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Vitiligo is the most common depigmenting disorder characterized by white patches in the
skin. The pathogenetic origin of vitiligo revolves around autoimmune destruction of
melanocytes in which, for instance, oxidative stress is responsible for melanocyte
molecular, organelle dysfunction and melanocyte specific antigen exposure as well as
melanocyte cell death and thus serves as an important contributor for vitiligo progression.
In recent years, natural products have shown a wide range of pharmacological bioactivities
against many skin diseases, and this review focuses on the effects and mechanisms of
natural compounds against vitiligo models. It is showed that some natural compounds
such as flavonoids, phenols, glycosides and coumarins have a protective role in
melanocytes and thereby arrest the depigmentation, and, additionally, Nrf2/HO-1,
MAPK, JAK/STAT, cAMP/PKA, and Wnt/β-catenin signaling pathways were reported
to be implicated in these protective effects. This review discusses the great potential of
plant derived natural products as anti-vitiligo agents, as well as the future directions to
explore.
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INTRODUCTION

Pathogenesis of Vitiligo
Vitiligo is a chronic autoimmune destruction of melanocytes, leading to the pigment loss on the
surface of skin and mucosa and then the gradual expansion of decolorized skin plaque (Seneschal
et al., 2021). The severity of the disease affects about 1% of humans (Whitton et al., 2015). Clinically,
vitiligo is divided into segmental vitiligo (SV), non-segmental vitiligo (NSV) andmixed vitiligo (MV)
(Ezzedine et al., 2015). NSV is the most common type of vitiligo. Its clinical features are clear
boundary, reticular, different size, different distribution, depigmentation and milky white. SV is a
piece or several pieces, along the skin area dominated by a certain cutaneous ganglion segment,
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g-glutamylcystine ligase modulatory subunit; GCLC, g-glutamylcystine ligase catalytic subunit; Cyt-4, cytochrome c; ROS,
reactive oxygen species; TYR, tyrosinase; TRP-1, tyrosinase-related protein 1; TRP-2, tyrosinase-related protein 2; MITF,
microphthalmia-associated transcription factor; MAPK, mitogen-activated protein kinase; ERK, extracellular signal-regulated
kinase; JNK, c-Jun N-terminal kinase; cAMP, intracellular cyclic adenosine monophosphate; GSK-3β, glycogen synthase kinase
3β; cRE, cAMP-response element; cREB, cAMP-response element binding protein; PKA, protein kinase A; α-MSH, α me-
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generally unilateral, accounting for 5–16% of all vitiligo cases
(Speeckaert et al., 2020). MV includes the combination of SV and
then bilateral NSV plaque after a period of time (Ezzedine et al.,
2015). The debilitating nature of vitiligo leads to poor quality of
life and mental health (Patel et al., 2017). Dermal exposure to UV
light from depigmented skin increases the risk of skin irritation
and cancer (Ahluwalia et al., 2017).

The main theories of the pathogenesis of vitiligo are: 1)
oxidative stress theory, 2) autoimmune theory, 3) neural
theory and 4) biochemical theory. The autoimmune theory is
the most accepted one (Rodrigues et al., 2017). More than half of
the 40 susceptibility genes revealed by genome-wide analysis are
involved in immunoregulatory activities (Jin et al., 2016). Strong
evidence shows that oxidative stress is a key factor in the
occurrence and development of diseases (Denat et al., 2014).
Several endogenous and exogenous stimuli are related to the
occurrence of diseases. Endogenous factors include melanin
synthesis, proliferation, differentiation, cell metabolism,
immune response and apoptosis (Al-Shobaili and Rasheed
2015). Exogenous stimuli include exposure to the environment
(e.g., cytotoxic chemicals, trauma, UV exposure, monophenones
and other phenolics), other diseases (severe infections,
neurological disorders, malignancies, calcium imbalance), and
pharmaceutical applications (e.g., certain hormones, vaccination,
drugs) (Xie et al., 2016). These all induce oxidative stress in
melanocytes, which may be important in activating autoimmune
responses associated with vitiligo (Abdel-Malek et al., 2020; Chen
X. et al., 2019; Xie et al., 2016). The decrease of the level and
activity of antioxidant enzymes (such as catalase and glutathione
peroxidase) and the imbalance of Pro oxidation/anti oxidation
balance are also the reasons for the production and accumulation
of ROS (Wang Y. et al., 2019). Nrf2-ARE regulates cellular
protective genes related to oxidative stress (Jian et al., 2011).
In vitiligo melanocytes, Nrf2 has nuclear translocation and
decreased transcriptional activity, resulting in decreased HO-1
expression and abnormal redox balance (Jian et al., 2014). Due to
the deficiency of antioxidant function, melanocytes in vitiligo are
particularly sensitive to ROS accumulation, which leads to DNA
damage, protein oxidation/breakage, mitochondrial dysfunction,
endoplasmic reticulum abnormalities and lipid peroxidation
(Bickers and Athar 2006; Chen J. et al., 2021). Increased ROS
levels even modified tyrosinase (Tyr) and other melanin proteins
into new antigens (Rodrigues et al., 2017). Oxidative stress leads
to the accumulation of misfolded proteins in the lumen of the
endoplasmic reticulum (ER), which in turn activates the unfolded
protein response (UPR) to restore cellular homeostasis and
maintain cell survival. The disturbance of endoplasmic
reticulum Ca2+ triggered by oxidative stress may also induce
UPR and apoptosis (Carreras-Sureda et al., 2018). Under
continuous cell pressure, UPR promotes autoimmune response
through apoptosis cascade, and then activates CD8+ T cells to
produce adaptive immune response, and T cells release
interferon-γ (INF-γ), It binds to receptors on keratinocytes,
further releases and presents inflammatory cytokines such as
CXC-L16 and IL-15, and further recruits T cells to the skin
through a positive feedback loop (Bergqvist and Ezzedine 2021).
The recruitment of CD8+and T cells induced by cytokines and

chemokines ensure the final destruction of epidermal
melanocytes (Figure 1). After naive T cells are activated by
antigen-presenting cells, a small subset of these precursor cells
eventually develop into several subsets of memory T cells,
including effector memory T (TEM) cells, tissue resident
memory T (TRM) cells and central memory T (TCM) cells. TRM

play a major role in vitiligo recurrence (Chen and Shen 2020). In
the process, melanocytes, fibroblasts, innate lymphoid cells,
natural killer cells, and keratinocytes collectively contribute to
the pathogenesis of vitiligo (Seneschal et al., 2021).

Vitiligo Therapy
However, there is no clear treatment for local and systemic
vitiligo. The most widely used therapy is local steroid and
narrowband ultraviolet B monotherapy (Grimes and
Nashawati 2017), they are not effective in all patients and are
expensive, not easily accepted, and are associated with side effects
(Huo et al., 2014). Local corticosteroids, calcineurin inhibitors
and phototherapy are still the basis of treatment, and long-term
use of steroids can lead to decreased immunity (Whitton et al.,
2016). Among the numerous treatments currently available,
including medical, physical, or surgical approaches, each
modality has its disadvantages and side effects (Yamaguchi
et al., 2007).

In vivo and in vitro experiments, natural products have been
shown to promote melanin production and prevent melanin from
being destroyed in a network way. It mainly includes scavenging
free radicals (NOS) to alleviate the damage of melanocytes caused
by oxidative stress, activating melanogenesis related pathways,
increasing the expression of tyrosinase gene, reducing the
expression of chemokines and inflammatory cytokines,
preventing the migration of CD8 + T cells. This paper reviews
several natural drugs for the treatment of vitiligo. Among the
natural products that we screened, 16 compounds (such as
baicalein, quercetin, paeonol. etc) exert antioxidant effects to
protect melanocytes by scavenging free radicals, activating the
Nrf2/HO-1 pathway, while maintaining normal cell morphology,
slowing down apoptosis and preventing injury. Four compounds
(vitexin, baicalin, EGCG and berberine) achieved repigmentation
of vitiligo skin lesions via anti-inflammatory effects, the process of
which involved the activation of the JAK/STAT pathway as well
as the inhibition of autoimmunity caused by the migration of
immune cells such as CD8 + T. In mammals, there are three
major melanocyte specific enzymes catalyzing melanin
biosynthesis: tyrosinase (TYR), tyrosinase associated protein 1
(TRP-1) and TRP-2. TRP-1 and Trp-2 are downstream
functional proteins of TYR (Yin et al., 2018). Microphthalmia
associated transcription factor (MITF) is a transcription factor
important for melanogenesis genes (Hearing 1999). Previous
studies summarized three main pathways of melanin
biosynthesis regulated by tyrosinase: MAPK, cAMP/PKA,
Wnt/β - catenin signaling pathway, and reviewed the effects of
several natural products on melanin synthesis and tyrosinase
activity (Niu and Aisa 2017; Pillaiyar et al., 2017). Among the
compounds we screened, 37 compounds (such as quercetin,
afzelin, puerarin, geniposide, etc) promote melanocyte
generation through the above pathways (Figure 2).
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Flavonoids
Baicalein
Baicalein is a flavonoid extracted from the roots of Scutellaria
baicalensis Georgi that has been extensively applied in
Traditional Medicine in Asia (Figure 3A) (Kim et al., 2014). It
has been reported to have anti-cytotoxic, anti-inflammatory, and
anti-tumor effects (Huang et al., 2005; Hwang et al., 2005; Yarla
et al., 2016). In addition, the antioxidant effects of baicalein have
received special attention during the past decades, including
reducing the levels of reactive oxygen species (ROS) generated
by chemical agents (Chiu et al., 2010; Choi et al., 2016; Zhao et al.,
2018) or ultraviolet radiation (Wang et al., 2018). Baicalein has
strong antioxidant properties, partly because compounds
scavenge ROS by oxidative consumption of the three 5, 6, 7-
position OH–groups in its structure (de Oliveira et al., 2015), and
it form stable semiquinone radicals, which also underlie its
powerful antioxidant activity (Gao et al., 1999). The apoptosis
of PIG1 cells induced by H2O2may bemediated bymitochondrial
pathway. In the in vitro model of H2O2-induced oxidative stress
of PIG1, baicalein protected PIG1 cells from H2O2-induced
oxidative stress and apoptosis, maintained mitochondrial
membrane potential, released cytochrome c, and decreased the
Bax/Bcl-2 ratio. The mechanismmainly involves the activation of
mitochondrial dependent caspase and the regulation of
p38MAPK pathway. Baicalein at the concentration of 40 µM
had the strongest protective effect on melanocytes (Liu et al.,

2012). In human vitiligo melanocytes (PIG3V) induced by
hydrogen peroxide, baicalein increased the expression of Nrf2
and its downstream gene HO-1 in PIG3V cells, promoted the
translocation of Nrf2 from cytoplasm to nucleus, indicating that
the protective effect of baicalein on melanocytes depends on Nrf2
signaling pathway (Ma et al., 2018). Baicalein also has antioxidant
effect on keratinocytes (Wang et al., 2018), therefore, the
development of baicalein topical preparation for the treatment
of vitiligo may be a feasible method.

