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Vascular dementia is, in its current conceptual form, a distinct type of dementia with a spectrum of specific clinical and
pathophysiological features. However, in a very large majority of cases, these alterations occur in an already aged brain,
characterized by a milieu of cellular and molecular events common for different neurodegenerative diseases. The cell signaling
defects and molecular dyshomeostasis might lead to neuronal malfunction prior to the death of neurons and the alteration of
neuronal networks. In the present paper, we explore some of the molecular mechanisms underlying brain malfunction triggered
by cerebrovascular disease and risk factors. We suggest that, in the age of genetic investigation and molecular diagnosis, the concept
of vascular dementia needs a new approach.

1. Vascular Dementia—Historical
Considerations

Just how far back in time should one go when searching
data of vascular dementia (VaD)? In 1549, Jason Pratensis
published De Cerebri Morbi, linking dementia to stroke [1],
and in 1658, Johann Jakof Wepfer theorized that a broken
brain blood vessel may cause apoplexy (stroke) [2]. The
correlation between atherosclerotic disease and dementia
was clearly identified only at the beginning of the 20th
century by two well-known contributors to the field of
neurodegeneration: Alois Alzheimer and Otto Binswanger
[3]. The modern era of vascular dementia began in the
1960s, under the leadership of the Newcastle College of
Medicine [4]. The concept of VaD was ever since under
permanent scrutiny and revision, in light of new clinical,
pathological, and imagery data (Figure 1). In the early 1970’s,

multiple infarct dementia was recognized as a major type
of dementia, apart from Alzheimer’s disease, characterized
not by “neuronal atrophy” but by atherosclerotic burden.
In 1975, Vladimir Hachinski defined the “ischemic score,”
later used for the clinical diagnostic of vascular dementias
[5]. However, the concept of VaD soon became controversial
due to an increased discrepancy between the incidence of
cognitive disorders and that of the “strategic stroke.” Further-
more, the early prevention of multi-infarct dementia (MID),
the aging of the general population, and an arising need to
define “normal aging” versus “pathological aging” [6] added
to this controversy. The struggle to identify preventable and
treatable factors widened the pathogenic spectrum of VaD
[7]. Several epidemiological studies reported associations of
hypertension, type 2 diabetes, obesity, and inflammation
with VAD and, in some cases, AD. These all coincide with
those of stroke, which in turn is an established factor for
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cognitive decline and VAD [8] and underlines furthermore
the need for a new classification of dementia types [9].
During the last two decades, there was a switch of exploration
from classical pathology to new imaging techniques at
the molecular level. Therefore, new pathogenic pathways
were identified, which greatly increased the complexity of
mechanisms of neuronal loss due to cerebral vascular injury
[10].

In each stage of clinical and imaging research, new
attempts were made to define VaD as an individual, self-
standing class of dementia. Mayer-Gross et al. presented in
the late 60s a set a criteria including dementia with focal signs
and symptoms consistent with stroke, a fluctuating course,
preservation of intellectual powers, and personality until late
in the disease. Importantly, definition included vascular risk
factors such as hypertension [11].

The “multi-infarct dementia” (MID), first described by
Vladimir Hachinski, was characterized by a number of small
ischemic strokes that may not result in focal neurologic
deficits, but in time, by cumulative damage, would lead to
cognitive decline. Later, the Hachinski ischemic scale, used
for MID diagnosis, was modified by Loeb and Gandolfo to
include CT scan criteria [12].

In the 1990s, as acknowledgment of overlapping features
of various types of dementia, VaD criteria included clinical
and imaging features of probable and possible disease. Criteria
for definite VaD would require histopathological evidence
from biopsy or autopsy [13].

Currently, the most widely used criteria for VaD include
the Diagnostic and Statistical Manual of Mental Disorders
(DSM), Alzheimer’s Disease Diagnostic and Treatment Cen-
ters (ADDTC), International Statistical Classification of Dis-
eases (ICD), and National Institute of Neurological Disorders
and Stroke—Association Internationale pour la Recherche et
l’Enseignement en Neurosciences (NINDS-AIREN) criteria
[14].

