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In modern swine husbandry systems, antibiotics have been used as growth promoters
for piglets during suckling or weaning period. However, while early colonization of
intestinal microbiota has been regarded crucial for the host’s later life performance
and well-being, little is known about the impact of antibiotics on intestinal microbiota
in suckling piglets. The present study aimed to investigate the effects of early antibiotics
exposure on gut microbiota and microbial metabolism of suckling piglets. Sixteen litters
of suckling piglets were fed a creep feed diet with (Antibiotic) or without (Control)
antibiotics from postnatal days 7–23 (n = 8). The ileal and cecal digesta were obtained
for microbial composition and microbial metabolites analysis. The results showed that
the antibiotics significantly altered the bacterial community composition by decreasing
(P < 0.05) the diversity and richness in the ileum. The antibiotics significantly reduced
the abundance of Lactobacillus in both the ileum and cecum, increased the abundance
of Streptococcus, unclassified Enterococcaceae, unclassified Fusobacteriales, and
Corynebacterium in the ileum, and the abundance of unclassified Ruminococcaceae
and unclassified Erysipelotrichaceae in the cecum. The antibiotics decreased (P < 0.05)
ileal lactate concentration and cecal concentration of total short-chain fatty acids
(SCFAs). But the antibiotics enhanced protein fermentation (P < 0.05) in the ileum and
cecum, as ileal concentrations of putrescine and cadaverine, and cecal concentrations
of isobutyrate, isovalerate, putrescine, cadaverine, spermine, and spermidine were
significantly increased (P < 0.05). These results indicated that early antibiotics exposure
significantly altered the microbial composition of suckling piglets toward a vulnerable
and unhealthy gut environment. The findings provide a new insight on the antibiotics
impact on neonates and may provide new framework for designing alternatives to the
antibiotics toward a healthy practice for suckling piglets.
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INTRODUCTION

The gut microbes of mammals are integral to the prevention
of infectious diseases, maintenance of intestinal morphology,
nutrient digestion and metabolism, immune modulation of the
host (Nicholson et al., 2005; Romick-Rosendale et al., 2009;
Hooper et al., 2012). Immediately after birth, the piglet gut is
rapidly colonized by a complex and diverse microbiota derived
from the sow and environment (Konstantinov et al., 2006). As
the pig grows, the gut microbiota becomes mature as reflected
by highly diverse, stable and established microbial community.
Our previous study demonstrated that the overall gut microbial
community of the pig showed an age-dependent maturation,
with weaning as an important event for the gut microbe
succession (Bian et al., 2016). During the early life stages, the
composition and diversity of the gut microbiota is dynamic
and can be easily influenced by environmental conditions,
such as the use of creep feed and medicines (antibiotics and
vaccines), and by the exposure to pathogenic microorganisms
(Cho et al., 2012; Schokker et al., 2014). Antibiotics have been
used in feed as beneficial practice in suckling or weaning
piglets to improve feed efficiency for many years in China
and many other countries. Previous studies have shown that
antibiotics in feed altered the gut microbial communities
with detected shifts in bacterial functions and membership in
weaning piglet feces (Allen et al., 2011; Looft et al., 2012)
or growing pig intestine (Looft et al., 2014), suggesting an
evident impact of antibiotics on the gut microbiota. However,
while it is regarded that the early colonization of gut microbes
is important for the host’s later life performance and well-
being (Conroy et al., 2009; Saavedra and Dattilo, 2012; Hansen
et al., 2013), little information is available about the impact
of early life antibiotics exposure on gut microbiota of suckling
piglets.

Antibiotics also influence microbial fermentation in the
intestine. Gut microbes ferment carbohydrates to produce
short-chain fatty acids (SCFAs). SCFAs can be absorbed by
enterocyte and have many beneficial effects on host health.
Neomycin-treated growing pigs showed a decrease in acetate
in cecum (Gargallo and Zimmerman, 1980). Our previous
study indicated that antibiotics reduced the concentrations
of propionate and butyrate in feces of weaning piglets (Mu
et al., 2017b). Lactate is a major fermentation product of
carbohydrate metabolism, especially in the small intestine, which
can reduce intestinal pH and inhibit the growth of pathogenic
microbes (Mayeur et al., 2013). In addition to affecting the
carbohydrate fermentation, antibiotics also affected profiles of
metabolites involved in amino acid metabolism in the gut, such
as biogenic amines, ammonia, and branched-chain fatty acid
(BCFA) in the gut of growing or weaning piglets (Gargallo
and Zimmerman, 1980; Bhandari et al., 2008; Mu et al.,
2017b). Previous study demonstrated that neomycin increased
ammonia concentration in the cecum of growing pigs (Gargallo
and Zimmerman, 1980). Our previous study also showed that
antibiotics significantly increased putrescine, cadaverine, and
spermidine in the large intestine of weaning piglets (Mu et al.,
2017b). These studies suggest marked effects of antibiotics in

feed on microbial metabolism in weaning or growing pigs.
Compared with weaning or growing pigs, the gut microbes
of suckling piglets are less diverse and more dynamic. The
early gut microbes’ colonization and associated metabolites
at the suckling stage are important for the later microbial
development, which further have impact on the growth and
health of the pig (Arnal et al., 2014; Zhang et al., 2016). Thus,
it is important to evaluate the impact of antibiotics exposure
on gut microbial colonization and metabolism in suckling
piglets.

