads to production of inflammatory mediators and a shift

in cellular metabolism, providing an enhanced response to
secondary stimulation [reviewed in (8)]. Thus, physiological
processes such as mucosal tolerance, restriction of tissue
damage, innate immunity maturation, and non-specific
vaccine-mediated protection are achieved. Nevertheless, trained
immunity can become maladaptive, causing immune paralysis
or hyperinflammation [reviewed in (9)].

This review presents recent scientific findings regarding virus-
or antiviral vaccine-induced T cell-mediated H.I. and thus
provides some background for the discussion on benefits and
risks of H.I. Implications for future research priorities for vaccine
development are also considered.

VIRUS- AND ANTIVIRAL
VACCINE-INDUCED T CELL-MEDIATED
HETEROLOGOUS IMMUNITY

Influenza Virus
Naïve T cells of donors who self-reported as having no influenza
A Virus (IAV) H1N1/09 exposure or influenza symptoms can
recognize unique strain-specific epitopes using tetramer staining,
whereas the same donors’ memory T cells recognize conserved
epitopes of the surface protein hemagglutinin (HA) (10). In
H1N1/09 infected or vaccinated donors, the frequency of naïve
T cells recognizing unique epitopes was significantly higher
compared to conserved epitope-specific T cells (10). This has also
been shown for CD4+ (10) and CD8+ T cells in mice (11).

Such observations suggest that H.I. influences the severity
of infection (10). An age-related dampening of T-cell mediated
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TABLE 1 | Glossary.

Heterosubtypic Referring to different serotypes of influenza A virus, which

are defined based on the surface proteins hemagglutinin

(HA) and neuraminidase (NA).

HLA molecule The human leucocyte antigen is located on cell surfaces

and may present antigenic peptides to T cells.

Immunodominance Only a few (immunodominant) epitopes are preferentially

targeted by the immune response. The remaining epitopes

evoke barely detectable T cell responses.

Molecular mimicry An alignment of pathogenic structures with those of the

host, which leads to immune evasion. However, structure

similarity of pathogens and self-antigens may elicit

autoreactive immune responses.

Paratope A segment of an antibody’s antigen-binding site, which

complementarily binds an epitope.

Private specificity of

TCR repertoire

TCR repertoires, which are different among individuals.

TCR repertoire All T cell receptor clonotypes expressed by an organism.

H.I. was observed following a second heterologous infection in
ferrets, which allowed the development of significant morbidity
(12). These findings are in agreement with other studies focusing
on aged animals, which showed that the clinical severity of
primary infection is only moderately accentuated (13–16), while
heterologous secondary infection induced severe disease (12,
17, 18). The induction of influenza virus-specific memory T
cells is extensively investigated as they are responsible for
heterologous protection in secondary natural infections with
another influenza strain [reviewed in (19)]. Tissue resident
memory T cells (Trm) in the lung are particularly important in
that respect as they are crucial for achieving optimal protection
[reviewed in (19)]. Previous animal studies showed that a
single intranasal live attenuated IAV vaccine application can
evoke long-lasting protection to heterosubtypic challenge via
Trm response in the lung with a similar phenotype to those of
infected mice (20). Several in silico approaches are available to
identify T cell immunogenic regions on virus proteins. It has been
demonstrated that epitope-rich regions within the nucleoprotein
(NP) of the influenza virus contain highly conserved epitopes and
therefore present promising targets for a T cell-mediated vaccine
due to cross-reactivity with distinct strains (21). Gutiérrez et al.
developed a computational method to compare the efficacy of
conserved T cell epitopes (EpiCC), which may complement
current methods for selecting the best composition of an
associated vaccine (22). Furthermore, CD8+ T cells recognizing
different NP variants were associated with cross-reactive TCR
clonotypes against distinct strains (23). This was shown for
the immunodominant and abundant human epitopes NP338−346

and NP44−52 (23). A structural analysis of the associated HLA
molecules revealed adoption of similar conformation as a basis
for cross-recognition (23).