Quercetin
Quercetin is a kind of polyhydroxy flavonoid, which is chemically
named 3,3,4,5,7-pentahydroxyflavone (Figure 3B). It has high
content in apple, onion and green tea, and also exists inAsparagus
racemosusWilld., Ficus ingens (Miq.) Miq., Coriandrum sativum
L. and Capparis spinosa L. It is one of the most consumed
flavonoids in people’s daily diet (Alvarez-Arellano et al., 2020).
Quercetin has a variety of biological activities, such as antioxidant
and scavenging free radicals (Wang et al., 2021e), anti-cancer,
anti-aging (Zhu et al., 2015), anti-inflammatory (Rauf et al., 2018;
Cui et al., 2019) anti-virus and immune regulation (Zhu et al.,
2015; Alvarez-Arellano et al., 2020). It has a very important
clinical significance in the treatment of bacterial infection, viral
infection, hyperlipidemia and immune system diseases, especially
for those caused by increased oxidative stress Cell damage and
even mitochondrial dysfunction related diseases have potential

FIGURE 1 | Melanocyte pathophysiology in vitiligo.
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therapeutic effects. Quercetin treatment of cultured melanoma
cells or NHEM promote melanin synthesis and tyrosinase
activity. In cell experiment, treatment of HMVII cells with
quercetin at different doses (1, 5, 10, 20 μm) and for different
times (1, 3, 5, 7 days) resulted in a dose and time-dependent
increase in melanin content. The mechanism of action may be
reflected by the genomic mechanism of new messenger RNA and

protein synthesis (Nagata et al., 2004). Interestingly, the triple
combination of GT extract/quercetin/folic acid prevented H2O2-
induced cell damage in a synergistic manner, suggesting that
effective antioxidant combinations should be studied to combat
ROS types. Among them, quercetin and GT extract had strong
protective effect on H2O2 induced cell death, and 100 μm
quercetin had the most significant protective effect (Jeong

FIGURE 2 | Mechanism of natural products in the treatment of vitiligo.
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et al., 2005). Cuiping Guan et al. observed endoplasmic reticulum
expansion and configuration changes in cells treated with H2O2

and NaOH/H2O2. Quercetin alleviated the increase of ROS level
induced by H2O2, and weakened the inhibition of tyrosinase
expression by hydrogen peroxide. The mechanism may be to
prevent oxidative stress damage, and tyrosinase is effectively
exported from endoplasmic reticulum (Guan et al., 2015).
Different nanoparticles, such as transporter, solid lipid
nanoparticles, nanostructured lipid carriers, liposomes, nano
emulsions and polymer nanoparticles, maximize the ideal

properties and/or therapeutic activity of quercetin (Nasr and
Al-Karaki 2020), which provides a feasibility for the external
treatment of vitiligo with quercetin.

Kaempferol
Kaempferol (Figure 3C) is a kind of flavonoids, which mainly
comes from the rhizome of Kaempferia galanga L. (Liu Z. Q.
et al., 2021). It widely exists in all kinds of fruits, vegetables
and beverages, hazelnut, tea, propolis, broccoli and grapefruit
(Calderón-Montaño et al., 2011). Kaempferol can be used to

FIGURE 3 | Anti vitiligo flavonoids (A) Baicalein, (B)Quercetin, (C) Kaempferol, (D) Apigenin, (E)Galangin, (F) Naringenin, (G) Hesperetin, (H) Afzelin, (I) Fisetin, (J)
Puerarin, (K) Butin, (L) Liquiritin, (M) Liquiritigenin, (N) Vitexin, (O) Hyperoside, (P) Baicalin.
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combat cardiovascular disease, cancer outbreak, immune
dysfunction, diabetes, oxidative stress and other diseases
(Imran et al., 2019). Kaempferol has no obvious cytotoxic
effect on B16F10 cells at the concentration of 16–32 μm for
24 h (Wang et al., 2017). Kaliziri is an extract from
Baccharoides anthelmintica (L.) Moench, which has
showed relatively good therapeutic effects for vitiligo
(Maimaiti et al., 2017). Kaempferol is one of the main
active components of Baccharoides anthelmintica (L.)
Moench extract (Tuerxuntayi et al., 2014). After treatment
with 1, 5, 10 and 20 μm kaempferol for 7 days, melanin
content in hmvii cells increased significantly. It enhanced
tyrosinase activity in HMVII cells and mouse buccal hair
follicles by inducing tyrosinase protein expression
(Takekoshi et al., 2014). Based on the SDTNBI method
and experimental verification, kaempferol markedly
increased tyrosinase activity and melanin biosynthesis gene
expression in B16F10 cells, and effectively promoted melanin
synthesis (Wang et al., 2017).

Apigenin
Apigenin (4′, 5,7-trihydroxyflavone; (Figure 3D) natural plant
flavone, widely exists in common fruits and vegetables. It is
considered to be a flavonoid with biological activity (Liu et al.,
2017). Compared with other flavonoids, apigenin is relatively
non-toxic and non-mutagenic, and has significant effects on
normal cells and cancer cells (Patel et al., 2007). It has
demonstrated a variety of pharmacological effects, including
antidepressant (Li et al., 2015; Zhang X. et al., 2019), anti-
inflammatory, liver protection, antithrombotic, anticancer,
anti-aging (Lim et al., 2015), anti-oxidant (Wang J. et al.,
2020). Apigenin significantly increased the activities of
glutathione peroxidase (GSH PX), catalase (CAT) and
superoxide dismutase (SOD), in a dose-dependent manner,
and significantly inhibited the level of malondialdehyde
(MDA), a biomarker of oxidative stress, in a H2O2 induced
cell line PIG3V. Interestingly, apigenin markedly increased
protein expression levels of Nrf2 and its downstream NQO1
andHO-1 in a dose-dependent manner, but had no effect on Nrf2
knockout cells. The results showed that apigenin protects
melanocytes from oxidative damage dependent Nrf2 pathway
(Zhang et al., 2020). In the dopamine (DA)—induced melanocyte
model, 10 μm apigenin treatment significantly reduced ROS
aggregation, reduced Da induced melanocyte apoptosis, and
inhibited caspase-3 and PARP activities, which may be
involved in the anti-apoptotic effect of apigenin. The
mechanisms include inhibition of JNK, p38MAPK and Akt
(Lin M. et al., 2011). In vitro, HMVII cells were treated with
apigenin at 1, 5, 10 and 20 μm for 7 days, and the melanin content
increased significantly (Takekoshi et al., 2014). So far, there is
little evidence that apigenin promote adverse metabolic reactions
in vivo when ingesting nutrition related amounts (Shukla and
Gupta 2010; Takekoshi et al., 2014; Weng et al., 2016). Apigenin’s
local drug delivery system transports apigenin to local skin tissue
instead of penetrating into blood circulation (Li et al., 1996).
Therefore, apigenin may be a relatively safe method for the
treatment of vitiligo.

Galangin
Galangin (GA, 3,5,7-trihydroxyflavone; Figure 3E) is an
important natural active flavone, which is mainly extracted
from the roots of Alpinia officinarum Hance, it has long been
used as herbs and spices in South Africa and Asia (Yang et al.,
2018). GA has been reported to possess a variety of biological
activities, including antibacterial (Skiba et al., 2016), antiviral,
anti-inflammatory (Cushnie et al., 2007), anti-obesity (Ma et al.,
2019) and antioxidant (Sinha et al., 2014), it is reported that these
effects are exerted by regulating NF - κ B, Nrf2 and cAMP/CREB
signaling pathways (Yang C.-C. et al., 2020). 4.25 mg/kg GA
significantly increased the number of basal melanocytes and
melanoepidermal cells in shaving area of mice with
hydroquinone induced vitiligo, and promote the melanin hair
follicles to increase, the mechanism is to prevent oxidative stress
by reducing cholinesterase (CHE) activity and MDA content and
increase the expression of TYR protein. Malondialdehyde (MDA)
is the final product of lipid peroxidation, which is considered as a
specific indicator of oxidative stress (Huo et al., 2014). However,
GA metabolism is fast and its bioavailability is low. 90% of GA is
metabolized in 1 h and is metabolized in 2 h in hepatocytes.
Therefore, it is necessary to modify GA by methylation to slow
down its metabolism and improve its bioavailability (Fang et al.,
2019).

