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Advancing proton minibeam 
radiation therapy: magnetically 
focussed proton minibeams at a 
clinical centre
Tim Schneider1,2*, Ludovic De Marzi3,4, Annalisa Patriarca3 & Yolanda Prezado4

Proton minibeam radiation therapy (pMBRT) is a novel therapeutic strategy that has proven to 
significantly increase dose tolerances and sparing of normal tissue. It uses very narrow proton beams 
(diameter ≤1 mm), roughly one order of magnitude smaller than state-of-the-art pencil beams. 
The current implementation of pMBRT with mechanical collimators is suboptimal as it is inflexible, 
decreases efficiency and produces additional secondary neutrons. As a potential solution, we explore 
in this article minibeam generation through magnetic focussing and investigate possibilities for 
the integration of such a technique at existing clinical centres. For this, a model of the pencil beam 
scanning (PBS) nozzle and beam at the Orsay Proton Therapy Centre was established and Monte Carlo 
simulations were performed to determine its focussing capabilities. Moreover, various modifications 
of the nozzle geometry were considered. It was found that the PBS nozzle in its current state is not 
suitable for magnetic minibeam generation. Instead, a new, optimised nozzle design has been proposed 
and conditions necessary for minibeam generation were benchmarked. In addition, dose simulations 
in a water phantom were performed which showed improved dose distributions compared to those 
obtained with mechanical collimators.

Proton minibeam radiation therapy (pMBRT)1 is a novel therapeutic strategy based on a distinct spatial modula-
tion of the dose. In contrast to standard proton therapy, the irradiation is carried out with minibeams (very nar-
row beams with a diameter ≤1 mm) separated by gaps of 2 to 4 mm. This results in a lateral dose profile consisting 
of a succession of areas of high dose (peaks) and areas of low dose (valleys). The ratio between the peak and valley 
doses (peak-to-valley dose ratio, PVDR) is a biologically relevant parameter: high PVDR with low valley doses 
favours normal tissue sparing2.

Several animal experiments have demonstrated that pMBRT reduces normal tissue damage compared to con-
ventional seamless irradiations3,4. In addition, an equivalent or superior tumour control has been observed in 
glioma-bearing rats5,6. These results suggest the participation of distinct radiobiological phenomena (e.g. micro-
scopic prompt tissue-repair effect7) which, however, are not yet completely understood.

Recently, pMBRT was implemented at the Orsay Proton Therapy Centre (ICPO) using a multislit collimator 
attached at the end of the nozzle. This method has been tested both in passive scattering8,9 and pencil beam 
scanning mode10. While such a mechanical collimation presents a straightforward way to implement pMBRT at 
an existing facility, it comes at the cost of a reduced dose rate and overall efficiency. Furthermore, the collimator 
becomes an additional source of secondary neutrons, which contribute, however, only little to the patient dose9. 
Lastly, this technique is rather inflexible as it may be necessary to fabricate a new collimator for different patients 
or patient groups.

An approach to overcome these issues could be the generation of proton minibeams through magnetic focus-
sing. Similar to current pencil beam scanning (PBS) treatments, magnetically focussed and scanned minibeams 
may offer an efficient and versatile tool to maximise tissue sparing, reduce neutron production and pave the way 
for 3D intensity-modulated treatment planning in pMBRT. The aim of this work was to evaluate how such a 
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technique could be integrated at a clinical centre. For this, a model of the PBS nozzle at ICPO as well as a new, 
optimised nozzle design were created and investigated with respect to their focussing limits. While other groups 
have recently explored the use of narrow proton beams (diameter ≥3 mm) to improve conventional PBS treat-
ment11 and proton beam radiosurgery12, this work is the first one to evaluate magnetically focussed proton min-
ibeams for pMBRT at a clinical centre.

Material and Methods
This work comprises two principal parts. First, a model of the PBS nozzle at ICPO (IBA Proteus® PLUS 
universal nozzle) was created and its focussing limits were investigated through Monte Carlo simulations. 
Additionally, modifications of the nozzle geometry were considered and the resulting effects on the focussing 
limit were analysed. The second part deals with a new, improved nozzle design capable of delivering clinical 
proton minibeams. Different parametrisations of the beam at the nozzle entrance were considered to bench-
mark necessary conditions for minibeam generation and simulations of the dose distribution in a water phan-
tom were performed.