Therefore, the current study was to investigate the effects of
early life antibiotic exposure (from day 7 after birth to day 22)
on gut microbial colonization and microbial metabolism in ileum
and cecum of suckling piglets.

MATERIALS AND METHODS

Ethics Statement
The animal experimental proposals were approved by the Animal
Care and Use Committee of Nanjing Agricultural University
and were in compliance with the Ethical Committee of Nanjing
Agricultural University, Nanjing [authorization number SYXK
(Su) 2011–0036].

Animal, Diet and Experimental Design
This study was a part of series of studies designed to evaluate the
effects of early life exposure of antibiotics on the gut microbes
and nutrient metabolic of pigs and a detailed description of
the experimental setup was reported in our previous studies
(Mu et al., 2017b; Yu et al., 2017a). Briefly, 16 litters 7-day-
old crossbred [Duroc × (Landrace × Large White)] suckling
piglets were randomly assigned to one of the two groups
(n = 8 litters/group): control group and antibiotics group. While
sucking their sow’s milk from day 7 after birth to day 22, the
piglets in the control group were fed a commercial creep feed
(as shown in Supplementary Table S1) without any antibiotic
and the antibiotic group piglets were fed the same commercial
creep feed with a mixture of antibiotics (50 mg/kg olaquindox,
50 mg/kg oxytetracycline calcium, and 50 mg/kg kitasamycin)
(Antibiotic). This mixture of antibiotics have broad spectrum of
antibacterial activity as described previously (Yu et al., 2017a),
and is commonly used as a growth promoter in creep feed for
suckling and weaning piglets in commercial farms in China. The
sow was fed a commercial corn-soybean based diet (as shown
in Supplementary Table S2), which was produced by Cargill
Investments (China) Ltd. (Shanghai, China) and contained no
antibiotics. While sucking their respective sow’s milk, the piglets
were fed twice per day (08:00 and 17:00 h, equal portions at each
meal). At day 23, 8 piglets (n = 8 barrows) from each group was
randomly selected (one piglet from each litter) and fasted for
approximately 12 h before they were euthanized. The digesta in
the ileum and cecum were collected and mixed, respectively, as
described previously (Mu et al., 2017b). The samples were then
stored at −80◦C until further DNA extraction and metabolism
analysis.

Frontiers in Microbiology | www.frontiersin.org 2 May 2018 | Volume 9 | Article 1166

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01166 May 28, 2018 Time: 15:52 # 3

Yu et al. Gut Microbiota Response to Antibiotics

Chemical Composition Analysis
Short-chain fatty acid concentrations in ileal and cecal digesta
were measured by gas chromatography (GC) as described in
our previous study (Yu et al., 2017b). Briefly, approximately
0.4 g of ileal and cecal digesta were mixed with 1.6 mL double
distilled water. The mixture was vortexed and centrifuged at
13,000 × g for 10 min at 4◦C. A portion of 1 mL supernatant
was transferred to a new tube and mixed with 0.2 mL 25%
(w/v) metaphosphoric acid. After homogenization, the samples
were stored at −20◦C for 12 h to precipitate the proteins.
After thawing, the mixture was centrifuged at 13,000 × g for
10 min at 4◦C. The supernatant was filtered through a 0.22-
µm syringe filter and then analyzed on an Aglient 7890B
system with a flame ionization detector (Agilent Technologies
Inc., United States). Lactate concentration in ileal and cecal
digesta was determined by the enzymatic colorimetric method
with Olympus AU2700 auto analyzer (Olympus, Tokyo, Japan)
and reagents were purchased from Nanjing Jiancheng Biological
Engineering Institute (Nanjing, China).

For ammonia analysis, the ammonia concentration of ileum
and cecum digesta were acidified with 0.2 mol/L HCl and
analyzed using UV spectrophotometer according to Chaney
and Marbach (1962). Amine concentrations in the ileum
and cecum digesta were determined by high-performance
liquid chromatography (HPLC) with precolumn dansylation as
described in a previous study (Yang et al., 2014). Briefly, 0.5 g
ileal and cecal digesta were weighted into a 2-mL centrifuge
tube, 1.5 mL 5% (w/v) trichloroacetic acid solution was added
to precipitate the proteins and peptides. After extraction by
n-hexane, a portion of 0.5 mL subnatant was derived using dansyl
chloride. The gradient elution of two mobile phase were used
as follows: mobile phase A consisted of HPLC grade water and
mobile phase B was acetonitrile. The flow rate was 1.0 mL/min.
The wavelength of ultraviolet detector was 254 nm and the
column temperature was 30◦C.