Spleen cells from IAV-infected animals showed enhanced
IFNγ production after ex vivo stimulation with the hepatitis
C virus (HCV) derived peptide NS31073 (24). Such findings
suggest a private repertoire of pre-existing memory T cells,
which are reactivated after HCV infection (25). Cross-reactivity
was also demonstrated in human peripheral blood mononuclear

cells (PBMCs) of HCV positive patients with severe disease
which responded to the IAV-specific peptide NA231−239 (25).
Additionally, PBMCs of hepatitis B virus patients were incubated
with Epstein-Barr virus EBV-BMLF1280−288 and IAV-M158−66

labeled tetramers and subsequently stained for TCR clones (26).
The TCR repertoire of cross-reactive T cells recognizing IAV and
EBV epitopes was broader compared to non-cross-reactive T cells
and varied among individuals, further supporting an underlying
private specificity (26). The concept of H.I. has recently been
expanded to include allergens, following demonstration of
IAV-mediated protection against allergen-induced experimental
asthma (mediated by memory T cells) in a murine model (27).

Flaviviruses
The high degree of genetic sequence similarity among
flaviviruses is known either to have a protective effect or to
dampen the elicited secondary immune response [reviewed
in (28)]. For Dengue virus (DENV), it is well-known that an
infection with one serotype induces strong and long-lasting
protective immunity against that specific serotype, whereas a
second infection with a heterotypic virus commonly results in
severe disease [reviewed in (29)]. Sub-neutralizing antibody
concentrations from the first infection facilitate virus entry
by promoting Fcγ-receptor uptake, resulting in antibody-
dependent enhancement (ADE) of the infection. However, there
is increasing evidence of a cross-protective cellular immune
response between DENV and Zika virus (ZIKV) [reviewed in
(29)]. Memory T cells isolated from DENV seropositive patients
recognize both DENV- and ZIKV-associated peptides (30).
Furthermore, DENV positive patients responded more strongly
to a ZIKV infection compared to DENV negative subjects
when assessed using T cell stimulation assays (30, 31). Mouse
experiments have also shown, that DENV-exposed pregnant
animals were protected against subsequent maternal and fetal
ZIKV infection (32). This protection was conferred by CD8+

T cells, limiting trans-placental transmission of ZIKV (32).
Although cross-reactivity between DENV and ZIKV is the
most prominent example, other flaviviruses, such as yellow
fever virus (YFV) and Japanese encephalitis virus, also prime
T cell responses toward a subsequent heterologous DENV
infection in mice (33). In this context, the investigators identified
homologous sequences between the flavivirus polyproteins.
Peptides derived from the aforementioned sequences were used
to prime antigen presenting cells, which were subsequently
used to stimulate splenocytes of DENV immunized mice.
Some of these peptides induced enrichment of T memory
cells as well as IFNγ production and proliferation, confirming
cross-reactivity (33).

Human Immunodeficiency Virus
Human immunodeficiency virus 1 (HIV-1)-specific CD8+ T
cell clones showed cross-reactivity against some of the other
investigated HIV-1 epitopes (34). Additionally, three HIV-1-
specific T cell clones recognized the A∗02 restricted IAV matrix
epitope GILGFVFTL (34). Furthermore, a sequence similarity
between the known HIV-1 epitope HIV-Gag [SLYNTVATL
[HIV-SL9]] and the HCV epitope HCV-NS5b [ALYDVVSKL
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[HCV-AL9]] has been observed. HIV-SL9 specific T cells of
HIV-1 patients, who were not co-infected with HCV, recognized
the aforementioned HCV epitope and responded with IFNγ

production and expansion (35).

Hepatitis C Virus
Cross-genotype protective immunity against HCV was
first described in 2003 by Lanford et al. who showed that
chimpanzees, which recovered from a genotype 1 infection,
were subsequently protected from infection with other
genotypes (including genotype 4 and combinations of
genotypes 1–4). These genotypes express proteins of up to
30% amino acid variance (36). This finding, however, has been
challenged by other investigators who showed that chimpanzees
developed chronic disease after being re-challenged with other
genotypes (37).

CD8+ T cell cross-reactivity to NS3 epitopes of two different
genotypes (1 and 3) was observed in a study with 53 anti-
HCV positive injection drug users. Interestingly, CD8+ T cells
recognizing both genotypes were more frequent among HCV
RNA negative patients than in those with detectable viremia,
implying that CD8+ T cell-mediated cross-reactivity may protect
against chronic infection (38).

In another study, an HLA-restricted epitope (HCVNS3-1406)
and its naturally occurring variants from different genotypes
showed that the frequency of cross-reactivity between variants
as well as their T cell priming capacities varied, depending on
the genotype pair (39). Fytili et al. performed a similar study for
another dominant HLA-dependent HCV CD8+ T cell epitope
(HCV NS3-1073), which was associated with clearance of acute
infection, and detected cross-reactivity between the genotype 1
variant and variants of genotypes 4, 5, and 6 but not 2 and 3
(40). The level of cross-reactivity observed in this study could be
predicted through in silico analyses of peptide-MHC complexes
and TCR-interacting surfaces based on topology and electrostatic
features (41).