Monte Carlo simulation details.  All presented studies are Monte Carlo simulations of proton beams prop-
agating through a clinical nozzle. The simulations were performed with TOPAS13,14 version 3.2 (dose simulations, 
section 2.3) and TOPAS version 3.1.p3 (all other cases). The physics list was built using the Geant4_Modular 
option and the recommended modules for proton therapy15–17. The range cut (all particles) was 10 µm for the 
dose simulations and 50 µm in all other cases, i.e. nozzle and beam modelling as well as beam size minimisation. 
An energy spread of 0.001% was assumed for the minimisation studies of the PBS nozzle at ICPO. Such a mono-
chromatic beam represents the best case scenario for magnetic focussing and thus prevents an overestimation of 
the minimum beam size. For the studies of the optimised nozzle design, the energy spread was 1% which is a 
typical value for facilities using cyclotrons18.

Focussing capabilities of the PBS nozzle at ICPO.  As a starting point, the focussing capabilities of an 
existing clinical nozzle were assessed. For this, a model of the PBS nozzle at ICPO and the beam at its entrance 
was created. Various model parameters were manipulated to determine the focussing limits.

Nozzle and beam model.  The geometric model of the nozzle was created in TOPAS according to plans provided 
by the manufacturer (see also De Marzi et al.18). A schematic is shown in Fig. 1a. To obtain a realistic beam focus-
sing model, the magnetic quadrupole fields in Q1 and Q2 were simulated using the QuadrupoleMagnet feature in 
TOPAS. The according field strengths were recorded during experiments.

The accuracy of the QuadrupoleMagnet model was validated against the professional software Lorentz 
3D-M19–21. For this, a pair of quadrupoles and a drift space of 2 m were simulated with either software and 
the beam size was assessed at multiple positions. The beam sizes agreed on average within 1.3% with a max-
imum deviation of 5.9% which was considered sufficient for our purposes. More details can be found in the 
Supplementary Material.

The beam source was modelled at the nozzle entrance and positioned at the vacuum window. An Emittance 
type source was used which defines the beam through six parameters: σ σ ′ ′

′x y r, , , ,x y xx  and ′ryy . The parameters 
σ σ,x y give a measure of the horizontal and vertical beam size while ′ ′x y, , representing the beam divergence, 
describe the horizontal and vertical angular spread of the beam. The factors ′rxx  and ′ryy  denote the correlation 
coefficients between σx and ′x  and σy and ′y . A bi-Gaussian profile was assumed for both the particle positions and 
momenta which means that σ σ,x y and ′ ′x y,  correspond to the standard deviations of the respective Gaussian 
distributions.

Values for σx and σy were obtained by measuring the beam size in IC1 (see Fig. 1a). The remaining beam 
parameters were determined using a best-fit approach comparing measured beam sizes to the beam sizes simu-
lated with different source parameterisations. The comparison was done at five positions around the isocentre 
(−40 cm, −20 cm, isocentre, +20 cm and +40 cm) and for thirteen beam energies from 100 to 220 MeV (see 
Fig. 2). Measuring the beam in this range corresponds to a clinically relevant situation (patient size) and provides 
a more accurate estimation of the beam divergence at the isocentre.

Beam size minimisation with current nozzle geometry.  The model of the PBS nozzle was used to determine the 
minimum beam size that can be achieved with the current geometry. Beam energies of 100, 150 and 200 MeV 
were considered. For this first step, only the target position and the configuration of the magnetic quadrupoles 
were varied. The considered target positions were −40, −20, 0, +20 and +40 cm relative to the original isocentre 
and the quadrupole configurations were specified by the magnetic field strength and the orientation of the focus-
sing plane. Quadrupoles always focus in one plane and defocus in the orthogonal plane, thus two arrangements 
were distinguished: Q1 focussing horizontally with Q2 focussing vertically, and vice versa. The field strength was 
defined by the field at the pole tips and was incremented in steps of 0.04 T from 0 to 2 T, resulting in 51 different 
field strengths for each quadrupole.