DNA Extraction and Preparation of
Amplicons for High-Throughput
Pyrosequencing
Total genomic DNA in the ileal and cecal digesta was extracted
with the bead-beating and phenol-chloroform extraction
methods as suggested by previous study (Zoetendal et al., 1998).
The concentration of DNA was quantified using a NanoDrop
spectrophotometer (Thermo Fisher Scientific Inc., Wilmington,
DE, United States). The V3-V4 region of the bacterial 16S rRNA
genes were amplified by PCR (Initial denaturation program at
95◦C for 2 min, followed by 25 cycles at 95◦C for 30 s, 55◦C
for 30 s, and 72◦C for 30 s, and a final extension at 72◦C for
5 min) using primers 338F (5′- ACT CCT RCG GGA GGC AGC
AG-3′) and 806R (5′-GGA CTA CCV GGG TAT CTA AT-3′)
(Mao et al., 2015). PCR products were visualized on a 2% (w/v)
agarose gels and purified with AxyPrep DNA Gel Extraction
Kit (Axygen Biosciences, Union City, CA, United States)
according to the manufacturer’s instructions and quantified
using QuantiFluorTM-ST (Promega, United States). Equal molar
ratios of purified amplicons were pooled from each sample and

paired-end sequenced (2 × 250) on an Illumina MiSeq platform
according to standard protocols (Caporaso et al., 2012).

Bioinformatics Analyses
The raw sequences from the Illumina MiSeq platform were
demultiplexed and quality-filtered using the QIIME (version
1.7.0) software package (Campbell et al., 2010), as described
by Mu et al. (2016). Operational taxonomic units (OTUs) were
clustered with a cutoff of 97% similarity using UPARSE (version
7.11), and chimeric sequences were identified and removed using
UCHIME (Edgar, 2010). Representative sequences from each
OTU were obtained and classified with a confidence level of
90% using 16S rRNA sequences from Silva release 1192 (Quast
et al., 2013). Some representative sequences were also loaded into
the National Center for Biotechnology Information Basic Local
Alignment Search Tool website against the 16S rRNA sequence
database (Altschul et al., 1990). Bacterial diversity was estimated
with rarefaction analysis, an abundance-based coverage estimator
(ACE), a bias-corrected Chao richness estimator, and the
Shannon and Simpson diversity index using the MOTHUR
program (version v.1.35.03) (Schloss et al., 2009). The Bray–
Curtis similarity clustering analysis was used to perform a
principal coordinate analysis (PCoA) (Gonzalez-Silva et al.,
2017), and a distance-based analysis of molecular variance
(AMOVA) was conducted to assess the significant differences
between antibiotic and control group samples (Schloss et al.,
2009). Linear discriminant analysis effect size (LEfSe) analysis
was performed to pick the significant and unique OTUs in each
group using a linear discriminant algorithm (LDA) effect size
(i.e., LDA score, >2).

The 16S sequencing data in this paper were submitted to
the GenBank Sequence Read Archive database under accession
number SRP 132384.

Statistical Analysis
Statistical analysis was carried out with tests using the
SPSS software package (SPSS v. 20, SPSS Inc., Chicago, IL,
United States). The normality of the distribution of variables
was assessed with Shapiro–Wilk tests. The microbial metabolites,
microbial diversity data, and data of taxa richness found to
have a normal distribution were analyzed by the independent-
samples t-test procedure. The Mann–Whitney test was used to
analyze variables found to have a non-normal distribution (some
data of taxa richness). False discovery rate (FDR) correction
was also used to verify the discriminant bacterial community
data (Benjamini and Hochberg, 2000). Data were expressed as
the means ± SEM. Differences were considered significant at
P ≤ 0.05, and tendency was declared with 0.05 < P < 0.10.
Correlation between microbial fermentation metabolites with
bacterial abundance (genus proportion from pyrosequencing
analysis) were analyzed by Pearson’s correlation test using
GraphPad Prism version 5.0 (GraphPad Software, San Diego, CA,
United States). Correlation was considered significant when the

1http://drive5.com/uparse/
2http://www.arb-silva.de
3http://www.mothur.org
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absolute value of Pearson correlation coefficient was >0.5 and
statistically significant (P < 0.05).

RESULTS

Growth Performance
In this study, early antibiotics exposure did not affect the average
daily gain compared with control group (330.15 ± 30.12 vs.
350.45 ± 20.56, P = 0.749). The average daily feed intake was
also similar between the control group and antibiotics group
(16.98± 0.75 vs. 17.29± 0.56, P = 0.709).