Naringenin and Hesperetin
Naringenin (Figure 2F) and hesperetin (Figure 3G) are two main
flavonoids identified from Citrus × limon (L.) Osbeck extract
(Singh et al., 2020). The flavonoids in sweet orange peel include
flavonoid glycosides, flavones and flavonols, among which
flavanones exist in the form of glycosides (hesperidin and
naringenin) or aglycones (hesperidin and naringenin) (Ramful
et al., 2010). Citrus flavonoids have many biological activities,
such as anti-tumor, anti-oxidation and anti-inflammatory (Salehi
et al., 2019). It was found that flavonoids from navel orange peel
extract had antioxidant activity (Long et al., 2021). Citrus
products stimulate cell melanin production and tyrosinase
expression, thereby preventing skin damage caused by
ultraviolet light (Chiang et al., 2011). Huang et al. (2012) used
20 μg/ml citrus extract for melanin synthesis experiment. Citrus
are rich in hesperidin, neohesperidin or naringin, and acid
hydrolytic extracts of these three species of Citrus promote
melanin synthesis. In this experiment, 50 μm hesperetin
increased the expression of β-catenin, induced the rapid
phosphorylation of p38MAPK, ERK and Akt, and activated
the downstream transcription factor CREB phosphorylation in
less than 1 h. Hesperidin stimulates melanogenesis by activating
CREB and MAPKs in Wnt/β-catenin pathway (Huang et al.,
2012). Naringenin enhanced tyrosinase activity of B16 mouse
melanocytes in a time-dependent manner and increased melanin
content in a concentration dependent manner, reaching the
maximum at 100 μM. The mechanism included increasing the
expression level of melanin producing enzyme (TYRP1 and
DCT) and MITF (Ohguchi et al., 2006). Another study also
confirmed that naringenin up-regulated tyrosinase activity of
B16-F10 cells in a concentration dependent manner.
Naringenin up regulated the expression of MITF by increasing
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the expression of β-catenin and the phosphorylation of Akt or
GSK3, and then increased the activity of tyrosinase, so as to
improve the melanin synthesis of B16-F10 cells, rather than
through cAMP pathway (Huang et al., 2011). These results
suggest that hesperetin induced melanogenesis in cell models
may contribute to the development of topical beauty agents.

Afzelin
Afzelin (3-O-α-L-rhamnopyranoside; Figure 3H) is a flavonoid
isolated from Thesium chinense Turcz. and widely distributed
in Korea and China (Li G.-H. et al., 2021). Previous studies have
shown that afzelin has antibacterial, anticancer and anti-
inflammatory effects (Satthakarn et al., 2015). Afzelin
markedly alleviated ultraviolet induced oxidative stress in
human skin, damage of mitochondrial membrane potential
and mitochondrial permeability (Shin et al., 2013). Afzelin
showed strong anti-oxidant activity in DPPH radical
scavenging experiment (Kim et al., 2008). Many studies have
shown that afzelin could effectively treat skin diseases (Lee
et al., 2014). In the experiment of melanogenesis induced by
afzelin in human epidermal melanocytes, 100 μm afzelin
increased the protein levels of TRP-1 and TYR by up
regulating MITF, but did not increase the protein levels of
TRP-2. The mechanism is p38MAPK phosphorylation, which
up regulates MITF, and is independent of cAMP/PKA pathway
(Jung et al., 2016).

Fisetin
Fisetin (3,30,40,7-tetrahydroxyflavone; Figure 3I) is a dietary
flavone, which exists in a variety of vegetables and fruits,
including apples, strawberries, grapes, cucumbers and onions
(Khan et al., 2018). Studies have found that fisetin has anti
allergic, anti-arthritis and neuroprotective effects (Ahmad
et al., 2017; Ahmad et al., 2019). New data also showed that
fisetin had anti-cancer activity (Jie et al., 2015; Khan andMukhtar
2015; Ding et al., 2020). In particular, it has recently been found
that it inhibited inflammation and antioxidant stress (Silva et al.,
2007; Ahmad et al., 2019). Interestingly, fisetin has a two-way
regulatory effect on melanin production. Takekoshi et al. first
reported that fisetin could promote Tyr activity and melanin
content of human melanoma cells (Takekoshi et al., 2014).
However, Shon et al. found that fisetin inhibited the melanin
content in and out of mouse B16F10 melanoma cells mediated by
α - MSH(Shon et al., 2016). A recent study found that the
difference of dual effects of fisetin was related to its
concentration, because high concentration of fisetin inhibited
the synthesis of melanin in zebrafish larvae (400 μm) and B16F10
melanoma cells (40 μm). When the concentration of fisetin
exceeded 25 μm, the inhibitory activity increased slightly, and
200 μ m had the highest inhibitory rate on mushroom tyrosinase
activity in vitro. Surprisingly, 5 μm fisetin slightly increased the
content of spontaneous melanin and extracellular melanin, fisetin
(at 20 μm)markedly increased the content and release of melanin
in B16F10 cells by up regulating the expression of TYR andMITF,
and promoted the melanin synthesis of zebrafish larvae. The
mechanism is that fistein inhibits GSK-3 β, which activates β -
Catenin, which leads to melanogenesis by activating MITF and

tyrosinase (Molagoda et al., 2020). Therefore, low dose of fisetin
may be an effective drug in the treatment of vitiligo.

Puerarin
Puerarin (7,40-dihydroxyisoflavone-8b-glucopyranoside;
Figure 3J) is an isoflavonoid derivative isolated from the root
of the traditional Chinese medicine Pueraria lobata (Willd.)
Ohwi (Zhang 2019). Puerarin exhibits a wide range of
antioxidant activities in cardiovascular diseases, diabetes,
obesity, osteoporosis, and other diseases (Xu et al., 2021;
Chang et al., 2021; Liu Y. et al., 2021; Xiao et al., 2020). In
addition, puerarin has anti-inflammatory, anti-viral and other
pharmacological activities (Wang Z.-K. et al., 2020; Wang H. X.
et al., 2021). Puerarin exhibited obvious pharmacological
activities against vitiligo in vitro and in vivo. Park et al. found
that puerarin could increase the melanin content of melanocytes
in vitro, and topical application could improve the melanin
content of mouse skin tissue, the mechanism is via activation
of the cAMP pathway, followed by elevation of MITF, tyrosinase,
Trp-2, and Bcl-2 to increase melanocyte survival and melanin
content (Park et al., 2014). In the 4-benzyloxyphenol-induced
vitiligo mouse model, after one week of Puerarin Treatment, HE
staining of the skin at the depigmented sites showed increased
hair follicles, which were surrounded by a large number of
melanocytes. Puerarin at 40 μmol/L significantly increased the
melanin content of human melanocytes by decreasing the
phosphorylation of ERK in the cells to promote TRP-1 and
MITF expression, which led to an increase in melanin content
(Ding et al., 2019).

Butin
Butin (7, 30, 40-trihydroxydihydroflavone, BUT; (Figure 3K)
flavonoid with antioxidant activity, isolated from Alpinia
officinarum Hance, Dalbergia odorifera T.C.Chen (Duan et al.,
2017). BUT exhibited a wide range of pharmacological activities
for the treatment of aging, diabetes, liver diseases, and cancer
(Zhang et al., 2011). In the hydroquinone-induced vitiligo mouse
model, (4.25, 42.5 mg/kg) butin increased the melanin content in
the skin lesions by increasing the expression of Tyr and TRP-1
protein, reducing the serum cholinesterase activity and
malondialdehyde content. Besides, BUT promoted the
proliferation of basal melanocytes (Huo et al., 2017). A recent
study found that butin induced melanin production both in vivo
and in vitro when the concentration was 40 μmol/L, while
tyrosinase activity peaked. Meanwhile, in a H2O2-induced
zebrafish model, butin reduced the levels of reactive oxygen
species in vivo (Lai et al., 2021).

Liquiritin and Liquiritigenin
Liquiritigenin (LQ; Figure 3L) and liquiritigenin (LQG;
Figure 3M) are flavonoids extracted from Glycyrrhiza
uralensis Fisch. ex DC. (Du et al., 2021; Mou et al., 2021).
They have many biological activities, such as antiviral, anti-
inflammatory, anti-oxidation, anti-tumor and so on (Pastorino
et al., 2018). LQ and LQG were used to treat mouse melanoma
B16-F1 cells and human melanoma hmvii cells with different
doses for 72 h. The results showed that both natural drugs
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significantly increased the content of melanin in melanocytes in a
dose-dependent manner, and had no effect on cell viability.
Interestingly, both LQ and LQG could significantly up regulate
tyrosinase activity and the expression of MITF and its
downstream TRP-1 and Trp-2. Further studies have found
that 50 μm LQ and LQG trigger melanin synthesis through
p38 phosphorylation and activation of PKA/CREB signaling
pathway (Uto et al., 2019).

Vitexin
Vitexin (apigenin-8-C-β-D-glucopyranoside; Figure 3N) is a
natural flavonoid present in various medicinal plants such as:
Crataegus L., Vigna Savi, Passiflora cristalina Vanderpl. & Zappi,
Mimosa L., bamboo, etc (He et al., 2016). It has many
pharmacological activities, anti-inflammatory, antiviral,
anticancer, antihypertensive (Ding et al., 2021; Chen Y. et al.,
2021). At the same time, Vitexin is an antioxidant (Ożarowski
and Karpiński 2020). In H2O2-induced human melanocyte PIG1,
Vitexin inhibited hydrogen peroxide induced apoptosis and
promoted cell proliferation by activating the MAPK-Nrf2/ARE
pathway, including decreasing IL-1β. The expression of IL-17A,
Bax, caspase-3 and ROS, up-regulated the expression of p53, Bcl-
2, Nrf2, HO-1, NQO-1, SOD (Li et al., 2020).