2. The Concept of Brain Ageing

The concept of brain ageing stated at first that cell death
might be responsible for the progressive deterioration of
different physiological functions. Studies on aged animals
[15] from over two decades ago reported neuronal loss
with aging, with or without cortical thinning (depending
on the type of method used for quantification), but with
diminution of the total volume of gray matter. By the end
of the 1980s, reports of preserved neuronal number, despite
cortical thinning in human brain [16], started to challenge
the previous data and were followed by confirmatory studies
on animals [17–20]. This controversy was solved by modern
imaging investigational methods, starting with computer
tomographic analysis in the early 1980’s [21] and continuing
with recent PET and MRI analyses [22, 23]. These techniques
demonstrated that brain atrophy does occur with age in the
healthy, nondemented elderly, involving both gray and white
matter, but the loss is rather of neuronal connections, not
of neurons. Furthermore, quantitation of neurons showed
that, despite frontal and medial temporal cortical thinning,

the number of neurons is preserved in healthy adults.
Freeman et al. reported that, in frontal and temporal
neocortical regions, the neuronal count remained relatively
constant over a 50-year age range, suggesting that the atrophy
is a reflection of the 3D neuronal network loosening rather
than perikaryal loss [24]. The prefrontal cortical neurons
seem to be particularly vulnerable to ageing, as a decrease
in dendritic branching has been reported in neocortex of
both rat [25] and human brains [26–28]. By contrast, there
is no significant change in dendritic length of hippocampal
granule cells, nor a reduction in spine density in the dentate
gyrus of aged humans [29] or rats [30].

White matter reduction is also a consistent finding in
the aged human brain, possibly as an indicator of defective
myelination (although oligodendrocyte number seems to
increase). White matter loss is strongly correlated with
vascular risk factors, particularly hypertension and stroke
[31], two pathologies included in the broad spectrum
of VaD risk factors. However, the involvement of white
matter abnormalities and the presence of lacunae yielded
contradictory results in terms of functional integrity and
cognitive impairment [32].

At the molecular level, aging is a “decrease in homeostatic
reserve” [33] which interferes with neuronal ability to limit
and buffer the increase of reactive oxygen species (ROS)
production, to sustain a protective response to cytotoxic
stimuli or to limit vicious cycles such as inflammatory
environments. DNA damage increases with age (some of
which is ROS related), somatic mutation in human lym-
phocytes being nine times more frequent in aged human
subjects than in neonates [34], and mitochondrial DNA
being even more sensitive than nuclear DNA. Mitochondrial
aging brings its share of vulnerability to stress in aged cells,
with decreased ATP reserves [35] along with affected cellular
calcium removal systems and low buffering capacity [36].
Moreover, one should take into account the fact that, in the
brain, these processes affect, at different rates, different cell
types that share a homeostatic balance. On the other hand,
understanding aging of the nervous tissue, as compared to
other tissues, could be a more challenging task due to a more
complex regulation, signaling, and intercellular interactions.

3. VaD from a Molecular Perspective

The molecular perspective on VaD is rather limited; the
general concept of this type of cognitive impairment has
derived from clinical and imaging findings and is correlated,
at the cellular level, with neuronal death and the sudden
interruption of neuronal networks. The main pathological
changes leading to different forms of vascular dementia take
place in both large (atherosclerosis and thrombosis) and
small (lipohyalinosis and fibrosis) cerebral vessels, secondary
to common vascular risk factors, such as hypertension, dia-
betes mellitus, and dyslipidemia. The reduction in cerebral
blood flow (CBF) starts early during vascular disease [37]
and, therefore, a major vascular event can be preceded
by a variable period of chronic hypoxia. As a result, the
brain cellular microenvironment might change and adaptive
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1960s

1970s

1980s

1990s

2000s

• Vascular dementia is classified as a different type of dementia, apart from Alzheimer’s disease, not due to
neuronal loss as a primary event, but to altered cerebral vascularization and low cerebral blood flow

• Vladimir Hachinski defines the “ischemic score”

• There is a change of interest from the anatomical and cellular level of pathology to subcellular, molecular
mechanisms of all types of dementia. More overlapping features are thus revealed

• Introduction and description of the concept of “subcortical dementia”

• Computer tomography is used to describe specific alterations in vascular dementia and to look for differential
diagnosis criteria between vascular dementia and Alzheimer’s disease

• Subtypes of vascular dementia, such as “strategic stroke dementia” or “multi-infarct dementia” are identified
as distinct in the wider class of vascular dementia

• The focus shifts from differences between the two major types of dementia to overlapping mechanisms and
neuropathological features

• A more specific interest in molecular changes of brain ageing arises and, with it, a closer comparison with
those in different types of dementia

•More accurate imagery methods such as MRI and PET scan are used to investigate vascular and Alzheimer’s
dementias

Figure 1: Evolution throughout time of vascular dementia concept.

processes may lead to cellular malfunction, rather than
cellular death.

