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Abstract: Carbapenemase-producing Klebsiella pneumoniae (CPKP) emerged in Greece in 2002 and
became endemic thereafter. Driven by a notable variability in the phenotypic testing results for
carbapenemase production in K. pneumoniae isolates from the intensive care units (ICUs) of our
hospital, we performed a study to assess the molecular epidemiology of CPKP isolated between 2016
and 2019 using pulse-field gel electrophoresis (PFGE) including isolates recovered from 165 single
patients. We investigated the molecular relatedness among strains recovered from rectal surveillance
cultures and from respective subsequent infections due to CPKP in the same individual (48 /165 cases).
For the optimal interpretation of our findings, we carried out a systematic review regarding the
clonality of CPKP isolated from clinical samples in ICUs in Europe. In our study, we identified
128 distinguishable pulsotypes and 17 clusters that indicated extended dissemination of CPKP within
the hospital ICU setting throughout the study period. Among the clinical isolates, 122 harbored KPC
genes (74%), 2 harbored KPC+NDM (1.2%), 38 harbored NDM (23%), 1 harbored NDM+OXA-48
(0.6%), 1 harbored NDM+VIM (0.6%) and 1 harbored the VIM (0.6%) gene. Multiple CPKP strains in
our hospital have achieved sustained transmission. The polyclonal endemicity of CPKP presents a
further threat for the selection of pathogens resistant to last-resort antimicrobial agents.

Keywords: Kiebsiella pneumoniae; carbapenemases; NDM; KPC; VIM; OXA-48; molecular epidemiology;
PFGE

1. Introduction

In recent years, hospital-acquired infections caused by carbapenem-resistant Gram
negative bacteria, especially carbapenem-resistant Klebsiella pneumoniae (CRKP), have been
observed worldwide causing important public health problems and posing serious infec-
tion control issues. CRKP are opportunistic pathogens that cause infections with high
morbidity and mortality mainly in hospitalized patients [1,2]. In Europe, the burden of
CRKP predominantly affects the south and the east. According to the annual report of the
European Centre for Disease Prevention and Control on antimicrobial resistance in Europe,
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66.3% of the reported invasive K. pneumoniae isolates in Greece during 2020 were resistant
to carbapenems.

Relatively high carbapenem resistance rates were also observed in Romania (48%),
Italy (29%) and Bulgaria (28%), while, in the majority of the EU countries, this proportion
was below 10% [3]. High carbapenem resistance trends were also observed in other non-EU
neighboring countries: Bosnia, Herzegovina, Georgia, the Russian Federation, Serbia and
Turkey reported proportions between 25% and 50% whereas, Belarus, the Republic of
Moldova and the Ukraine reported proportions exceeding 50% [4].

The most common mechanism of carbapenem resistance among Enterobacterales and,
thus, K. pneumoniae is the production of carbapenemases. Carbapenemases are 3-lactamases
able to hydrolyze all 3-lactams, including carbapenems, and are categorized into several
types. The carbapenemases most commonly encountered in Greece belong in three classes:
class A K. pneumoniae carbapenemase (KPC), class B Verona imipenemase (VIM) and New
Delhi metallo-f3-lactamase (NDM) and class D oxacillinase-48 (OXA-48) [5].

Carbapenemase-producing K. pneumoniae (CPKP) emerged in Greece in 2002; they
were of VIM-type, were involved in various outbreaks and soon became endemic in many
hospitals all over the country. VIM-type carbapenemase-producers often belonged to
different clones with ST147 being the predominant multi-locus sequence type (MLST) [6].
In 2007, KPC-producing K. pneumoniae isolates were introduced in Greek hospitals and
rapidly dominated [7].

Greek KPC-CPKP mostly belonged to the worldwide successful hyperepidemic clone
ST258, often associated with multi-drug resistant (MDR) phenotype [8]. The emergence
of NDM in CPKP strains in Greece took place in 2011; the majority of them belonged
to ST11 and were involved in oligoclonal outbreaks or sporadic cases [9]. OXA-48 type
carbapenemases are the most prevalent class D enzymes identified in CPKP strains. The
first OXA-48 was detected in Athens, Greece in 2012 and belonged to ST11 [10].

Carbapenemase-encoding genes spread fast via horizontal gene transfer together
with other resistance determinants within the K. pneumoniae species in hospital settings,
thus, dramatically restricting the available treatment options [11]. Moreover, the local
epidemiology and the limited availability for isolation of affected patients in separate
rooms in Greek hospitals undermine the efforts for effective infection control strategies.