Effects of Early Antibiotics Exposure on
Ileal and Cecal Bacterial Community
Structure Revealed by Pyrosequencing
A total of 1,173,338 V3-V4 16S rRNA sequence reads from the 32
samples, with an average 36,666 sequence reads for each sample
were used for subsequent analysis. As shown in Supplementary
Figure S1, the rarefaction curves tended to approach a plateau,
indicating that further sequencing would not result in an effective
increase of OTUs in each group. The bacterial richness and
diversity at a genetic distance of 3% in each sample are presented
in Figure 1. In the ileum, the antibiotics decreased the species
richness and diversity indices compared to that in the control
group, as reflected by the Chao 1 and Shannon index with
statistical differences. However, in the cecum, as compared with
the control group, the antibiotics did not affect the species
richness (ACE and Chao 1) and diversity indices (Simpson
index and Shannon index). The Bray–Curtis similarity metric in
MOTHUR was used to evaluate β-diversity across the sample
(Figure 2). The PCoA result indicated a distinct separation in
microbiota composition between the antibiotics group and the
control in ileum (Figure 2A; axis 1 + axis 2 = 54.76%). AMOVA
analysis, which evaluates the statistical significance of the spatial
separation that was observed among the different groups in PCoA
plots, indicated that the antibiotics significantly affected the ileum
microbial communities (Fs = 9.12, P < 0.001). However, cecal
samples of the piglets from the antibiotics group and the control
group were not separated (Figure 2B).

At phylum level, the Firmicutes was the most predominant
phylum in the ileum and cecum of piglets (Figure 3A),
accounting for more than 90% of total sequences. In the ileum
(Figure 3B), the antibiotics tended to reduce the abundance of
Firmicutes (P = 0.065). The antibiotics significantly increased
the abundance of bacteria belonging to the phyla Actinobacteria
(P < 0.05), and tended to increase the abundance of Fusobacteria
(P = 0.065). However, no significant changes in the abundance
of bacteria belonging to the phyla Bacteroidetes, Proteobacteria,
TM7, and Tenericutes was observed between the control and
antibiotic groups. In the cecum, none of the bacterial phyla
changed in abundance after antibiotics exposure.

The 30 most abundant genera are listed in Supplementary
Figure S2 for ileum samples and Supplementary Figure
S3 for cecum samples. In ileum samples, Lactobacillus,
Streptococcus, and Bacillus were the abundant genera (>2%

FIGURE 1 | Effects of early antibiotics exposure on the diversity of ileal and
cecal bacterial community at the 3% dissimilarity level. The values are
expressed as the means ± SEM, with eight piglets per group. Asterisks
indicated statistically significant difference from control: ∗P < 0.05,
∗∗P < 0.05.

in at least one group) (Supplementary Figure S1). The
antibiotics significantly reduced the abundance of Lactobacillus,
increased the abundance of Streptococcus, Rothia, unclassified
Enterococcaceae, unclassified Fusobacteriales, Globicatella,
Actinomyces, Corynebacterium, and Subdoligranulum (Figure 4).
Meanwhile, the antibiotics also tended to increase the
abundance of Gemella and Helcococcus (P = 0.083, P = 0.065,
respectively). In the cecum, Lactobacillus, Streptococcus,
Subdoligranulum, unclassified Ruminococcaceae, unclassified
Peptostreptococcaceae, and unclassified Erysipelotrichace were
the abundant genera (>5% in at least one group) (Supplementary
Figure S2). The antibiotics treatment significantly decreased the
abundance of Lactobacillus (P < 0.05), increased the abundance
of unclassified Erysipelotrichace, Collinsella, Mogibacterium,
and Dorea, and tended to increase (P < 0.05) the abundance of
unclassified Ruminococcaceae (P = 0.083) (Figure 4).

To identify specific bacteria that are characteristic for
antibiotics treatment, LEfSe analysis was performed at the OTUs
level (Figure 5). In the ileum, 25 OTUs were significantly different
between the antibiotics and the control (Figure 5A). Among the
different OTUs, 21 of these OTUs were higher in the antibiotic
treatment group and 4 OTUs were higher in the control group
(P < 0.05). In the cecum, 10 OTUs were different (Figure 5B).
Eight of these OTUs were higher in antibiotic treatment group,
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FIGURE 2 | Principle coordinate analysis of (A) ileum samples and (B) cecum samples in the control and antibiotic group by Bray–Curtis similarity metric. The
percentage of variation explained by PC1 and PC2 are indicated in the axis.