Hyperoside
Hyperoside (quercetin-3-O-galactoside, Hyp; Figure 3O) belongs
to flavonol glycosides isolated from Rhododendron brachycarpum
D. Don ex g. don, Abelmoschus manihot (L.) Medik.
Rhododendron L.(Zhou et al., 2021). Studies have shown that
Hyp possesses antioxidant, anticancer, antifibrotic, antiallergic,
anti-inflammatory and other pharmacological activities (Huang
et al., 2020). Hyperoside markly increased the proliferation of
melanocytes in a dose - and time-dependent manner in vitro. In
the H2O2-induced melanocyte model, Hyp protected
melanocytes from oxidative damage by regulating the PI3K/
Akt pathway, inhibiting p38 phosphorylation and suppressing
mitochondrial apoptotic signaling, which included upregulation
of the Bcl-2/Bax ratio and expression of Akt, and downregulation
of caspase 3, p38 (Yang et al., 2016).

Baicalin
Baicalin (7-glucuronic acid-5,6-dihydroxy-flavone, BA;
Figure 3P) is a kind of small molecular flavonoids extracted
from Scutellaria baicalensis Georgi (Fan et al., 2021). BA has a
variety of pharmacological activities, such as antioxidant stress,
regulation of immunity, regulation of lipid metabolism disorders,
anti-inflammatory and improve cell apoptosis (Xin et al., 2020).
Recent studies have found that baicalin mediates antioxidant
stress by activating Nrf2 signaling pathway (Wang X. et al., 2021).
In the 40% monobenzone cream-induced vitiligo model, BA
intraperitoneal injection inhibited the infiltration of leukocytes
and CD8 + T cells in vitiligo lesions, increased the tyrosinase
activity in the lesion area, reduced the expression of chemokine
CXCL10 and its receptor CXCR3, and reduced the expression of
inflammatory factors in serum samples, including IL-6 and TNF-
α, IFN- γ And IL-13 (Zhu et al., 2019). The results of this study
are obviously exciting. The infiltration of active CD8 + T cells

occurs around the lesions of vitiligo, which is an important reason
for the immune destruction of melanocytes (Wu et al., 2013). In
vivo experiments, BA could inhibit the infiltration of immune
T cells, remove inflammatory factors to slow down the
appearance of leukoplakia, and reduce the area of decolorized
spots. So it is a potential drug for the treatment of vitiligo.

Polyphenol
Epigallocatechin-3-Gallate
Epigallocatechin-3-gallate (EGCG, Figure 4A) belongs to
catechin polyphenols and is one of the main bioactive
substances in Camellia sinensis (L.) Kuntze (Huang et al.,
2021). It has many pharmacological effects, including anti-
inflammatory, anti-atherosclerotic and anti-cancer effects
(Mereles and Hunstein 2011), it’s also an antioxidant
(Kalaiselvi et al., 2013). Katiyar et al. suggested that EGCG
could be a topical preparation to resist UVB-induced ROS-
related inflammatory skin diseases, photocarcinogenesis and
photoaging (Katiyar et al., 1999). In a model of
monobenzone-stimulated vitiligo in mice, EGCG delayed
the time to depigmentation, the area of depigmentation
and reduced the incidence of hyperpigmentation in the
dorsal skin of mice. The underlying mechanism was the
inhibition of CD8 + T cell migration and inflammatory
cytokine expression. Meanwhile, EGCG decreased the
expression of IFN-γ, TNF-α, and IL-6 in serum. 5%EGCG
cream is the optimal concentration for the treatment of
vitiligo (Zhu et al., 2014). IFN - γ, which plays a key role
in vitiligo pathogenesis, feedback through crosstalk to
promote CD8 + T cell recruitment to the skin (Harris
et al., 2012). High levels of CXC chemokines induced by
IFN - γ such as CXCL9, CXCL10 and CXCL11 were also
found in patient serum, being the most highly expressed
genes in the transcriptional profile of skin lesions from
vitiligo patients (Rashighi et al., 2014). Excitingly, EGCG
inhibited IFN - γ - induced phosphorylation activation of
JAK2, STAT1 and STAT3 in human melanocytes and
significantly suppressed the levels of ICAM-1, CXCL10
and MCP-1 in a dose-dependent manner. In primary
cultured human melanocytes. EGCG reduced the
expression of CXCR3, CCR2, and CD11a in purified CD8
+ T cells derived from the CD4 + T leukemia cell line Jurkat
and peripheral blood monoclonal cells (PBMCs) in a dose-
dependent character (Ning et al., 2015).

Cannabidiol
Cannabinediol (CBD; (Figure 4B) non-psychoactive compound
extracted fromCannabis sativa L., is an open pyran ring analogue.
CBD has anti-inflammatory, antioxidant and anti-apoptotic
effects (Iuvone et al., 2009). In addition, it has
immunomodulatory properties (Mechoulam and Hanus 2002).
In recent years, it has attracted great attention due to its potential
in the treatment of various pathological diseases, including skin
and cosmetic diseases (Baswan et al., 2020). CBD increaseed
melanin content by binding to CB1 receptor of human epidermal
melanocytes. The mechanism is to up regulate the expression of
MITF by activating p42/44MAPK and p38MAPK signaling
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pathways, and then promote melanogenesis (Hwang et al., 2017).
The safety of CBD transdermal drug delivery system is also under
development (Paudel et al., 2010).

1,5-Dicaffeoylquinic Acid
1,5-dicaffeoylquinic acid (1,5-dicQA; Figure 4C) is a natural
polyphenol widely found in Baccharoides anthelmintica (L.)
Moench and Helianthus annuus L. (Cheevarungnapakul et al.,
2019; Dogra et al., 2020). 1, 5-diCQA has a wide range of
pharmacological effects, such as antioxidant, neuroprotective,
antifibrotic and other biological activities (Cao et al., 2010).
Plant seeds containing 1, 5-diCQA are used in traditional
medicine to treat vitiligo (Tuerxuntayi et al., 2014). A
previous study found that 1,5-dicqa exerts antioxidant
activity through reducing intracellular ROS level and Nrf2
dependent pathway (Cao et al., 2010). 1, 5-diCQA inhibited
Aβ42-induced neurotoxicity by activating PI3K/Akt, decreasing
GSK3 β level and regulating Bcl-2/Bax ratio (Xiao et al., 2011).
B16 cells treated with 0, 5, 50 or 100 μM1, 5-dicQA significantly
up-regulated the transcription levels of MITF, TYR, TRP1 and
TRP2 in a dose-dependent manner without cytotoxicity. The
mechanism is to activate p38 MAPK, ERK MAPK and PKA
signaling pathway to promote the melanin synthesis of B16

cells. In conclusion, these studies suggest that 1,5-dicQAmay be
an effective drug for the treatment of hypopigmented skin
diseases (Mamat et al., 2018).

3,5-diCQA
3,5-caffeoylquinic acid (3,5-diCQA; Figure 4D) is a polyphenolic
compound extracted from the root of Cichorium intybus L.
(Legrand et al., 2016), it also accumulated in Achillea
millefolium L. and Artemisia dracunculus L. 3,5-diCQA has
high free radical scavenging activity (Bernard et al., 2020).
Phenolic compounds are beneficial to human health, especially
their anti-inflammatory and antioxidant properties (Miguel et al.,
2020). Plant polyphenols help the skin resist the damage caused
by sunlight (Perez-Sanchez et al., 2016). 3,5-diCQA increased the
content of melanin in melanocytes in a dose-dependent manner,
the possible mechanism is that 3,5-diCQA promoted the
phosphorylation of Akt and GSK-3 β, leading to the
accumulation of β - Catenin in the cytoplasm. Subsequently, β
- Catenin transferred to the nucleus and bound to LEF, which
increased the protein expression of downstream MITF, TYR,
TRP1 and TRP2. Therefore, 3,5-diCQA may restore skin
pigmentation under the loss of antioxidant enzymes or
melanocyte dysfunction (Mamat et al., 2017).

FIGURE 4 | Phenolic compounds against vitiligo (A) EGCG, (B) Cannabidiol, (C) 1,5-dicQA, (D) 3,5-diCQA, (E) 3,5-diCQM, (F)Maclurin, (G) Rosmarinic acid, (H)
Paeonol, (I) 6-Shogaol, (J) Morin.
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3,5-diCQM
3,5-dicaffeoylquinic acids (3,5-diCQM; Figure 4E) is a sort of
natural phenolic acids condensed from quinic acid and
caffeic acid by esterification. It is widely found in plants
such as Gloriosa superba L., Inula helenium L., Xanthium
strumarium subsp. strumarium, Crataegus azarolus L. and
other fruit trees (Bernard et al., 2020). Caffeoylquinic acid
derivatives have been used in traditional medicine in the east
to treat a variety of diseases and show a diversity of
pharmacological effects, such as liver protection (Basnet
et al., 1996), anti-microbial (Zhu et al., 2004), anti-
inflammatory (Góngora et al., 2002). In addition, the
antioxidant activity of caffeoylquinic acid derivatives has
been reported (Lin Y.-L. et al., 2011; Jang and Koh 2019).
In the experiment of B16F10 melanoma cells treated with
0–50 μm 3, 5-dicCQM, the results showed that 3,5-diCQM
could induce pigmentation. 3,5-diCQM drives melanogenesis
in a dose-dependent manner, and the molecular mechanism
underlying its ability to induce pigmentation is through
activation of the p38 signaling pathway, phosphorylation
and activation of CREB, and a cAMP/PKA dependent
signaling pathway, which in turn upregulates the
transcription factor MITF, thereby activating tyrosinase
activity (Kim et al., 2015).