The same dominant T cell epitope (HCV NS3-1073) was also
found to induce immune response in approximately a third of
>100 seronegative individuals upon ex vivo stimulation. The
presence of CD8+ T cells specific for that epitope was attributed
to cross-reactivity with epitopes derived from other pathogens.
These cells not only reacted to different genotype variants of
that epitope but also to epitopes with little sequence similarity
of other, unrelated viruses (cytomegalovirus, IAV, EBV) (42).
Immunization with a recombinant adenovirus vector containing
mycobacteria, Ebola andHIV antigens also led to T cell responses
against HCV alongside the transgenic antigens (43). Cross-
reactivity between an HCV and a human herpes virus peptide has
also previously been demonstrated (44).

Other Viruses
Severe hand, foot and mouth disease is caused among others
by enterovirus 71. A dominant capsid T cell epitope, which
is highly conserved among enteroviruses, was identified and
found to yield a cross-reactive, HLA-DR restricted response
of human CD4+ T cells to the poliovirus variant of this
epitope (45). Human RV-specific CD4+ T cells were shown

to recognize epitopes shared among different RV strains
(46). Human circulating RV-specific CD4+ T cells recognized
conserved RV capsid protein epitopes, and T cell-mediated
cross-reactivity between different strains was demonstrated
(47). Zhao et al. showed that airway CD4+ T memory
cells specific for a dominant, conserved epitope (SARS-N353)
protect against both SARS- and MERS-CoVs and also against
bat CoV in HLA transgenic murine models (48). Hepatitis
E virus (HEV)-specific CD4+ and CD8+ T cell responses
against different peptide pools from HEV1 were detected in
acute HEV3 patients. A similar response against HEV3- and
HEV1-peptide pools was detected in one subjectwith HEV1
infection (49). Finally, H.I. between the arenaviruses lymphocytic
choriomeningitis virus and Pichinde virus was demonstrated in
murine models and found to be T cell epitope and MHC class
dependent (50).

DISCUSSION

Protection vs. Immunopathology
Overall, virus-induced H.I. appears to be an important
determinant for the final outcome of infections and of
a plethora of dysregulated immune responses such as in
autoimmunity and allograft rejection. In this context, prior
antigenic exposures may boost protective responses [e.g., (27)]
or induce immunopathology depending on the balance between
antigen load and efficiency of effector T cells, which in
turn is influenced by a number of factors. For example, in
the case of flaviviruses, it has recently become evident that
distinct T cell populations, virus serotypes, sequence, and
number of infections, and HLA background all shape the
immunodominance pattern (29). Additionally, patterns of T
cell cytokine response among patients with a secondary DENV
infection were associated with severe (51, 52) or mild dengue (53,
54). Although heterotypic antigens were addressed only in one of
these studies (52), such observations may indicate involvement
of cross-reactive T cells in the clinical manifestation of
DENV infections.

In addition to natural viral infections, antiviral vaccines
may also drive T cell-mediated H.I. and have a major impact
not only against the vaccine antigens but also on completely
unrelated pathogens or other antigens. To date, epidemiological
evidence supporting the role of live attenuated vaccines in
T cell-mediated H.I. is associated with the measles (55–
62), the vaccinia (63–66), and the oral polio vaccine (67–
69). These vaccines reduced overall mortality and/or risk for
asthma, malignancies, and unrelated infections. Furthermore,
they induced changes in the numbers or proportions of
T and B cells, which, depending on persistence of effects,
may influence differentiation, proliferation or survival of
associated cells. Non-specific effects of vaccines have often
been found to be sex-specific and influenced by revaccination
as well as maternal priming. In this regard, knowledge on
the potential of specific T cell epitopes (for any given HLA
background) to offer protection or cause pathology is crucial
for vaccine design including elimination or inclusion of
such peptides.
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Implications for Vaccine Development
The ability to predict the magnitude and mechanism of T
cell-mediated H.I. (Figure 1B) is crucial for specific vaccine
design but also for decisions on public health and vaccination
policies. Structural similarity between T cell epitopes seems to
be important for eliciting cross-reactive responses. Nevertheless,
seemingly distinct epitopes may also bind to the same TCR
and induce H.I. This may be explained by the fact that
sequence similarity is also dependent on the presence of
biochemically similar amino acid substitutions (70). In the
context of developing broadly cross-reactive vaccines against
viruses with great antigenic heterogeneity, regions of highly
conserved proteins among serotypes may elicit cross-reactive T
memory cell responses. This approach along with large scale
systematic monitoring of circulating strains, as in the case
of influenza (in order to minimize mismatch with vaccine-
contained strains) may increase vaccine effectiveness.