FIGURE 3 | Phylum-level composition. (A) The phylum-level taxonomic composition of Average relative ileal and cecal microbiota in suckling piglets. (B) The changed
bacterial phyla found in ileum. The values are expressed as the means ± SEM, with eight piglets per group. Asterisks indicated statistically significant difference from
control (Mann–Whitney U-test): ∗P < 0.05 Abbreviations: Ile-C, Ileum-Control; Ile-A, Ileum-Antibiotic; Cec-C, Cecum-Control; Cec-A, Cecum-Antibiotic.

while 2 OTUs were higher in control group (P < 0.05). Taken
together, these results indicate that the early antibiotics exposure
significantly changed the intestinal microbiota, especially in the
ileum digesta.

Effects of Early Antibiotics Exposure on
Fermentation Metabolites in Ileum and
Cecum Digesta
Short-chain fatty acids are the major microbial products from
carbohydrates fermentation in the gut, especially in the large
intestine. As shown in Figure 6B, the cecum had large amount of
SCFAs and the antibiotic decreased (P < 0.05) the concentrations
of acetate and total SCFA compared to those in control group.
Meanwhile, the antibiotic group also affected the minor SCFAs,
with the concentrations 37.6, 20.2, and 27.7% higher (P < 0.05)
for isobutyrate, isovalerate and BCFA, respectively, than those in
the control group. In the ileum (Figure 6B), the amount of SCFA
was low and the antibiotics showed no effect on the level of SCFA

(P > 0.05). Lactate is a major product in the intestine especially
in the small intestine from carbohydrate fermentation by lactic
acid-producing bacteria, such as Lactobacillus, Bifidobacterium,
and Enterococcus. High level of lactate in the small intestine
is important to prevent the proliferation of pathogenic or
harmful bacteria and maintain the intestinal health. As shown in
Figure 6A, the concentration of lactate in the ileal digesta was
high and the antibiotics significantly decreased the concentration
of lactate (P < 0.05). The cecum had little lactate and the
antibiotics had no effect in cecum (P > 0.05).

Ammonia and biogenic amines are derived from deamination
and decarboxylation of amino acids, respectively. For ammonia,
the cecum showed higher level of ammonia than the ileum and
the antibiotics did not affect the level of ammonia either in the
ileum or in the cecum (data not shown). For biogenic amines
(Figure 6C), putrescine and putrescine were the two main amines
both in the ileum and cecum, but the amount of the amines in the
cecum was high, while that in the ileum was little and some were
negligible. The antibiotics significantly increased (P < 0.05) the
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FIGURE 4 | Effect of early antibiotics exposure on the significantly changed genera in ileal and cecal digesta. The values were expressed as the medians, with eight
piglets per group. Asterisks indicated statistically significant difference from control (Mann–Whitney U-test): ∗P < 0.05, ∗∗P < 0.01.

concentrations of putrescine, cadaverine, and total amines in the
ileum. In the cecum, the antibiotics treatment also increased the
concentrations of putrescine, cadaverine, spermidine, spermine,
and total amines, but did not affect the concentrations of
methylamine, tryptamine, and tyramine. Collectively, these
results indicated that the antibiotics markedly increased the
concentrations of amines in the ileum and cecum, suggesting

a great impact of antibiotics on amino acid metabolism in the
intestine.

Correlation Between Bacterial
Fermentation Productions With Bacteria
To understand the relationships between the microbial
composition changes and the change in microbial fermentation
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FIGURE 5 | Significantly changed bacteria OTUs in ileum (A) and cecum (B) by antibiotic treatment at OTUs levels, as revealed by LefSe analysis. An LDA score of
>2 was considered significant.

profiles during the antibiotic exposure, a Pearson’s correlation
analysis was performed between microbial composition
and metabolites concentrations (Figure 7). In the ileum
(Figure 7A), there were significantly correlations between
the changes of lactate concentration and bacteria, with
positive correlation with the abundance of Lactobacillus,
while negative correlation with the abundance of Rothia,
Actinomyces, Corynebacteriales. With amines, the concentrations
of putrescine and cadaverine negatively correlated with the
abundance of Lactobacillus, while positively correlated with
the abundance of Streptococcus, Rothia, and unclassified
Enterococcaceae. Putrescine also positively correlated with
the abundance of Actinomyces, Corynebacteriales, unclassified
Fusobacteriales and Helcococcus. In the cecum (Figure 7B),

the concentration of acetate showed negative correlations
with the abundance of Collinsella. Isobutyrate concentration
was positively correlated with the abundance of Lactobacillus,
while negatively correlated with the abundance of Dorea. With
amines, concentrations of putrescine, cadaverine, spermidine,
and spermine correlated negatively with the abundance of
Lactobacillus, and correlated positively with the abundance of
Mogibacterium. Cadaverine and spermidine concentrations were
also positively correlated with the abundance of unclassified
Ruminococcaceae and Dorea. In addition, spermidine and
spermine concentrations were positively correlated with
the abundance of Collinsella, and spermine concentration
also positively correlated with the abundance of unclassified
Erysipelotrichaceae. In general, these results indicate that the
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FIGURE 6 | Effect of early antibiotics exposure on the microbial metabolites in ileum and cecum content of piglets. (A) Lactate; (B) SCFAs; (C) Amines. The values
are expressed as the means ± SEM, with eight piglets per group. Asterisks indicated statistically significant difference from control (Student’s t-test: ∗P < 0.05,
∗∗P < 0.01).

changes in intestinal microbiota are correlated with alterations
of metabolites.