The minimum beam size was then determined by comparing the sizes simulated with each of the × ×51 51 2 
quadrupole configurations. At each of the five positions, phase space actors were used to record the horizontal 
and vertical beam profiles which were fitted with a Gaussian distribution. The full width at half maximum 
(FWHM) of the Gaussian was used as a measure for the beam size. It relates to the aforementioned standard 
deviation σ of the Gaussian as σ≈ .FWHM 2 355 . For simplification, we will distinguish the horizontal FWHM 
(hFWHM) and the vertical FWHM (vFWHM).
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Figure 1.  Schematics of the different nozzle geometries presented in this article. Abbreviations stand for: 
VW - vacuum window, VT - vacuum tank, IC - ionisation chamber, (X)Q - (extra) quadrupole, SM - scanning 
magnet, SH - snout holder. (a) Model of the PBS nozzle at ICPO. (b) New, optimised nozzle design. (c) 
Modification of ICPO nozzle with fully evacuated beam path (except interior of ICs). (d) Modification of ICPO 
nozzle without snout and field mirror and shortened path length to target. (e) Modification of ICPO nozzle with 
extra pair of quadrupole magnets and shifted IC2.

Figure 2.  Comparison of the horizontal (left) and vertical (right) beam sizes obtained in TOPAS (solid lines) 
with measurements (circles) at five different positions around the isocentre and for beam energies from 100 to 
220 MeV. The sizes refer to the standard deviation of the respective Gaussian distribution (cf. text section 2.2.1). 
Uncertainty bars are smaller than markers/line width.
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A minibeam must thus satisfy that both the hFWHM and vFWHM are ≤1 mm which implies a simultaneous 
minimisation of the beam size in horizontal and vertical direction in a more or less symmetric fashion. This min-
imisation requires a scalar quantity that takes into account the hFWHM and vFWHM as well as a factor ensuring 
that both FWHM are small. Such a quantity is defined in equation (1).

Ω = ⋅ ⋅




+


 = + .: (hFWHM vFWHM) hFWHM
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vFWHM
hFWHM

hFWHM vFWHM
(1)

2 2

The minimum beam size is then given by the hFWHM and vFWHM of the quadrupole configuration yielding 
the minimum Ω. A graphic representation of this can be found in the supplementary material. The values of Ω 
have no physically relevant meaning and are therefore not stated. Fig. 3 shows the results of this minimisation 
process.

The minimum beam size is affected by uncertainties of the beam model. An estimation for this was obtained 
by simulating several variations of the beam source parameters. Furthermore, the true minimum may be missed 
due to the discrete magnetic field strengths used during the minimisation process. This uncertainty was approx-
imated by the local variation of the beam size around the minimum configuration. It can only overestimate the 
true minimum and thus contributes asymmetrically to the total uncertainty. Lastly, the fitting process introduces 
a small uncertainty for which an estimate was provided directly by the algorithm. The uncertainty bars shown in 
Fig. 3 were computed as the root of the squares of these three contributions.

Beam size minimisation with modified geometries.  After considering the PBS nozzle in its current state, several 
(theoretical) modifications of the nozzle geometry were simulated to evaluate different approaches for further 
beam size reduction. Schematics of these modifications are shown in Fig. 1c–e.

The first approach (Fig. 1c) was targeted at beam widening due to scattering in air. All volumes except the 
ionisation chambers (IC1, IC2) were evacuated. The air in the ionisation chambers acts as the gas that is ionised 
and cannot be removed without changing the functional design. In a second modification (Fig. 1d), the field 
mirror, snout holder and snout, which serve no purpose in this case, were removed so that the target could be 
moved closer to IC2. This reduced the total length of the beam path and also shortened the distance where the 
beam travels in air. The third modification (Fig. 1e) extended the original geometry by adding a quadrupole pair 
downstream of the snout, thus moving the last focussing element much closer to the target. Moreover, IC2 was 
moved downstream of the added quadrupoles to account for the practical constraint that elements manipulating 
the beam must be followed by a beam monitoring unit.

The considered beam energies were 100 and 200 MeV. The minimum beam size was again assessed by sys-
tematically changing the quadrupole configurations, as described in the previous section. For the quadrupoles 
XQ1, XQ2 (Fig. 1e), values of the magnetic field at the pole tips up to 4 T were considered. Figure 4 shows the 
minimised beam sizes for each modification. The uncertainties were estimated in the aforementioned way.

Optimised design.  A new, more compact nozzle design was proposed based on the insights obtained with 
the model of the current nozzle and its modifications. A schematic of the geometry is shown in Fig. 1b. The design 
mostly uses the same elements as the PBS nozzle but features a much shorter focal length and air gap. Two differ-
ent air gap sizes, 10 and 30 cm, were considered as well as two different beam energies, 100 and 200 MeV.