Maclurin
Maclurin [(3,4-dihydroxyphenyl) -(2,4,6-trihydroxyphenyl;
Figure 4F) methanone] is a natural phenolic compound that
belongs to the benzophenone family and is found in Morus
alba L., Garcinia mangostana L. Previous studies have found
that maclurin has pharmacological activities such as anticancer,
antioxidant and anti-skin aging (Lee 2018; Lee et al., 2018; Mi
Moon et al., 2019). The content of melanin in melanocytes was
increased by maclurin in a dose-dependent manner, by a
mechanism involving the activation of the cAMP/PKA/CREB
signaling pathway, which in turn increased tyrosinase, MITF
and their downstream TRP-1 and Trp-2 protein content, while
also involving the activation of p38 MAPK and p44/42 MAPK
pathways. In vitro, maclurin significantly attenuated UVB induced
ROS production, inhibited hydrogen peroxide induced reduction
of melanin and decreased cell survival (Hwang et al., 2019).

Rosmarinic Acid
Rosmarinic acid (a-o-caffeoyl-3,4-dihydroxyphenyl lacticacid;
Figure 4G) is a natural phenolic compound, which exists in
many Labiatae plants, such as Perilla L., Rosmarinus officinalis L.,
Prunella vulgaris L. (Zhang et al., 2021). Rosmarinic acid has anti-
inflammatory, anti-oxidation, anti-cancer and other
pharmacological activities (Wang L. et al., 2019; Zhang et al.,
2021). Incubation of 50 μm rosmarinic acid with B16 melanoma
cells for 48 h resulted in a significant increase in melanin content
and tyrosinase protein expression, the mechanism being that
rosmarinic acid induces melanin synthesis by activating the PKA/
CREB signaling pathway via phosphorylation (Shomirzoeva et al.,
2019). Recently, ultradeformable liposomes (UL) have been
developed by scientific researchers, which greatly increased the
skin permeation ability of rosmarinic acid by UL containing oleic

acid, exhibiting potential as a formulation for development for
external use (Subongkot et al., 2021).

Paeonol
Paeonol (Pae; 2′-hydroxy-4-methoxyacetophenone; Figure 4H)
is a natural phenolic compound extracted from the Paeonia ×
suffruticosaAndrews (Miao et al., 2021). Paeonol has been used in
traditional Chinese medicine as an anti-inflammatory and
antipyretic drug with cardiovascular, anti-inflammatory,
neuroprotective, antitumour and other pharmacological
activities (Zhang L. et al., 2019; Tsai et al., 2020). Paeonol
alleviated UVB-induced skin photoaging by activating Nrf2
and the antioxidant response element (Sun et al., 2018).
Paeonol exhibits anti-inflammatory, anti-allergic activity in
animal models of atopic dermatitis and psoriasis (Meng et al.,
2017; Meng et al., 2019). In H2O2-induced PIG1 oxidative stress
model of normal human epidermal melanocytes, paeonol
inhibited hydrogen peroxide induced decrease in cell viability
in a dose-dependent manner. 20 μM paeonol increased the
enzymatic activities of SOD, CAT, GSH-Px and the expression
of HO-1, NQO1, and SOD2 by activating the Nrf2 signaling
pathway, but paeonol was unable to affect melanogenesis in PIG1
cells and acted only as a protective agent (Guo and Zhang 2021).

6-Shogaol
6-shogaol (Figure 4I), a natural phenolic compound, is the major
active ingredient in Zingiber officinale Roscoe. Studies have found
that 6-shogao possesses antiemetic, anti-inflammatory,
antioxidant, and anticancer activities, as well as cardiovascular
and neuroprotective effects (Kou et al., 2018; Chen et al., 2020;
Yadav and Jang 2020). Jin et al. found that 6-shogaol exerts cellular
antioxidant activity bymediating Nrf2 signaling through activation
of the JNK pathway (Kim and Jang 2016). Feng et al. found that 6-
shogaol inhibited UVB induced inflammation and oxidative stress
in keratinocytes (Chen F. et al., 2019). Pretreatment of HEMn-MPs
with 5 µM 6-shogaol for 6 h protected melanocytes from
rhododendrol-induced cytotoxicity and maintained their
original cell viability. In the oxidative stress-induced HEMn-
MPs model, cells pretreated with 6-shogao maintained the
initial cellular morphology, and 6-shogao significantly
attenuated H2O2 induced oxidative stress and death and
melanogenesis inhibition in melanocytes (Yang L. et al., 2020).

Morin
Morin (2′,3,4′,5,7-pentahydroxyflavone; Figure 4J) is a natural
polyphenol found in onion, fig, guava leaves, apple and other
Moraceae families such as Psidium guajava L., Maclura pomifera
(Raf.) C.K.Schneid., as well as the medicinal plant Alpinia
officinarum Hance (Lotito and Frei 2006). Studies have found
that Morin has antitumor, antihypertensive, antioxidant, anti-
inflammatory, antidiabetic, neuroprotective, antibacterial and
other pharmacological effects (Caselli et al., 2016; Heeba et al.,
2021). 50 μM Morin significantly upregulated the expression of
MITF, as well as its downstream TRP-1 and Trp-2 to increase
melanin production in B16F10 mouse melanoma cells, and the
mechanisms include the activation of ERK and p38 signaling
pathways via the phosphorylated MAPK pathway (Shin et al.,
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2021). Excitingly, long-term doses of oral Morin did not exhibit
any toxicity (Cho et al., 2006).

GLYCOSIDES

Geniposide
Geniposide (GP; Figure 5A) (C17H24O10) is a sort of iridoid
glycoside extracted from Gardenia jasminoides J. Ellis fruits,
which widely exists in nearly 40 species of plants in various
families, especially Rubiaceae (Shan et al., 2017). In terms of
biological activity, GP has been found to have a variety of
pharmacological effects, such as anti-diabetes (Zhang et al.,
2016), neuroprotective (Zhao et al., 2017), anti-inflammatory,
antioxidant, etc (Zhou et al., 2019). GP is also an important
component in many traditional Chinese herbal medicines for the
treatment of vitiligo, such as Eucommia ulmoides Oliv. and
Rehmannia glutinosa (Gaertn.) DC. (Zhou et al., 2019). In
HEMn or HEKn models induced by norepinephrine (NE), GP
significantly abolished the inhibitory effect of NE on HEMn
melanogenesis in the presence of recombinant SCF. The
binding of NE to α 1-adrenoceptor in melanocytes decreased
cAMP level, resulting in decreased intracellular calcium uptake
associated with c-kit production. The mechanism of GP
promoting melanogenesis was through activating GLP-1R/c-kit
receptor signal to enhance the expression of c-kit receptor, so as
to eliminate the depigmentation caused by norepinephrine
(Wen-Jun et al., 2008). In the melanocytes induced by H2O2,

GP increased the activities of SOD and CAT, reduced the
accumulation of ROS, thus increased the antioxidant capacity
of melanocytes and inhibited melanocyte apoptosis by
upregulating the Bcl-2/Bax ratio, while increasing cell viability.
This process involves activation of PI3K/Akt signaling pathway
(Zhou et al., 2019).

Cyanidin-3-o-β-Glucopyranoside
Cyanidin-3-o-β-glucopyranoside (C-3-G; Figure 5B) is a kind of
anthocyanin flavonoids widely found in vegetables and fruits.
ChineseMyrica cerifera L. is a rich source of C-3-G, which is one
of the most common anthocyanins (Sun et al., 2013).
Anthocyanins are beneficial to human body. Known
pharmacological actions include anti-inflammatory, anti-
fatigue, anti-oxidation, anti-tumor and so on (Cui et al., 2018).
In addition to the ability to significantly reduce ROS mediated
oxidative damage, C-3-G inhibited UVA induced damage to
primary human dermal fibroblasts (HDFS) by inducing
autophagy (Wu et al., 2019). In one study, TVM-A12 human
melanoma cells were incubated with 5 μm C-3-G, and the cells
return to the differentiation state from the proliferation state. In
addition, two human melanoma cell lines A-375 and M14 also
obtained dendritic phenotypes after C-3-G treatment. At the
concentration used, the cells treated with C-3-G showed no
apoptosis or necrosis. At the same time, C-3-G significantly
up-regulated the expression of tyrosinase, thereby inducing the
content of melanin in TVM-A12 cells, which was mediated by up
regulating cAMP pathway. It is particularly encouraging that the

FIGURE 5 | Glycosides against vitiligo (A) Geniposide, (B) C-3-G, (C) THSG, (D) Glycyrrhizin, (E) Paeoniflorin, (F) Madecassoside.
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active concentration of C-3-G is comparable to food intake (range
of μm) and has no toxicity. (Serafino et al., 2004).

2, 3, 5, 49-Tetrahydroxystilbene-
2-O-β-D-Glucoside
2, 3, 5, 4′-tetrahydroxystilbene-2-O-β-D-glucoside (THSG;
Figure 5C) is a water-soluble active ingredient in Reynoutria
multiflora (Thunb.) Moldenke (He et al., 2015). Numerous
studies have found that THSG exerts antioxidant effects by
protecting cells from oxidative damage caused by H2O2

through increasing SOD activity, reducing MDA content, and
inhibiting ROS production (Yang et al., 2014; Wu et al., 2020). In
hairless skin model, the extract of Reynoutria multiflora could up
regulate SOD in a dose-dependent manner, thereby reducing
UVB-induced oxidative damage, suggesting that the extract of
Reynoutria multiflora contains anti skin photoaging agent
(Hwang et al., 2006). At the first time, it was proved to be an
effective tyramine Acid enzyme activators and melanogenesis
stimulants (Guan et al., 2008). THSG increased tyrosinase activity
in a dose-dependent manner at concentrations ranging from 1 to
10 μg/ml (Jiang et al., 2009). Guan et al. (2008) reached a similar
conclusion. The mechanism was that THSG directly activated AC
or inhibited PDE, increased cAMP level in cytoplasm, and

mediated the activation of MITF/CREB. P38MAPK had a
regulatory effect on melanin formation and the induced
expression of tyrosinase and MITF in B16 cells induced by
THSG (Jiang et al., 2009).