DISCUSSION

Antibiotics have been widely used as growth promoters in
swine husbandry for many years. The effect of early life
antibiotics exposure on the microbiota in the weaning piglets
or growing pigs have been widely described. In the present
study, we investigated the response of the ileal and cecal digesta
of microbes of the suckling piglets to antibiotic treatment
using high-throughput sequencing. The antibiotics markedly
affected the ileal microbiota, with a sharp reduction in the
abundance of Lactobacillus, and dramatically decreased the
lactate concentration in the ileum and SCFA in the cecum, while
increased the concentrations of protein fermentation products
(BCFA, putrescine, cadaverine, spermidine, and spermine) in the
ileum and cecum. These findings indicate a marked impact of the

antibiotics on the intestinal microbial community and metabolic
profiles of the suckling piglets.

Early Antibiotics Exposure Altered the
Microbial Community Structure of the
Suckling Piglets, With More Evident
Effect in the Ileum Than in the Cecum
In the present study, antibiotics had varying impact on the
microbial composition in the ileum and cecum, with dramatic
effect in the ileum and less effect in the cecum, as revealed
by the diversity and richness of microbiota, and the numbers
and types of genera affected. With weaning piglets, our previous
study also observed antibiotics-induced location-specific shift
in the gut microbiota, with dramatic impact in the stomach
and small intestine, but had less impact in the hindgut (Mu
et al., 2017a). Different locations in the lumen may differ in
physicochemical and nutrient conditions for different microbial
communities (Pereira and Berry, 2017). Therefore, the different
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FIGURE 7 | Correlation analysis between the abundance of microbiota (at the genus level) and microbial metabolites in the ileum (A) and cecum (B). Correlation was
considered significant when the absolute value of Pearson correlation coefficient was >0.5 and statistically significant (P < 0.05). The red represents a significant
positive correlation (P < 0.05), blue represents a significant negative correlation (P < 0.05), and white represents a non-significant correlation (P > 0.05).

microbial distribution along the gut may account for the different
alterations in the ileal and cecal microbiota after antibiotic
treatment.

Diversity and richness index are often used as an indicator
of functional resilience of microbial ecosystems in the gut. In
the present study with suckling piglets, the antibiotics exposure
decreased the diversity (Shannon) and richness index (Chao 1)
of microbiota in the ileum, which was confirmed by analysis
of Bray–Curtis PCoA (Figure 2A) and AMOVA. Additionally,
antibiotics exposure increased the abundance of Actinobacteria
and affected 10 genera or similar groups. However, in weaning
piglets, antibiotics exposure did not affect the diversity and
richness of microbiota in the ileum though with evident effect in
the stomach and jejunum, and had no effect on the abundance
of Actinobacteria and did not affect abundances of any genera
(Mu et al., 2017a). The difference between piglets in the ileum
in response to the antibiotics may primarily be due to the age
of the piglets as the gut microbiota of suckling piglets (relatively
younger age, at day 23) is less diverse but more dynamic
than weaning piglets (relatively older age). Our previous study,
investigating succession of gut microbiota of the piglets from
the immediate birth until 3 weeks after weaning, showed an
age-dependent manner of the gut microbiota development and
acquisition (Bian et al., 2016). Thus, the less diverse and more
dynamic microbial community in the gut of the suckling piglets
may be more vulnerable than the weaning pigs and thus can be
easily influenced by environmental factors such as the antibiotic
exposure in the present study.

With specific genera, the antibiotics markedly reduced the
genus Lacobacillus in the ileum, while increased many genera,