3.1. Cerebral Blood Flow and Ischemia-Triggered Molecular
Events. Normal aging is associated with low cerebral flow
and velocity at rest [38] and an attenuation of responsivity
to hypoxia, hypercapnia, or blood pressure alterations [39].
These modifications may appear due to either histologi-
cal alterations of the vessel wall (thickening of basement
membrane, loss of pericytes, and an overall reduction in
cortical vascular bed) or lower metabolic demand. The
same changes in blood flow, but at a higher rate, were
documented in subcortical ischemic VaD patients by PET
studies, with some groups reporting a preferential decrease in
frontal lobe regions [40]. In laboratory rats, chronic hypoxia
increases the CBF for several days, after which a decrease
towards the baseline is noted, probably due to compensatory
mechanisms such as increased hematocrit and decreased
metabolic needs [41]. Hypoxia inducible factor-1 (HIF-1)
was used by Ritz et al. as a marker of hypoxia in the cortex
of young (2 months) and old (9 months) spontaneously
hypertensive rats (SHR) and stroke-prone SHR, in their
study on hypoxic alterations of nonneuronal populations

[42]. Interestingly, the increase in HIF1α was documented
only in aged animals, along with an imbalance between
microvessels and astrocytes at the level of the neurovascular
unit. In hypoxic conditions, HIF-1α is upregulated, dimer-
izes with HIF-1β (the constitutively expressed subunit of
HIF-1), translocates into the nucleus, and binds to hypoxia-
responsive elements (HREs) of target genes, such as vascular
endothelial growth factor (VEGF), glucose transporter-
1 (GLUT1), lactate dehydrogenase (LDH), erythropoietin
(Epo), and nitric oxide synthase (NOS).

3.2. Inflammatory Cytokines, Adhesion Molecules, and Endo-
thelial Malfunction. Endothelial malfunction is considered
to be a first step in the development of atherosclerosis,
and may be objectified by overexpression of inflammatory
cytokines and adhesion molecules, leading to monocyte
recruitment in the nascent atherosclerotic plaque and over-
production of reactive oxygen species (ROS), as a sign of
mitochondrial, peroxisomal, and lysosomal alteration.

Measurements of plasma markers in VaD patients
showed increased levels of proinflammatory cytokines (IL1,
IL6, TNFα) as well as anti-inflammatory cytokines (IL-10)
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[43]. IL-6 and TNFα levels increase with aging in animals
and humans, and IL-6 transgenic mice also show progressive
proliferative cerebellar angiopathy and blood-barrier (BBB)
breakdown. These events indicate the endothelium as one
of the main targets of proinflammatory cytokine IL-6 [44].
The same transgenic strains indicated for the first time
a causative relationship between local production of IL-6
in the brain and the age-related decline in learning and
cognitive function, demonstrating dendritic vacuolization,
stripping of dendritic spines, decreased synaptic density,
and loss of GABA-producing neurons in the hippocampus.
In association with neurodegenerative changes, a diffuse
nonproliferative gliosis with marked activation of astrocytes
and microglia was identified in GFAP-IL6 mice [45]. Further-
more, studies in transgenic mice overexpressing TNF and/or
its receptors (p55 and p75NTR) demonstrated that IL-6 is a
potent microglial activator and, depending on the receptor it
activates, (i) an endothelial activator (via p75NTR), leading to
increased expression of adhesion molecules, BBB disruption,
and CNS leukocyte infiltration or (ii) a demyelinating agent
and oligodendrocyte apoptosis inducer via p55 [46]. Accord-
ing to Batti and O’Connor, although TNFα has no effect
on synaptic transmission or long-term potentation (LTP)
under basal conditions, it severely impairs the recovery of
postsynaptic transmission after hypoxic exposure [47]. They
also showed that the TNFα effect is p38/MAPK mediated, a
signaling pathway involved as well in hypoxic neuronal death
in the CA1 region of the hippocampus. But, in addition to
its neurotoxic nature, TNFα may also exert neuroprotective
effects [48, 49] in selected signaling contexts.