Beam parameters at the nozzle entrance.  Apart from the nozzle geometry, the final beam size also depends on 
the initial beam parameters. The central parameter in this context is the beam emittance which represents a meas-
ure of the spread of the individual particle positions and momenta. As a consequence of Liouville’s theorem, the 
emittance cannot be changed by conservative forces22 which implies that minibeams suitable for pMBRT, i.e. with 
a low divergence, can only be generated if the beam exhibits an adequate beam emittance to begin with.

Figure 3.  Minimum beam sizes achievable with the current PBS nozzle at ICPO for beam energies of 100, 150 
and 200 MeV. The x-axes state the target position relative to the original isocentre. Red: reference beam sizes 
measured at ICPO. Blue: minimised beam sizes. The hFWHM and vFWHM are given by solid and dashed lines, 
respectively.
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In order to benchmark the according parameters, various parameterisations of the beam at the nozzle 
entrance were simulated for each air gap length and beam energy. They were constructed by varying the six beam 
source parameters used by TOPAS’ Emittance source. Equation (2) expresses the beam emittance in terms of these 
parameters.

ε σ∝ ⋅ ⋅ −′
′x r1 (2)x x xx

2

It shows that the emittance becomes small when σx or ′x  are small or ′ ~r 1xx . It should be noted that an emit-
tance is defined for each of the transversal planes and the same also holds true when x is replaced with y.

For the simulations, nine initial beam sizes σ σ( , )x y  were distinguished where σ σ≤ ≤3 , 15x y  mm as well as 
eight values between 0.1 and 15 mrad for ′x  and ′y  each and eleven values between −1 and +1 for ′rxx  and ′ryy  each, 
yielding a total of almost 70,000 considered parametrisations. The beam source was always at the entrance of the 
vacuum tank (left border in Fig. 1b) and the same process described in section 2.2.2 (field strengths ≤2 T) was 
used to determine the minimum beam size. Examples of how the minimum beam size changes for different initial 
parametrisations are displayed in Fig. 5 while the absolute minima are listed in Table 1. The uncertainty on the 
beam size in Table 1 includes uncertainties introduced by the fitting algorithm and due to the discrete values of 
the magnetic fields used for the minimisation process.

Dose distributions.  Three of the considered configurations were selected for simulations of the dose distribution 
in a water phantom ( × ×2 cm 2 cm 10 cm for 100-MeV beams and × ×2 cm 2 cm 30 cm for 200-MeV 
beams). The irradiation field consisted of ×5 5 minibeams arranged in a square grid with a spacing leading to 
lateral homogenisation at the Bragg peak depth for the 100-MeV beams (lateral flatness23 5-6%). The 
center-to-center distances were 2.9 and 3.7 mm for air gaps of 10 cm and 30 cm, respectively, leading to field 
sizes23 of 17.4 and 19.8 mm. A similar spacing was chosen for the 200-MeV case. Dose maps visualising these 
grids are shown in Fig. 6. The scanning dipoles (SM1 and SM2), simulated using TOPAS’ DipoleMagnet feature, 
were used to deflect the minibeams to their respective positions. As in previous studies1,24, the total area covered 
was approximately ×2 2 cm2.

The dose was recorded with the DoseToWater scorer of the TOPAS framework at a voxel size of 
. × . ×0 05 mm 0 05 mm 1 mm. For each voxel, the dose uncertainty was calculated by considering the standard 

deviation of 50 simulations. The global relative uncertainty was then computed as the root mean square of the 
voxel uncertainties over all voxels with at least half the maximum dose. It was less than 0.83% in all cases.

Finally, the dose distributions were analysed based on the hFWHM of a single minibeam, the PVDR and the 
depth dose profiles along a peak and a valley region. The hFWHM was assessed for the dose distribution of only 
the central minibeam without the contribution of the 24 surrounding minibeams. Uncertainties of the FWHM 
are taken from the fitting algorithm while uncertainty bars for the PVDR were assessed by propagating the dose 
uncertainties of the corresponding voxels.

Results and Discussion
Focussing capabilities of the PBS nozzle at ICPO.  This section focusses mainly on the results of the 
beam size minimisation simulations. More detailed information about the validation of the QuadrupoleMagnet 
feature and the modelling of the beam at ICPO can be found in the Supplementary Material.