Glycyrrhizin
Glycyrrhizin (GLC; (Figure 5D) natural triterpene saponin, is one of
the major chemical components extracted from Glycyrrhiza Tourn.
ex L. and has been widely used in Asia, Europe, the Middle East (Cai
et al., 2017). Studies have shown that GLC has antiallergic,
immunomodulatory, antiulcer, anticancer, antioxidant, and
antiviral effects (Wang G. et al., 2021). Jung et al. were the first to
find that GLC inducedmelanin production in B16melanoma cells in
a dose-dependent manner by upregulating the tyrosinase and Trp-2
genes (Jung et al., 2001). Li et al. also verified this conclusion. Further
studies revealed that GLC increases melanin production in
melanocytes by three pathways, 1) activating activator protein-1
(AP-1) and CRE promoter to activate p42/44 MAPK signaling, 2)
activating cAMP signaling, and 3) decreasing GSK3β
phosphorylation while inducing CREB phosphorylation (Lee et al.,
2005). Pretreatment with 1mM GLC significantly inhibited H2O2-
induced melanocyte apoptosis, and GR protected melanocytes from
oxidative stress by reducing ROS production in cells via activation of
the Nrf2/HO-1 pathway (Mou et al., 2019). Clinical study

FIGURE 6 | Coumarins against vitiligo (A) Psoralidin, (B) Isofraxidin, (C) Scopoletin, (D) 7-isopentenyloxycoumarin.

FIGURE 7 | Coumarins against vitiligo (A) Sesamin, (B) Cubebin, (C) Berberine, (D) Vitamin D.
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TABLE 1 | Summary of natural products for the treatment of vitiligo in models.

Natural compounds
name

Models Range of
dosage

Targets/pathway/process/
mechanism

References

Flavonoids Baicalein H2O2-induced PIG3V (human cell) 50 µM Cell vitality and proliferation, Nrf2,
HO-1, SOD2, NQO1, ERK1/2,
PI3K/AKT

Ma et al. (2018)

H2O2-induced PIG1 (human cell) 10, 20, and 40 µM Cell viability, ROS, Bax, Bcl-2,
caspase-3, β-actin, COX4, Cyt-4,
p38 MAPK, ERK

Liu et al. (2012)

Quercetin H2O2-induced epidermal melanocytes
(human cell)

25 µM TYRe, Cell viability, ROS
production, β-actin

Guan et al. (2015)

Kaempferol HMVII (human cell) 1, 5, 10 and 20 µM TYR activity, melanin content Takekoshi et al.
(2014)

B16F10 8, 16, 32 μM Viability, melanin melanin
contents, Synthesis, TYR activity,
MC1R, MITF, TYRP1, DCT

Wang et al.
(2017)

Apigenin H2O2-induced PIG3V (human cell) 1, 5, 10 and 20 μM Cell viability, SOD, CAT, GSH-PX,
MDA, Nrf2, HO-1, NQO1, β-actin

Zhang et al.
(2020)

Dopamine-induced melanocytes (human
cell)

0.3–10 μM Cell viability, ROS, JNK,
p38MAPK, Akt, caspase-3,
PARP

Lin et al. (2011a)

Galangin Male C57BL/6 (mice) 0.425 mg/kg,
4.25 m g/kg

Melanocytes, TYR activity, CHE
activity, MDA

Huo et al. (2014)

Naringenin B16 melanocytes 4A5 (mice cell) 0, 10, 25, 50, 100,
200 μM

Tyrp1, Dct, MITF, ERK, PI3K,
GSK-3β, β-actin

Ohguchi et al.
(2006)

B16-F10 (mice cell) 3–50 μM Cell viability, melanin content,
TYR, MITF, β-catenin,
GSK-3β, Akt

Huang et al.
(2011)

Hesperetin B16-F10 (mice cell) 3, 10, 30, 50 μM Cell viability, melanin content,
TYR, MITF, β-catenin, p38
MAPK, GSK-3β, p38MAPK,
ERK, Akt, CREB

Huang et al.
(2012)

Afzelin Epidermal melanocytes (human cell) 0, 10, 50, 100 μM TYR activity, Cell viability, MITF,
TRP-1, TRP-2, p42/44MAPK,
p38MAPK, JNK, CREB

Jung et al. (2016)

Fisetin B16F10 (mice cell), zebrafish model 5, 20 µM MITF, TYR, cell viability, melanin
Content

Molagoda et al.
(2020)

Puerarin Melan-a cell, zebrafish model, MITFvit/vit
mice

50 µM MITF-M, Bcl-2, TRP-2, TYR,
cAMP, melanin content cell
viability, melanin content, TYR,
TRP-1, MITF, GAPDH, ERK1/2,
p38, JNK

Park et al. (2014)

40% monobenzone cream-induced emale
C57BL/6 (mice), melanocytes from
foreskins (human cell)

1, 5, 10, 20,
40 μmol/L

Ding et al. (2019)

Butin Hydroquinone-induced mice 0.425, 4.25,
42.5 mg/kg

TYR, Trp-1, CHE, MDA Huo et al. (2017)

B16 cell, H2O2-induced zebrafish 1, 10, 100 µM ROS, melanin Content, TYR Lai et al. (2021)
Liquiritin B16-F1 (mice cell), HMVII (human cell) 12.5, 25, 50 µM Cell viability, melanin Content,

TYR, TRP-1, TRP-2, p38, CREB,
MITF, GAPDH

Uto et al. (2019)

Liquiritigenin B16-F1 (mice cell), HMVII (human cell) 12.5, 25, 50 µM Cell viability, melanin Content,
TYR, TRP-1, TRP-2, p38, CREB,
MITF, GAPDH

Uto et al. (2019)

Vitexin H2O2-induced PIG1 10, 20, 30, 40 µM Cells viability, IL-1β, IL-17A, Nrf2,
HO-1, NQO-1, SOD, cyt-C, ERK,
ROS, p53, Bax, Bcl-2, β-actin,
caspase-3

Li et al. (2020)

Hyperoside H2O2-induced epidermal melanocytes
(human cell)

2, 10, 50 µg/ml Cell viability, melanin amount,
Bcl-2, Bax, caspase 3, GAPDH,
AKT, p38

Yang et al. (2016)

Baicalin 40% monobenzone-induced C57BL/6
(mice)

20 mg/ml CD8+T, CXCL10, CXCR3, IL-6,
TNF-α, IFN-γ, IL-13

Zhu et al. (2019)

Polyphenol EGCG IFN-γ-induced (human cell), CD8+T 0, 10, 20, 40 µM ICAM-1, CXCL10, and MCP-1,
JAK2/STATs, CD11a, CXCR3,
CCR2

Ning et al. (2015)

Female C57BL/6 (mice) 2%, 5% and 10%
EGCG cream

CD8+ T cells, TNF-α, IFN-γ, and
IL-6, CXCl3, CXCL5, CXCR4,
S100B, TGFBR2, c-fos, Rab27A,
EGFR, PI3K

Zhu et al. (2014)

(Continued on following page)
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TABLE 1 | (Continued) Summary of natural products for the treatment of vitiligo in models.

Natural compounds
name

Models Range of
dosage

Targets/pathway/process/
mechanism

References

Cannabidiol Epidermal melanocytes (human cell) 1, 3, 6 µM MITF, TYR, TRP-1, TRP-2,
p38MAPK, p42/44 MAPK, TYR
activity, cell viability

Hwang et al.
(2017)

1,5-dicQA B16 (mice cell) 0–400 µM Tyr activity, MITF, TYR, TRP-1,
TRP-2, ERK, JNK, p38, PKA

Mamat et al.
(2018)

3,5-diCQA B16 (mice cell) 0–200 µM TYR activity, TYR, TRP1, TRP2,
MITF, β-catenin

Mamat et al.
(2017)

3,5-diCQM B16F10 (mice cell) 0–50 µM TYR activity, melanin content,
TRP-1, TRP-2, MITF, cAMP,
ERK, p38MAPK, JNK, AKT

Kim et al. (2015)

Maclurin H2O2-induced epidermal melanocytes
(human cell)

1, 10, 50 µM TRP-1, TRP-2, MITF, tyrosinase,
cAMP, PKA, CREB, p38 MAPK,
p44/42 MAPK, PKA

Hwang et al.
(2019)

Rosmarinic acid B16 (mice cell) 1, 10, 50, 100 µM Melanin content, CREB,
p38mapk, Akt, tyrosinase

Lee et al. (2007)

Paeonol H2O2-induced PIG1 (human cell) 5, 10, 20, 40 µM Cell viability, TYR, TRP-1, MITF,
CAT, HO-1, NQO1, SOD2, Nrf2,
GAPDH, SOD, GSH-Px

Guo and Zhang
(2021)

6-Shogaol H2O2-induced HEMn-MPs (human cell) 5 µM Cell viability, MITF, HO-1, NQO1,
Nrf2, GAPDH

Yang et al.
(2020b)

Morin B16F10 (mice cell) 25, 50, 100, 250,
500 μM

MITF, TRP-1, TRP-2, GAPDH,
ERK, p38

Shin et al. (2021)

Glycosides Geniposide NE-induced HEMn (human cell) 0–100 µM TYR activity, melanin, c-kit
receptor, SCF ligand

Wen-Jun et al.
(2008)

H2O2-induced primary melanocytes (human
cell)

ROS, SOD, CAT, Akt, Bcl-2, Bax,
caspase 3, caspase 9, β-actin

Lu et al. (2018)

C-3-G TVM-A12,M14,A-375 (human cell) 5, 10 μM Cell viability, proliferation, NF-68
kDa, NF-160 kDa, NF-200 kDa,
Melan-A/MART-1

Serafino et al.
(2004)

THSG B16F1 (mice cell) 1–10 μg/ml Melanin amount, TYR activity,
MITF, ERK, p38 MAPK, JNK,
cAMP