Suggested to be another marker of chronic inflammation
[50], E-selectin is an endothelial adhesion molecule, that
is involved in weak linking of circulating leukocytes. Its
expression is upregulated by IL-1 and TNFα. Elevated levels
of E-selectin have been previously linked to experimental
and clinical brain ischemia [51], and high levels of solu-
ble selectin (sE-selectin) have been correlated with severe
cerebrovascular disease [50]. Generating immune tolerance
against E selectin by repeated low-dose mucosal administra-
tion in lab rats had a protective effect against hemorrhagic
strokes in HRS rats and against VCI development in Wistar
rats, as shown by Wakita et al. [52].

3.3. Oxidative Stress. The impact of ROS on cognitive
function is elegantly demonstrated by studies of superoxide
dismutase (SOD) isoenzyme transgenic mice. Overexpres-
sion of mitochondrial SOD has a neuroprotective role against
drug-induced neurotoxicity, overexpression of cytoplasmic
SOD improves age-related impairments in LTP, and overex-
pression of extracellular SOD is correlated with better spatial
memory in laboratory rats [53]. Following cerebral ischemia,
the production of free radicals was increased in aged rats and
human endothelial cells, mainly by overproduction in the
monocyte/macrophage system, especially when stimulated
by inflammatory mediators [54].

3.4. Effect of VaD Molecular Alterations on Neuronal and
Glial Populations. Hypoxia is associated with increased

expression of all NO synthase isoforms, including neuronal
(nNOS), astrocyte and microglia-inducible isoform (iNOS),
and endothelial isoform (eNOS) [55], which are involved
in neuronal death through inhibition of mitochondrial
respiration and NMDA/Ca2+-induced exotoxicity [56, 57].
Brain cells are particularly sensitive to ROS aggression due
to their high content of polyunsaturated fatty acids, which
constitute a substrate for lipid peroxidation. Exposure of
brain cells to oxidative stress increases the accumulation
of cholesterol in cell membranes [58], leading to decreased
fluidity and impaired transmembrane transport.

Hypoxia also upregulates the expression of BDNF—a
neurotrophic factor with important roles in neuroplasticity
and hippocampus-related learning. This might serve as a
protective mechanism against a paucity of hippocampal
BDNF mRNA and BDNF plasma levels at older ages [59].
BDNF is further reduced by vascular risk factors such as
hypertension and poor glucose metabolism [60]. However,
hypoxic upregulation of BDNF is not accompanied by
upregulation of its high-affinity receptor Trk-B, but of its
low-affinity receptor p75NTR, a TNF superfamily receptor.
The p75NTR expression is upregulated by hypoxic conditions
and is correlated with an increase in caspase-3 activation in
cortical and hippocampal neurons, leading to apoptosis [61].
The upregulation of p75NTR is linked to NOS stimulation
and to Ca-mediated regulation of expression, suggesting
a complex transformation of the pattern of molecular
expression in chronic ischemia and VaD.

4. Mixed versus Pure Dementia

“Mixed” dementia is, by the very definition of Vladimir
Hachinski himself, “Alzheimer’s disease and cerebral infarcts
contributing to the dementia” [6], but other coexisting
pathologies are also common in dementia such as Parkinson
disease (in about 20% of patients with AD) and dementia
with Lewy bodies (up to 50%) [62].

Many data suggest that “pure” vascular dementia is
rare and is the exception, rather than the rule [63–65].
Vasculopathy as a trigger of AD neuropathological features
has been proposed repeatedly before [66–68], and it is very
likely that a patient with late-onset AD may already have a
vascular burden and shares with VaD vascular risk factors.
Moreover, Zhang et al. demonstrated that the low-oxygen
dependent increase in HIF1α expression was accompanied by
an increase of BACE1 protein levels and a secondary increase
in Aβ production [69]. These data suggest that restoration
of normal oxygen levels to hypoxic tissues, for example, by
the use of small molecules that lower the affinity of oxygen
for hemoglobin, could be an interesting issue for research
[70, 71].

Activation of inflammation is a consistent finding in AD,
as shown in cell culture models [72, 73], animal models [74,
75], and postmortem studies on AD brains [76–78].