such as Streptococcus, Rothia, and Corynebacterium. The genus
Lactobacillus is the most predominant genus in the small
intestine. However, with weaning piglets at day 42, the same
antibiotics did not show significant effect on the Lactobacillus
(Mu et al., 2017a). This different response may be due to the
different relative abundance of the Lactobacillus in the intestine
as the event of weaning could change the relative abundances of
bacteria groups (Bian et al., 2016). Our previsous study showed
that the abundance of Lactobacillus quantified by real-time PCR
changed dramatically from before weaning to after weaning (9.29
vs. 6.80 16S rRNA gene copies/g wet weight digesta) (Su et al.,
2008). In the present study with suckling piglets, Lactobacillus
is the most predominant genus (87.05% vs. 38.93% of total
sequence in the control and antibiotic group, respectively) in
the ileum, greater than the Strepotococcus (2.30% vs. 16.01% of
total sequence in the control and antibiotic group, respectively).
With weaning piglets at 42 days of age, the most predominant
genus is Strepotococcus (17.56% vs. 10.61% of total sequence
in the control and antibiotic group, respectively), and the
Lactobacillus (10.42% vs. 11.32% of total sequence in the control
and antibiotic group, respectively) was the second predominant
genus. In a rat model, previous study indicated that antibiotic
treatment (amoxicillin) from postnatal day 7 until days 17 or 21,
nearly eradicated Lactobacillus in the small intestine and colon
(Schumann et al., 2005). In chickens, antibiotic treatment from
postnatal days 1–7 also significantly decreased the abundance
of some species within the genera Lactobacillus (Simon et al.,
2016). These results suggest that the most predominant genus
Lactobacillus in the neonates is very sensitive to antibiotics.
Lactobacillus bacteria are known as potentially beneficial species
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in the gut, which can prevent the infection or colonization
of pathogens by competition for epithelial binding sites and
nutrients, and produce some antimicrobial factors, such as
bacteriocins and lactic acid (Hamnes et al., 1992). Thus, the
use of antibiotics either for improving growth performance
or treatment of diseases could also reduce the abundance of
potentially benefical species, which could make the intestine
rather vulnerable.

On the countrary, the antibiotics exposure increased the
abuncance of many other genera, such as Streptococcus. Some
species within the genera Streptococcus, including S. suis (Lun
et al., 2007) and S. gallolyticus (Boleij and Tjalsma, 2013),
are known as opportunistic pathogens that induce mortality
of piglets after weaning. With suckling piglets in the present
study, the antibiotics significantly increased the abundance
of S. suis and S. gallolyticus (Figure 5A). However, with
growing pigs, previous study showed that in-feed antibiotics
(chlortetracycline, sulfamethazine, and penicillin) treatment
decreased the abundance of Streptococcus in the ileum and cecum
of growing pig (Looft et al., 2014). In contrast to the established
and stable microbiota of growing pigs, the gut microbiota of
suckling piglets is not mature and may be more vulnerable to
disturbance such as antibiotics exposure.

Collectively, our results suggested that early antibiotics
exposure altered the microbial community structure of suckling
piglets toward a vulnerable gut environment, and with more
evident effect in the ileum than in the cecum. For the suckling
piglets, the gut microbiota is dynamic and vulnerable to pathogen
invasion, and the early colonization of gut microbiota has
important role in the health of the host. Thus, based on the results
from suckling piglets in the present study, beneficial microbes
or probiotics could be used instead of antibiotics in the feed of
animals.

Early Antibiotics Exposure Markedly
Reduced Lactate Concentration in the
Ileum of the Suckling Piglets
Lactate is an important bacterial fermentation product of
carbohydrate metabolism in the gut especially in the small
intestine, which can reduce gastrointestinal tract pH, inhibit
the multiplication of enterotoxigenic Escherichia coli, reduce the
mortality rate of the animals, and is more effective than other
organic acids in improving pig growth performance (Tsiloyiannis
et al., 2001; Suiryanrayna and Ramana, 2015). The level of
lactate in the intestine is the result of three processes occurring
simultaneously: lactate production by lactate-producing bacteria,
lactate consumption by lactate-utilizing bacteria, and intestinal
absorption (Pham et al., 2016). Lactobacillus is considered as
the main lactate producer in the intestine, and in the present
study was positively correlated with the lactate concentration in
the ileum (Figure 7A). Thus, many species or strains belonging
to Lactobacillus have been used as probiotics in piglets (Lallès
et al., 2007). Some bacteria within Actinomyces can convert
lactate into acetate and CO2 (Takahashi and Yamada, 1999), and
Rothia strains utilize L-lactate to produce pyruvate and hydrogen
peroxide (H2O2) (Lim et al., 2013). The present study also

indicated that antibiotic significantly increased the abundance
of Actinomyces and Rothia (Figure 4), and negatively correlated
with the concentration of lactate in the ileum (Figure 7A).
Thus, the reduced abundance of lactate-producing bacteria and
increased abundance of lactate-utilizing bacteria contributed
to the reduction of ileal lactate after antibiotic exposure.
Taken together, the decrease of lactate concentration after
antibiotics exposure suggests that early antibiotics exposure may
make the small intestine more vulnerable to some pathogenic
bacteria.