Jiang et al. (2009)

B16 (mice cell) 0.1–25 μg/ml TYR activity, melanin content Guan et al. (2008)
Glycyrrhizin B16 (mice cell) 0.2, 0.5, 1.0,

1.5 mM
Cell viability, melanin amount,
AP-1, CREB, p42/44 MAPK,
cAMP, GSK-3β, MITF

Lee et al. (2005)

H2O2-induced NHEM (human cell) 1 mM Cell viability, ROS, β-actin, Nrf2,
HO-1, GAPDH, NQO-1, GCLC,
GCLM

Mou et al. (2019)

Paeoniflorin Epidermal melanocytes (human cell), 40%
monobenzone-inducedC57BL/6 (mice)

0, 5, 10 μg/ml,
60 mg/kg in 20%
propanediol

Cell vitality and proliferation,
melanin amount, TRP-1, MITF,
TYR, ERK, CREB, GAPDH cell
viability, ROS, SOD, CAT, Nrf2,
NQO1, HO-1

Hu et al. (2020a)

H2O2-induced PIG1, PIG3V (human cell) 50–400 µM Yuan et al. (2020)

Cistanche deserticola
polysaccharide

H2O2-induced B16F10 (mice cell) and
epidermal melanocytes (human cell),
zebrafish

20,40,80 μg/ml Cell viability, melanin amount,
TYR, ROS, MITF, TRP1, TRP2,
RAB2 7A, FSCN1, GAPDH, ERK,
JNK, p38, ROS, Nrf2, HO-1

Hu et al. (2020b)

Madecassoside H2O2-induced B16F10 (mice cell), HEM
(human cell), zebrafish

20, 40, 80 µg/ml Cell viability, melanin amount,
TYR, MITF, TRP1, TRP2, RAB2
7A, FSCN1, GAPDH, ERK, JNK,
p38, ROS, Nrf2, HO-1, MAPK

Ling et al. (2017)

Coumarin Psoralidin In silico (no cell) 0.125, 0.25, 0.5,
1 g/ml

TYR, a rate-limiting enzyme of
melanogenesis

Shi et al. (2018)

isofraxidin B16F10 (mice cell), zebrafish 12.5, 25 µM Melanocytes, TYR activity,
melanin, MIFT, TRP-1

Yim et al. (2017a)

Scopoletin B16F10 (mice cell) 0–50 μM TYR activity, melanin content,
TYR, MITF, CREB, β-actin,
melanin content, TYR activity,
melanin content, Cell
viability, ROS

Ahn et al. (2014),
Heriniaina et al.
(2018)

B16F10 (mice cell), zebrafish 10–25 μmol/L

7-Isopentenyloxycoumarin Melan-a (mice cell) 1, 10, 20, 40 µM Cells viability, melanin content,
tyrosinase, TRP-1, TRP-2, and
MITF

Fiorito et al.
(2018)

(Continued on following page)
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observations suggest that treatment with oral GLC in combination
with UVB improves active generalized vitiligo (Mou et al., 2016).

Paeoniflorin
Paeoniflorin (C23H28O11, PF; (Figure 5E) monoterpene glycoside,
is a major active ingredient isolated from the roots of Paeonia
veitchii Lynch orPaeonia lactifloraPall., which has been applied for
1,200 years in China (Li J. et al., 2021). In vivo and in vitro,
paeoniflorin has a wide range of pharmacological activities,
including anti-inflammatory, antioxidant, immunomodulatory,
analgesic, anticonvulsant, antithrombotic, neuroprotective,
cardioprotective, hepatoprotective, antitumor and antidepressant
effects (Zhou Y.-X. et al., 2020). In the 40%monobenzone-induced
vitiligo mouse model, the number of hair follicles and melanin
content in the skin of paeoniflorin treated for 10 days were
significantly higher than those of the model group. In vitro,
10 μg/ml paeoniflorin can stimulate the synthesis of melanin,
and its mechanism is to increase the protein level of MITF and
its downstream TRP-1 by promoting the phosphorylation of ERK
and CREB (Hu M. et al., 2020). Interestingly, PF protected H2O2-
induced PIG1 and PIG3V cells from oxidative stress by activating
JNK/Nrf2/HO-1 signaling pathway, including decreased ROS level
and increased SOD, CAT, Nrf2 and HO-1 expression. PF at a
concentration of 50 μM, the cell viability was significantly
increased (Yuan et al., 2020).

Cistanche deserticola Polysaccharide
Cistanche deserticola polysaccharide (CDP) is the main active
component isolated from Cistanche deserticola Ma. It is widely
used in anti-virus and anti-tumor in North Africa, Arab and
Asian countries (Gu et al., 2016). In addition, CDP also has the
pharmacological activities of liver injury protection, lipid
balance, anti-aging, regulating immune function and
antioxidant (Liu et al., 2018). CDP promoted the formation
of melanin in vivo and in vitro. CDP promoted melanogenesis
by activating MAPK signaling pathway and up regulating the
expression of MITF and its downstream genes Tyr, TRP1 and
Trp2, including increasing the phosphorylation levels of p38,
JNK and ERK proteins. In vivo, CDP promotes melanin
production in zebrafish. Notably, CDP protected HEM and

B16F10 cells from oxidative stress induced by H2O2 and
significantly inhibited apoptosis induced by oxidative stress
(Hu Y. et al., 2020).

Madecassoside
Madecassoside (MADE; (Figure 5F) natural triterpenoid
saponin, is isolated from Centella asiatica (L.) Urb (Zhou
J. et al., 2020). Studies have found that asiatic acid has a wide
range of pharmacological activities, such as anti-apoptotic, anti-
inflammatory, and anti-oxidative (Peng et al., 2020). In the H2O2-
induced oxidative stress model, MADE reduced the shrinkage of
dendrites of melanocytes affected by oxidative stress in a dose-
dependent manner, maintained cell morphology, improved
mitochondrial swelling, and exerted antioxidant activity by
increasing autophagy by upregulating the levels of LC3-II and
LC3-I in melanocytes. Therefore, MADE is a promising natural
product against vitiligo (Ling et al., 2017).

Coumarin
Psoralidin
Psoralidin (PL; Figure 6A), a natural coumarin isolated from
Cullen corylifolium (L.) Medik. seeds, is structurally similar to
coumestrol (Cao et al., 2019). It also exists naturally in various
plants, such as lemon, lime and parsnip divaricata. PL is beneficial
to diabetic complications, oxidative stress, obesity, osteoporosis,
apoptosis, autophagy and cell proliferation (Sharifi-Rad et al.,
2020). PL is used in the traditional Uyghur medicinal materials
for color restoration (Wang et al., 2014; Niu et al., 2016; Pei et al.,
2016), and several psoralen compounds, such as 8-MOP and 5-
MOP, isolated from the same plant (Zang et al., 2019), are used in
ultraviolet color restoration therapy (Dincer Rota et al., 2021). In
vitro experiments showed that PL could improve the activity of
tyrosinase (Shi et al., 2018). A recent clinical controlled study
found that treatment of vitiligo lesions with psoralen in
combination with NBUVB had higher efficacy compared with
NBUVB alone, and there were no serious complications
(Zabolinejad et al., 2020). The mechanism may provide an
antioxidant effect by regulating the PI3K/Akt signaling
pathway, affecting the downstream GSK3 β/β - Catenin, and
the Nrf2/HO-1 axis (Zhai et al., 2018).

TABLE 1 | (Continued) Summary of natural products for the treatment of vitiligo in models.

Natural compounds
name

Models Range of
dosage

Targets/pathway/process/
mechanism

References

Other
compounds

Sesamin B16F1 (mice cell) 5, 10, 20 µM Melanin amount, TYR activity,
TYR, CREB, MITF, p38MAPK,
PKA, cAMP

Heriniaina et al.
(2018)

Cubebin B16 (mice cell) 0–20 µM Melanin amount, cell proliferation,
TYR activity, p38 MAPK, ERK1/2,
p70 S6K1

Hirata et al.
(2007)

Berberine H2O2-induced PIG1 (human cell) 0.1, 1.0, 5.0 μM Cells viability, Bax, Bcl-2, PARP,
HO-1, NQO1, SOD, Nrf2, Mitf,
TYR, TYRP1, DCT, IL-6, IL-8,
p65, ROS

Jiang et al. (2019)

Vitamin D H2O2-induced PIG1, PIG3V (human cell) 1 nM Cells viability, SOD, ROS,
β-catenin, CDH3, GSK3β, Nrf2,
MITF, caspase3, MDA,
GAPDH, HO-1

Tang et al. (2018)
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Isofraxidin
Isofraxidin (Figure 6B) is a natural coumarin isolated from
Artemisia capillaris Thunb. (Yim et al., 2017b). Isofraxidin
related derivatives have been found to have anti-inflammatory,
antioxidant, neuroprotective and other biological activities (Lau
et al., 2019; Majnooni et al., 2020). Yim et al. emphasized that
isofraxidin may be a new type of pigmentation agent. At the dose
of 12.5 μm and 25 μm, zebrafish treated with isofraxidin showed
higher melanin synthesis and tyrosinase activity in vivo
experiments. In vitro, 25 μm isofraxidin significantly increased
the melanin content in B16F10 cells by up regulating MITF and
tyrosinase gene expression (Yim et al., 2017a).