Inflammation was related to the onset of cognitive
decline and also correlated with disease progression by
measurements of serum TNFα and the TNFα/IL1-β ratio.
Patients with AD show elevated levels of TGF-β that are
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Figure 2: Some mechanisms converging towards neuronal malfunction in two major types of dementia.

correlated with low expression of TGF-R in the affected
brain areas, especially around cerebral vessels with CAA
[45]. Furthermore, inflammation is associated with ROS
production, and oxidative stress has a dual relationship with
Aβ peptide: (i) it favors the aggregation of Aβ into a fibrillar
form and (ii) it mediates the toxic effect of Aβ on neuronal
cells, as shown by the protective effect of antioxidants and
free radical scavengers [79]. In turn, some Aβ peptides (such
as the 25–35 form) have an intrinsic lipoperoxidizing effect,
as established on neocortex-derived synaptosomes [80].
Oxidative stress is demonstrated by the increased amount
of 4-hydroxynonenal (HNE), which was shown to interfere
with plasmalemmal ATPases and transporters, including
Ca2+ shifters, further increasing metabolic imbalance in AD.

Downstream Aβ production and accumulation results
in secondary endothelial malfunction through: (i) amyloid
angiopathy; (ii) NOS inhibition [50]; (iii) atherogenesis
correlated with endothelial activation and overexpression of
inflammatory cytokines and adhesion molecules, even before
Aβ deposition [81]; (iv) lipid peroxidation in the frontal
cortex in AD brains [82]; (v) BBB alteration [83].

To conclude, there is an overlap of events between
chronic hypoxia and AD on several levels, such as
hypoxic-triggered cellular pathways, inflammatory environ-
ment, growth factor signalling, and calcium homeostasis
(Figure 2). Thus, from the molecular level perspective,
the diagnostic criteria for neurodegenerative diseases have
become ill defined or insufficient and there is a true need for
redefinition.

5. Overlapping of Normal Aging and
Neurodegenerative Diseases at
Cellular and Molecular Level

Normal aging and various types of neurodegeneration share
common molecular events (Table 1), such as alteration of
cerebral blood flow, neuroinflammatory environment, and
endothelial malfunction.

Aging favors the production of proinflammatory cytok-
ines, mostly through microglial and astrocytic activation
[54]. Aging has also been associated, at the cellular level,
with increased production of reactive oxygen species (ROS)
[109]. Oxidative alteration of enzymes and the subsequent

loss of enzymatic activity is a trait of the aging brain,
particularly, in the anterior frontal lobe [49]. Oxidative stress
leads to the accumulation of free cholesterol [79], along with
ceramides, lipid peroxides, and derived aldehydes (such as
HNE), that covalently bind to membrane proteins, altering
their functions.

Oxidative stress is involved as well in the disruption of
Ca2+ homeostasis, an effect studied especially in neurons,
where Ca2+ is a vital mediator of neuronal signaling. It
appears that, in aged neurons, several Ca2+ homeostatic
systems are affected [33] and there is impairment in the
maintenance of a nontoxic Ca2+ overload [120].

Although it seems that levels of nNOS and eNOS do not
change with age, still there is an increase in NOS activity in
aged rat cortex. These two NOS isoforms are Ca2+ induced,
which correlates with the above-mentioned impairment
of aged cells to deal with Ca2+ overload. Furthermore,
consistent with the Ca2+-independent nature of iNOS, there
are several reports underlining its absence in the normal aged
cortex of lab rats [15, 60, 105].

6. Conclusions

Instead of considering VaD a pure result of neuronal death
and the interruption of neuronal networks that support
cognitive function, we hypothesize that early brain mal-
function is induced by vascular risk factors and chronic
hypoxia. A reduction of CBF and a series of molecular events
precede the major ischemic events in vascular cognitive
impairment. Based on these subtle changes, intervention at
early stages could prevent the full-blown development of
dementia, which might represent a “point of no return” for
the neurovascular units and neuronal networks with few
chances for effective treatment.

Abbreviations

Aβ: Amyloid beta peptide
p75NTR: Low affinity receptor for tumor necrosis

factor α
HIF 1α: Hypoxia Inducible Factor 1α
ROS: Reactive oxygen species
eNOS: Endothelial nitric oxide synthase
iNOS: Inducible nitric oxide synthase.
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Table 1: Comparison between normal aging and neurodegenerative diseases from a molecular perspective.