Beam model.  All parameters of the final beam model are functions of the beam energy (see also Supplementary 
Material). The parameters σx and σy were inferred from measurements and lie between 3.2 and 13 mm. The other 
beam source parameters, determined through a best-fit process, are . ≤ ≤ .′ ′x y0 3 , 2 25 mrad and 
− . ≤ ≤ .′ ′r r1 0 , 1 0xx yy . Figure 2 compares the measured beam sizes to the ones obtained with the final beam 
model. Overall, a good agreement is observed with a mean deviation of 0.9% and 3.2% for σx  and σy , 
respectively.

Figure 4.  Comparison of the minimised beam sizes for the current nozzle geometry and its modifications. 
From left to right, the cases correspond to panels (a,c–e) in Fig. 1.

https://doi.org/10.1038/s41598-020-58052-0


6Scientific Reports |         (2020) 10:1384  | https://doi.org/10.1038/s41598-020-58052-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

Current nozzle geometry.  The focussing capabilities of the PBS nozzle at ICPO were assessed at five different 
positions by simulating × ×51 51 2 quadrupole configurations as explained in section 2.2.2. The exact values of 
the quadrupole fields are specific to the geometry and not stated here. Some examples can nevertheless be found 
in the Supplementary Material.

Figure 3shows the resulting minimum beam sizes along with measurements of the current beam sizes at 
ICPO. The beam sizes are given as a function of the target position and for beam energies of 100, 150 and 200 
MeV. Note that each minimised beam size corresponds to a distinct quadrupole configuration.

Although a considerable reduction of the beam size was achieved (20–25% smaller than the measured values), 
submillimetric beam sizes could not be obtained. The smallest FWHM, which was attained 40 cm upstream of the 
isocentre at a beam energy of 200 MeV, still amounts to 5.6 mm. Thus, it can be concluded that the generation of 
purely magnetically focussed minibeams is most likely not possible with the current PBS nozzle. Very different 
minima are obtained at the various positions. From −40 to +40 cm, the minimum beam size increases by almost 
100% at all considered beam energies. This highlights the importance of the nozzle-to-target distance.

Figure 5.  Minimum beam size achievable with the optimised nozzle design for different parameters of the 
beam at the nozzle entrance. A blue colour represents a beam parametrisation suitable for minibeam generation. 
Top row: minimal hFWHM as function of ′x  and ′rxx . Bottom row: minimal vFWHM as function of ′y  and ′ryy . 
Note that possible values of the correlation coefficient range from −1 to +1 and that the scales of the x- and 
y-axes are not linear.

Configuration Minimum beam size at target Source beam parametrisation

beam energy 
[MeV]

air gap 
[cm]

hFWHM 
[mm]

vFWHM 
[mm] σx [mm] σy [mm] ′x  [mrad] ′y  [mrad] ′rxx ′ryy

100 30 . − .
+ .1 67 0 19

0 001 . − .
+ .1 65 0 40

0 001 6.5 10.0 5.0 5.0 −1 −1

100 10 . − .
+ .0 66 0 11

0 001 . − .
+ .0 68 0 11

0 001 4.0 4.0 3.0 3.0 −1 −1

200 30 . − .
+ .0 87 0 14

0 001 . − .
+ .0 85 0 07

0 001 5.0 3.5 1.0 0.5 1 −1

Table 1.  Minimum beam sizes at the target simulated with new nozzle design for the different combinations of 
beam energy and air gap length. The sizes were obtained with multiple beam source configurations. The right 
part of the table lists the source parametrisations used for the dose simulations.
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Modified nozzle geometries.  The PBS nozzle in its current state will not be able to provide sufficient focussing 
of the beam. To identify the limiting factors, various modifications of the nozzle geometry were investigated. 
Figure 4 compares the minimum beam sizes obtained with these modifications to the minima of the current 
geometry.

Figure 6.  Dose distributions of minibeam grids in water phantom simulated for the three configurations listed 
in Table 1. Top row: transversal distribution at the phantom entrance. Bottom row: longitudinal distribution 
through the centre of the phantom ( =y 1 cm). Green dots and dashed lines: peak regions considered in Fig. 7. 
Red dots and dashed lines: valley regions considered in Fig. 7.