Scopoletin
Scopoletin (SP; Figure 6C) is a phenolic coumarin isolated from
Evolvulus alsinoides (L.) L., which has many pharmacological
effects (Zhang F. et al., 2019). It has been isolated from
Gramineae, Liliaceae, Musaceae, Compositae, Convolvulaceae
and Leguminosae (Tal and Robeson 1986; Gnonlonfin et al.,
2011). SP has been reported to have anti-inflammatory effect
(Chaingam et al., 2020) and antioxidant effect (Usman et al.,
2020), When B16F10 melanoma cells were treated with 0–50 μm
SP, it was found that SP to induce melanin synthesis in a dose-
dependent manner by increasing the expression of MITF and
tyrosinase via increasing CREB phosphorylation (Ahn et al.,
2014). When zebrafish embryos were exposed to the
compound for 2 days, the increase of pigment was detected. In
vitro, SP at concentrations of 0–50 μmol/L enhanced
melanogenesis in vivo and in vitro by increasing melanin
content and Tyr and MITF expression (Heriniaina et al., 2018).

7-Isopentenyloxycoumarin
7-isopentenoxycoumarin (Figure 6D), a natural
pentenoxyumbelliferone derivative widely found in Rutaceae
and umbelliferaceae, is a floral extract of Amaranthus
retroflexus L., which is used as a food product in southern and
central Italy (Fiorito et al., 2017). Studies have shown that 7-
isopentenyloxycoumarins have antifungal, antioxidant,
anticancer, neuroprotective, and anti-inflammatory properties
(Preziuso et al., 2020). Fiorito et al. found that 7-
isopentenoxycoumarin significantly induced melanogenesis at
a dose of 40 μm, with the highest induction of melanin at
72 h, and excitingly the induction was 6-fold greater than that
of the control group, and the mechanism of action was to increase
melanogenesis by elevating MITF and its downstream genes
tyrosinases, TRP-1 and Trp-2. Interestingly, 7-
isopentenoxycoumarin interacted with the ERβ (ER-β) Binding
may also be involved in melanin biosynthesis, as this receptor
antagonist inhibited melanogenesis (Fiorito et al., 2018).

OTHER COMPOUNDS

Sesamin
Sesamin (Figure 7A), a kind of lignan found in oil and
Sesamum indicum L. seed, has been found to have a
variety of biological activities and is beneficial to human

body (Udomruk et al., 2020). The high antioxidant activity
of sesamin has been reported (Pathak et al., 2014). In
addition, its anti-nociceptive and anti-inflammatory
activity was also reported (Jeng et al., 2005; Monteiro
et al., 2014). It increased the content of tocotrienoll in the
skin, so as to reduce sunburn and tumor incidence rate
(Yamada et al., 2008), reduced the skin erythema caused
by UVB, improved skin inflammation, protected skin from
wrinkle formation and light damage (Lin et al., 2019). In the
concentration range of 1–10 μM, sesamin increased melanin
production in a dose-dependent manner. The mechanism is
that sesamin up regulated CREB gene by activating cAMP/
PKA signaling pathway, then up regulated the expression of
tyrosinase and MITF, and finally induced melanin synthesis
(Jiang et al., 2011). The currently developed transdermal drug
delivery system will successfully transform lignin into an
external preparation for the treatment of vitiligo in the future
(Nguyen et al., 2015).

Cubebin
Cubebin (Figure 7B) is a compound extracted from the seeds of Piper
cubeba L. f. (Godoy de Lima et al., 2018). It exhibits various
pharmacological activities, such as trypanosomiasis, anti-
Mycobacterium (Silva et al., 2007), analgesic, anti-inflammatory
(Souza et al., 2004) and vasodilator (Somani et al., 2017). In vitro,
cubebin showed a concentration time-dependent melanogenesis
activity in B16 cells. The mechanism is to promote melanin
synthesis by increasing the phosphorylation level of p38 MAPK,
which in turn increases the expression of MITF and tyrosinase
(Hirata et al., 2007).

Berberine
Berberine (BBR, (Figure 7C) natural isoquinoline alkaloid, is a
major compound isolated from the Chinese herb Coptis chinensis
Franch. (Wang et al., 2021d), and studies have found that BBR
has pharmacological activities against cancer, hypolipidemic,
cardiovascular, anti-inflammatory, and antioxidant stress
(Zhao et al., 2021). Wei et al. studied the potential
medicinal value of berberine in vitiligo. At 0.1–5.0 μM BBR
induced melanocyte proliferation in a time-dependent
manner. At the same time, BBR inhibited the oxidative
damage induced by H2O2 by down regulating the activities
of CAT and SOD and reducing the accumulation of ROS in
PIG1 cells, 5 μM BBR inhibited the cleavage of PARP and the
apoptosis of melanocytes induced by H2O2 by down
regulating the ratio of Bax/Bcl-2. The antioxidant effect of
BBR depends on Nrf2-ARE pathway, and the process involves
up regulation of HO-1, SOD and NQO-1 protein expression,
and the protective effect is obviously reduced after Nrf2 gene
is knocked out. In addition, BBR enhanced the expression of
MITF in melanocytes induced by oxidative stress, thereby
increasing the production of melanin. Finally, BBR inhibited
H2O2-induced upstream NF-κB activation and expression of
IL-6 and IL-8 (Jiang et al., 2019). BBR could protect
melanocytes from oxidative stress through anti-oxidation
and anti-inflammatory. It is a potential natural drug
against vitiligo.
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Vitamin D
Vitamin D (1,25-dihy-droxyvitamin D3, Figure 7D) is a
cyclopentane phenanthrene compound, which is an essential
vitamin for human body, it mainly comes from daily meat
(Dominguez et al., 2021). Vitamin D has been used in
autoimmune diseases, cancer and osteoporosis (Sintov et al.,
2014). Vitamin D deficiency leads to the excessive production of
ROS inmitochondria and damages the antioxidant system (Latham
et al., 2021). Previous studies have confirmed that vitamin D
compounds regulate the proliferation, differentiation, migration
and apoptosis of melanocytes and affect T-cell mediated peripheral
immune response (Birlea et al., 2008; Kawakami et al., 2014). In
H2O2-induced oxidative stress models in PIG1 and PIG3V cells,
vitamin D activated WNT/β-Catenin signaling pathway exerted
antioxidant activity, the mechanism included the promotion of
GSK3β inactivation, increased β-catenin nuclear translocation and
activation of the downstream Nrf2/ARE pathway. In addition,
vitamin D passed through up regulation of MITF in a β-catenin
pathway dependent manner promoted melanocyte proliferation
and protected melanocytes from H2O2-induced apoptosis by
suppressing caspase3 expression (Tang et al., 2018).

CONCLUSION AND PROSPECTIVE

In traditional medicine, there are many traditional herbal
medicines (Kwon et al., 2018; Xu et al., 2017; Moreira et al.,
2012) for the treatment of pigment deficiency. Their extracts
significantly improved the activity of tyrosinase (Xu et al.,
2017). However, their specific components and mechanism
of action are still unclear. Vitiligo is an autoimmune skin
disease in which melanocytes are destroyed by autoreactive
CD8+ T cells, resulting in cutaneous leukoplakia.
Depigmented mouse skin lesions with autoimmune
features were fitted to a monobenzone-induced vitiligo
model (Zhu et al., 2013). Unfortunately, among all natural
drugs mentioned in this review, only four natural products
(such as Vitexin, baicalin, EGCG and berberine) currently
exhibit anti depigmenting pharmacological activity in this
model. We mentioned earlier that oxidative stress may be a
driver of autoimmune destruction and that intense and
persistent oxidative stress leads to apoptosis, damage, and
antigen exposure of melanocytes, which in turn trigger
autoimmune destruction. Therefore, recently, researchers
have paid more attention to the mechanism of action of
natural products against oxidative stress in melanocytes.
Some natural drugs (such as baicalein, Vitexin, maclurin,
etc.) inhibited the damaging effects of H2O2-induced
oxidative stress on melanocytes, even counterstaining
depigmented mouse skin lesions. Therefore, it is
reasonable to speculate that some of these members
contribute to protection against autoimmune destruction.
37 natural products can elevate melanin expression by
elevating tyrosinase activity in an in vitro melanocyte
model in vivo, but their contribution to intervening in
autoimmune destruction is similarly unknown. The above
mentioned vitiligo models are all inducible and cannot fully

replicate the disease characteristics of human vitiligo, thus
increasing the difficulty of developing new drugs. Genetically
edited mice have not been widely promoted (Riding et al.,
2019). Several natural drugs have been reported for their use
in the clinic. For example: observations from clinical studies
have shown that oral Glycyrrhizin Combined with UVB
therapy improves active systemic vitiligo, but also exposes
minor side effects (Mou et al., 2016). In clinical studies, the
overall recolor rate of PUVA (psoralen plus UVA) was only
44% (Bishnoi and Parsad 2018). However, due to the lack of
large clinical research, they still have a long way to go before
they can be promoted as anti-vitiligo agents (Maleš et al.,
2019). A systematic review study showed that vitiligo does
not generally produce benefi cial outcomes with the use of
topical antioxidants, but the added effect of oral intake
cannot be ignored (Speeckaert et al., 2018). Developing
new natural products against autoimmune destruction will
be a hotspot in the future and also provide a new direction to
elucidate the pathogenesis of vitiligo. Vitiligo treatment
serves two purposes: 1) Controlling vitiligo disease
progression during the active phase and 2) increasing
melanocyte production during the stationary phase. We
propose the hypothesis that in the future natural drugs
with anti-oxidant and anti-autoimmune properties are
used in vitiligo progression phase and natural drugs with
improved tyrosinase activity are used in stability phase.

In conclusion, strong evidence that natural products can
prevent or treat vitiligo is still lacking. Appropriately designed
clinical trials are needed to further understand the efficacy of
natural products against vitiligo. As an auxiliary means of
phototherapy, plant derived compounds with antioxidant
properties are becoming an attractive choice for the treatment
of vitiligo (Dell’Anna et al., 2007). Natural products (NPs)
extracted from plants show the effect of increasing the
expression of melanin, and have less side effects on human
body, which is of great significance for us to continue to
develop natural drugs (Yin et al., 2017).
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