Parameter Normal aging Vascular dementia Alzheimer’s disease
Other
neurodegenerative
disorders

CBF

Diminished with
lower velocity, but
with preserved
dynamic
adaptability [84]

Diminished in parietal
and frontal lobes, some
authors reported also a
decrement in superior
temporal gyri, thalami,
anterior cingulate gyri
[85]

Diminished only in
parietal cortices
and later in
advanced disease in
frontal lobes [86]

Diminished in
preoccipital and
occipital regions in
PD [87] and LBD
[88]

VEGF -A
Low basal levels
produced by
astrocytes [89]

Upregulation of VEGF
and VEGF R2 in
astrocytes [90]

Low serum levels
and decreased
secretion by
peripheral immune
cells [91]

FTLD—associated
with VEGF gene
promoter
polymorphism in
selected
populations [92]

Inflammatory
cytokines

IL-6
Increased mRNA
compared to young
subjects [93]

High blood levels,
associated with high
CRP may be associated
with high risk [94]

Positive
immunoreactivity
in amyloid plaques
and increased
concentration in
AD brain,
compared to
age-matched
subjects [95]

Increased in
cerebral and
cerebellar cortex of
Huntington
patients [96]

TNFα

Increased basal
levels in aged
laboratory animals
with week
induction injury
response [97]

Modulates neuronal
cell loss in cerebral
ischemia [98]

Increased
expression in AD
brain, along with
TNF-R1 [99]

Increased in
plasma [100], CSF
of PD patients and
in PD brains,
especially in areas
with greatest loss
of dopaminergic
neurons [101]

TGFβ1

Detected at low
levels in CSF and
produced in CNS
at low levels by
neuronal cells
[102]

Increased in CNS and
CSF after stroke [103]

Increased in areas
with amyloid
burden [104]

CAA—directly
related to amyloid
vascular deposition
[105]

Adhesion molecules
sVCAM increased
[106]

sVCAM increased in
atherosclerotic disease
[107]; sE-selectin
increased in severe
cerebrovascular disease
[108]

sVCAM elevated in
late onset AD [50]

sVCAM increased
in Down
Syndrome [100]

ROS
Increased
accumulation with
aging [109]

Increased in ischemia
animal models and
stroke patients [110]

Increased:
Aβ-related ROS
generation and
MAOS [111]

Increased in PD in
vitro models [112]
and animal models
[113]

Lipid metabolism

Accumulation of
ceramides and free
cholesterol in
cerebral cortex
[114]

Hypercholesterolemia
is a known risk factor
for VaD

Increased levels of
cholesterol, and
activation of
cholesterol
biosynthesis
pathway [115]

PD dementia does
not correlate with
apoE
polymorphism or
lipid profile [116]
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Table 1: Continued.

Parameter Normal aging Vascular dementia Alzheimer’s disease
Other
neurodegenerative
disorders

GLUT 1
Altered structure
and function of
GLUT-1 [117]

Downregulated in
prolonged hypoxia
[118]

Low expression in
AD hippocampus
and double
transgenic
APP/PS1 animal
model Learning
increases
expression in
mouse brain [119]

Insufficiently
investigated in
neurodegenera-
tion, but involved
in “Glut-1
deficiency
syndrome”— a
treatment-resistant
form of epilepsy
[120]

BDNF

Decreased mRNA
in human plasma
and hippocampus
[121]

Increased expression
following hypoxic
stress in cell cultures
[122, 123] and lab
animals [123]

Decreased
expression in
hippocampus
temporal and
frontal cortex
[124]

Reduced BDNF
expression in the
caudate and
putamen in HD
patients [52]
Reduced mRNA
BDNF expression
[125] and protein
[126] in striatal
neurons in PD
patients

Calcium
Reduced
homeostatic
reserve [33]

Involved in
ischemia-induced
excitotoxicity [127]

Aβ disrupts Ca
homeostasis in
cortical neuronal
cell cultures [117]

Excitotoxicity and
excessive
Ca2+-mediated
nitric oxide
production are
believed to
contribute to the
death of
dopaminergic
neurons in PD
[118]; Huntingtin
transgenic mice
express
mitochondrial Ca
overload upon
glutamate
stimulation [119]

MAOS: membrane-associated oxidative stress VDCC: voltage dependent calcium channels, FTLD: frontotemporal lobar dementia, LBD: Lewy body dementia,
and HD: Huntington disease.
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