Figure 7.  Comparison of the dose distributions simulated for the three configurations listed in Table 1. Left 
panel: hFWHM of the central minibeam as a function of depth in the water phantom. Central panel: PVDR as a 
function of depth in the water phantom. Right panel: percentage depth dose curves along peak (solid lines) and 
valley (dashed lines) regions. Uncertainty bars in the left and central panel are smaller than markers.
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The evacuation of air from the current geometry (mod 1) leads to a remarkable reduction of the beam size 
of 25–30%, illustrating the importance of scattering in air. A reduction by a further 10–25% is obtained with a 
shorter beam path (mod 2). This result can still be improved with the additional quadrupole pair (mod 3) leading 
to a FWHM of less than 2 mm at 100 MeV.

A common feature shared by modifications 2 and 3 is that the distance between the last focussing element (last 
quadrupole) and the target is much shorter than in the current configuration at ICPO. Consequently, also the 
path in air is reduced which means fewer scattering events and thus a lower beam broadening. More importantly 
however, the focal length gets shortened which, in turn, makes it easier to focus beams with a high emittance.

This behaviour is because a higher emittance indicates a larger spread of the particle positions and momenta. 
The spread of the particle momenta is especially important for long focal lengths which correspond to small 
deflection angles. Conversely, short focal lengths which require large deflection angles are less sensitive to these 
variations. Hence, the smallest beam sizes were obtained with mod 3 where the focal length was of the order of 
30 cm. A drawback of very short focal lengths, however, is that, due to the large deflection angles, the beam will 
diverge rapidly downstream of the focal point. In practice, this becomes important as it is desirable to maintain a 
submillimetric beam size over a distance of several centimetres. At any rate, these results point out the need for a 
new, optimised design which is discussed in the next section.

Optimised design.  The evaluation of the modified geometries showed that the minimum beam size can be 
efficiently reduced by shortening the focal length and the length of the air gap. Furthermore, it was argued that a 
too short focal length will result in very divergent beams. Accordingly, a new, optimised nozzle design was inves-
tigated that incorporates a moderate focal length distance from the exit plane of Q2 to the target between 90 and 
110 cm as well as a short air gap of 10 to 30 cm (cf. Fig. 1b).

Beam parameters at the nozzle entrance.  In order to benchmark initial beam parameters suitable for minibeam 
generation, various different beam source parametrisations were simulated as explained in section 2.2.1. For each 
parametrisation, the minimum beam size was determined, as before, by variation of the quadrupole fields. It was 
found that the focussing capabilities mainly depend on the divergence and correlation coefficient while the initial 
beam size is virtually irrelevant. Furthermore, the final hFWHM is predominantly affected by ′x  and ′rxx , while the 
vFWHM depends mainly on ′y  and ′ryy . In other words, the horizontal and vertical plane are not correlated.

Figure 5 illustrates these findings by plotting the hFWHM and vFWHM as functions of ′
′x r( , )xx  and ′

′( )y r, yy , 
respectively. The colour of the squares represents the magnitude of the minimum FWHM for the corresponding 
initial parameters. A blue colour indicates a FWHM of 1 mm and thus marks a parametrisation suited for min-
ibeam generation. Three cases of different beam energies and air gap lengths were considered: 100-MeV beam and 
30-cm air gap, 100-MeV beam and 10-cm air gap and 200-MeV beam and 30-cm air gap. The case of a 200-MeV 
beam and 10-cm air gap has been omitted as minibeams of this energy could already be obtained with a gap of 30 
cm. From a practical standpoint, a larger air gap is preferred as the additional space may be needed e.g. for posi-
tioning and imaging systems.

In all cases, the smallest beam sizes are obtained if at least one of two conditions is satisfied: the initial diver-
gence is very small ( .′ ′ ~x y, 0 1 mrad) or the correlation coefficient takes on extreme values 
( . ≤ ≤′ ′r r0 95 , 1xx yy ). Nonetheless, a submillimetric vFWHM was also observed for the case of the 100-MeV 
beam and 10-cm air gap for divergences of 0.5 and 1 mrad and a correlation coefficient ± .0 9. These requirements 
can be considered realisable as correlation coefficients of ±1 were already used in the beam source model of the 
current nozzle at ICPO (see supplementary material and De Marzi et al.18). Moreover, the beam divergence has 
undergone an improvement in the last years from values around 9 mrad25 to ~1 mrad18 and, in some cases, 0.5 
mrad (data kindly provided by the team of MedAustron) and it may be expected that this trend continues.