Besides their specific effect, it is now known that vaccines may
also exert a non-specific influence on the immune system (71).
For the diphtheria-tetanus-pertussis and measles vaccines, it was
shown that the order of vaccination has an impact on overall
morbidity and mortality (72). The concept that the most recently
administered vaccine leaves a non-specific immunological
imprint until subsequent immunization may guide changes in
the recommended order of childhood vaccinations. Such changes
could result in beneficial non-specific effects with minor changes
of existing national vaccination schemes. Similarly, age at the
time of (initial or booster) immunization with each existing
vaccine may need to be reconsidered based on the accumulating
knowledge on immunosenescence and effects of age on virus-
induced H.I. Accordingly, time of vaccination has been linked
to differences in T cell populations and strength and type of
heterologous immune response (73, 74). Sex-specific differences
in terms of protective non-specific effects of vaccines such as
measles and vaccinia (64, 75–80) have also been described.
Modification of vaccine composition (e.g., enrichment of
particular proteins or epitopes) or conditions of administration
(e.g., age, dose, number of immunizations) could potentially help
us achieve the beneficial heterologous effects of vaccines without
compromising their primary protective effects (vaccine specific).
Indeed, adequate application of knowledge regarding vaccine-
mediated H.I. brings us a step closer to precision medicine
and personalized vaccinology. Administration of live attenuated
vaccines to women as part of preconception health counseling is
another measure, which could enhance protection of offspring in
the first months of life.

The potential of virus- and antiviral vaccine-induced
immunomodulation may also be exploited for novel

applications such as preventing infections among elderly

and immunocompromised populations or non-infectious

inflammatory diseases. In this respect, the choice of a particular

adjuvant or pharmacological modulator is also important
since these may polarize T cell immune responses toward a
specific cytokine output depending on the desired outcome, e.g.,
induction of T1 type of response for prevention of infection as
well as allergies.

Future Research Priorities
The need for new vaccines with higher efficacy and broader and
longer-lasting protection is driven by the moderate protection
provided by current seasonal influenza vaccines against the
included strains, zoonotic and pandemic influenza threats,
and the challenge of complying with annual vaccinations.
Several approaches are currently being investigated with varying
results and distance from truly universal vaccines. The use
of adjuvants, addition of neuraminidase, and inclusion of
specific strains induce broader reactive immune responses albeit
within the same virus subtype. Additionally, immunogenic
influenza HA-stem constructs induce B cells which produce
cross-protective antibodies, at least within a group of viruses.
A particular promising approach for the development of
truly universal influenza vaccines seems to be the induction
of T cells reactive to internal viral proteins, primarily of
Trm in the respiratory mucosa for timely control of viral
replication. Such approaches could also prove useful for
developing vaccines against other respiratory viruses such
as rhinoviruses. Similarly, knowledge gained from current
studies of T cell responses against DENV/ZIKV infections at
several time points, and with different clinical presentations
and history of infection may inform strategies for developing
pan-flavivirus vaccines. Indeed, there is already evidence
for cross-reactive immunogenic epitopes contained in
these viruses.

Properties of virus-induced H.I. may be leveraged beyond
infection protection. We have previously shown an influenza
virus-mediated protection over development of experimental
asthma in a murine model. The protection was conferred by
CD4+ and CD8+ T memory cells, which were transferred
from animals previously infected with influenza or immunized
with cross-reactive influenza peptides to sensitized mice before
challenge with an allergen. Given the global prevalence
of allergies, peptide immunization strategies early in life
could potentially induce protective cellular immune responses
against viruses and allergen-induced asthma, and complement
existing vaccination schedules. Importantly, directing non-
specific beneficial effects of existing live attenuated viral vaccines
against other inflammatory disorders including cardiovascular
disease and cancer could be a quantum leap in the fight against
non-communicable diseases (65, 81–84).

Further immunological and clinical studies are needed
to decipher vaccine-induced H.I.-mediated mechanisms and
impact on morbidity and mortality contributing to health
promotion. Associated potentiators such as booster vaccinations
and maternal priming need to be examined carefully in
different socioeconomic settings and with a sex-differential
analysis (85).
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