Early Antibiotics Exposure Markedly
Reduced SCFAs Concentrations in the
Cecum of the Suckling Piglets
Short-chain fatty acids are the main microbial fermentation
products in the gut especially in the large intestine. The cecum
is the major site of microbial fermentation of undigested
carbohydrate or protein in pigs, as the cecum had a greater
richness of bacteria (1010–1012) and a much longer retention time
of digesta (20–38 h) when compared with the ileum (105–109, 2–
6 h, respectively; Low and Zebrowska, 1989). In the present study,
antibiotics exposure markedly reduced SCFAs concentrations
in the cecum. SCFA can be absorbed by enterocyte. It has
been reported that orally administrated antibiotics affected the
permeability of small intestinal enterocytes and consequently
may affect nutrient absorption. However, until now, there was no
direct evidence that orally administrated antibiotics could affect
the absorption of SCFA by enterocyte of the large intestine. Our
recent study using transcriptomics of intestine tissues indicated
that the same antibiotics treatment altered the expression of
genes related to metabolic processes in the jejunum, but not in
ileum of piglets at 42 days (Yu K. F. et al., 2017). Thus, the
orally administrated antibiotics in this study may have little effect
on the SCFA absorption in the large intestine. On the other
hand, antibiotics-induced alteration of microbial composition
can change SCFA profile in the colon and feces (Mu et al., 2017b),
in consistent with the decrease in cecum in the present study. It is
possible that the antibiotic effect on the nutrient absorption in
the small intestine could change the nutrient flow to the large
intestine, and subsequently affect the microbiota in the large
intestine, leading to an alteration of SCFA profile. Therefore, the
decrease of SCFA in the cecum in the present study may be mainly
due to the alteration of microbial composition after the oral
administration of antibiotics. SCFA have many beneficial effects
on host health. Some inflammatory bowel disease patients had
lower levels of SCFAs in the feces compared to healthy individuals
(Huda-Faujan et al., 2010), suggesting an association between low
level of SCFA and unhealthy gut. Thus, the decrease of SCFA
concentration in the present study may suggest an unhealthy gut
environment after the antibiotics exposure.

However, the antibiotics exposure significantly increased
the concentrations of isobutyrate and isovalerate, the BCFA
(Figure 6B). Isobutyrate and isovalerate are only derived from the
deamination of valine and leucine, respectively, which are often
considered as indicators of amino acids catabolism in the gut
(Blachier et al., 2007). The increase of cecal BCFA in the present
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study may suggest a promotion of microbial protein fermentation
in the gut of suckling piglets after antibiotics exposure, which may
be not beneficial to the gut health.

Early Antibiotics Exposure Markedly
Increased Amines Concentrations in the
Ileum and Cecum of the Suckling Piglets
The antibiotics exposure markedly changes of amines profile
in the ileum and cecum (Figure 6C). Among the amines,
putrescine and cadaverine are the main amines, which are
formed from decarboxylation of ornithine and arginine, lysine,
respectively (Davila et al., 2013). The consistent increase of
putrescine and cadaverine concentrations in the ileum and cecum
after the antibiotics in the present study indicated an increased
precursor amino acid decarboxylation. Meanwhile, the increase
of putrescine-derived spermine and spermidine concentration in
the cecum further suggested an increased decarboxylation by the
bacteria in the gut. Our previous research also demonstrated an
antibiotics-induced increase in concentration of putrescine and
cadaverine in the cecum of weaning piglets (Mu et al., 2017b).
Amines may exert varying physiological effects on the host. For
example, some amines, such as tryptamine can stimulate the
secretion of serotonin by enterochromaffin cells and regulate
intestinal motility (Yano et al., 2015). Spermidine and spermine
have been shown to be essential for somatic cell growth (Davila
et al., 2013). On the other hand, high concentrations of amines
such as putrescine and cadaverine can exert adverse impact on
the host, inducing oxidative stress and DNA damage, and then
increase the tumorigenesis risk (Holmes et al., 2011), and can also
increase resistance of human pathogens (Neisseria gonorrhoeae)
to mediators of innate immune defense (Goytia and Shafer, 2010).
Additionally, above certain threshold levels in the gut, amines
may produce detrimental effects such as increasing the incidence
of diarrhea (Rist et al., 2013). Although whether the increase of
potentially harmful amines after antibiotic exposure affects the
gut health in suckling piglets still needs further research, our
findings suggest that the early antibiotics exposure altered gut
microbial composition and the function of this community likely
toward an unhealthy gut environment.

CONCLUSION

This study, using high-throughput sequencing the Miseq
platform and bioinformatics analyses, demonstrated that early

life antibiotics exposure altered the ileal and cecal microbial
composition and metabolic profiles of the suckling piglets,
likely toward an unhealthy gut environment by increasing
the abundance of opportunistic pathogens while reducing the
abundance of Lactobacillus. The antibiotics exposure markedly
reduced lactate concentration in the ileum and SCFAs in
the cecum, while increased the concentrations of microbial
metabolites derived from amino acid decarboxylation (BCFA,
putrescine, cadaverine, spermidine, and spermine). These
alterations may help us to understand the negative effects of
early antibiotics exposure on gut microbial composition and
metabolism of animals and humans. The findings provide
evidence that antibiotics use for growth enhancement of
livestock also brings additional gut microbiome health risks and
implications.
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