The minimum beam sizes for each of the three cases are listed in Table 1. Minibeams were obtained for the 
100-MeV beams and 10-cm air gap (0.66 mm) and 200-MeV beams and 30-cm air gap (0.85 mm). At 100 MeV 
and with an air gap of 30 cm, the minimum FWHM was millimetric (1.65 mm) which nonetheless represents a 
significant improvement compared to current beam sizes at ICPO (>12 mm). Each of the minima was in fact 
obtained with multiple different source parametrisations. It should be noted that only field strengths up to 2 T 
were considered which are readily achievable with normal-conducting magnets. The listed parametrisations cor-
respond to those used for the dose simulations (section 3.2.2).

Dose simulations.  Simulations of the dose distribution in a water phantom were performed for the configura-
tions listed in Table 1. Transversal and longitudinal dose distributions are shown in Fig. 6. The transversal distri-
bution shows that the off-centre minibeams propagate at an angle in the water phantom. This is due to the short 
distance between the scanning magnets and the phantom which requires comparatively large deflection angles. 
Field sizes with a radius of 8–10 cm can be obtained which is sufficient in many cases including typical brain 
cancers which are the main target for pMBRT.

 Figure 7 shows the hFWHM of the central minibeam and the PVDR as functions of depth as well as the peak 
and valley depth dose profiles. The positions where the peak and valley doses were assessed are represented by 
green and red dots and dashed lines in Fig. 6.

The FWHM of the 200-MeV beam increases much more slowly than those of the 100-MeV beams. This is 
because beam particles with higher energy have greater forward momentum and are less affected by multiple 
Coulomb scattering. The two different 100-MeV configurations, despite starting at very different sizes, both reach 
a FWHM of 4–5 mm at Bragg peak depth. At the same depth ( = .z 7 5 cm), the 200-MeV beam has only widened 
to about 2 mm.
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At shallow depths, excellent values of the PVDR ≥ 50 are obtained for all cases. Previous studies with mechan-
ical collimators found maximal values of 8–168,10. The highest PVDR (~1,000) is obtained for a beam energy of 
100 MeV with an air gap of 10 cm. It is about 20 times higher than the PVDR for the same energy and a 30-cm air 
gap. In both cases, the PVDR drops below 10 at a depth of about 3.5–4.5 cm. The PVDR of the 200-MeV configu-
ration reaches initial values around 750 and maintains a PVDR  10 up to a depth of 8 cm. This is a result of the 
200-MeV beams broadening less rapidly which could benefit especially the treatment of deep-seated tumours.

The ratio of the peak dose deposited in the Bragg peak and at the phantom entrance is less than one in all cases. 
A lower ratio is observed for smaller beam sizes and higher beam energies (0.82 for 100 MeV and 30 cm, 0.19 for 
100 MeV and 10 cm and 0.11 for 200 MeV and 30 cm). This is because the fluence in the minibeam centre changes 
drastically with depth. Very small beams exhibit a high density at shallow depths which decreases as the beam 
widens. The ratio between the Bragg peak and entrance doses could be improved e.g. using planar minibeams.

Conclusion
pMBRT presents a new therapeutic strategy that can significantly increase preservation of normal tissue2–4 while 
providing equivalent or superior tumour control5,6. The current implementation using mechanical collimators8–10 
is however suboptimal. In this work, we considered the generation of purely magnetically focussed minibeams 
and investigated how such a method could be integrated at existing clinical centres.

Starting from the current PBS nozzle at ICPO, which was shown to not be suitable for magnetic minibeam 
generation, we have proposed a new, optimised nozzle design that uses conventional beamline elements and fea-
tures a moderate focal length of about 1 m and a shortened air gap of 10–30 cm. An extensive study of different 
beam source parametrisations demonstrated that either a very small initial divergence ( .0 1 mrad) or an extreme 
correlation between beam size and beam divergence is necessary for minibeam generation. Under these condi-
tions, the new nozzle design was capable of delivering beam sizes between 0.66 and 1.67 mm FWHM at beam 
energies of 100 and 200 MeV. The design can thus be considered suitable for pMBRT and could lead to an optimal 
implementation of pMBRT enabling a more efficient and flexible treatment, accessible to 3D intensity-modulated 
treatment planning. In addition, dose simulations showed PVDR ≥ 50 for all evaluated cases. This is at least three 
times higher than the values achieved with mechanical collimators8,10 and may further benefit normal tissue 
sparing.
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