K. pneumoniae is characterized by a high variety of antimicrobial resistance genes as
well as a wide ecological distribution. Thus, in addition to its significance as a nosocomial
pathogen (especially the hypervirulent phenotype), K. pneumoniae is considered as one of
the most important bacterial species contributing in the dissemination of antimicrobial
resistance genes to other human pathogens [12].

K. pneumoniae has the ability to colonize various mucosal surfaces, including the upper
respiratory and the gastrointestinal gut. Among hospitalized patients, colonization rates in
the nasopharynx are up to 19%, while it can reach as high as 77% in the gastrointestinal
tract. Gut colonization often precedes and serves as a reservoir for transmission to other
body sites resulting in the development of subsequent infections [13]. The duration of gut
colonization with multi-drug resistant (MDR) bacteria, such as carbapenem-resistant K.
pneumoniae varies from 43 to 387 days [14].

Driven by a notable variability in the phenotypic testing results for carbapenemase
production and the types of carbapenemases present in K. pneumoniae isolates in our
hospital, we performed a study to assess the molecular epidemiology of CPKP isolated
between 2016 and 2019. Additionally, we investigated the molecular relatedness among
strains recovered by rectal surveillance cultures and by respective subsequent infections
due to CPKP in the same individual. In order to put our findings in context, we also
performed a systematic review regarding the clonality of CPKP isolated from clinical
samples originating in intensive care units (ICUs) in Europe.
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2. Results
2.1. Carbapenemase Detection

During the study period (January 2016-June 2019) 165 single-patient clinical CRKP
were analyzed; the isolates were recovered from 115 patients hospitalized in ICU 1, 6 pa-
tients in ICU 2 and 44 patients in ICU 3. Clinical samples included blood (1 = 36), central
venous catheters (n = 27), bronchial secretions (1 = 51), urine (n = 20), pus (n = 13), wound
swabs (n = 12), pleural fluid (n = 1), peritoneal fluid (1 = 2), nasal swab (1 = 1) and
cerebrospinal fluid (n = 2).

Phenotypic and molecular testing revealed that all CRKP isolates harbored at least one
carbapenemase often combined with ESBL activity. Among the clinical isolates, 122 har-
bored the KPC gene (73.95%), 2 KPC + NDM (1.21%), 38 NDM (23.04%), 1 NDM + OXA-48
(0.60%), 1 NDM + VIM (0.60%) and 1 VIM (0.60%).

2.2. Pulse-Field Gel Electrophoresis

All the 165 clinical CRKP isolates were typeable by pulse-field gel electrophoresis
(PFGE) following digestion by restriction enzyme Xbal, revealing 128 distinguishable
pulsotypes (P1-P128; Figure 1).

At a similarity level of 80% or above, the majority of CPKP isolates (95.6%, 158/165)
were assigned into 17 clusters (A-Q), demonstrating multiclonal dissemination. The remain-
ing seven genomes resulted to be unrelated and were consequently classified as sporadic
isolates. KPC as well as NDM genetic determinants demonstrated polyclonal dissemination
being present in 14 and 11 distinct clones, respectively.

In more detail, four predominant clusters E, G, K, and M consisting of 31, 19, 16 and 41
CRKP isolates, respectively, were identified: isolates of cluster G were almost exclusively
obtained from ICU 1 (18 of 19), while clusters E, K, M consisted of clinical isolates from all
ICUs under study. Interestingly, within the above clusters, indistinguishable pulsotypes
shared by isolates from different patients and different ICUs were identified. Furthermore,
looking at indistinguishable pulsotypes, we could identify common pulsotypes among
isolates obtained from different patients during different time periods of the study (P5, P27,
P48 and P106).

We also used PFGE analysis for revealing the genetic association among CRKP
strains from rectal and clinical samples of 48 representative patients. According to PFGE,
in the majority of the cases (81.3%, 39 of 48), the clinical and rectal strains from the
same patients were identical (Figure 2). Different pulsotypes were observed for pairs
PAT_1422a/b, PAT_1386a/b, PAT_854a/b, PAT_476a/b, PAT_326a/b, PAT_1529a/b,
PAT_735a/b, PAT_191a/b and PAT_1216a/b.

Six clinical-rectal surveillance pairs presented different PCR results (PAT_1017a/b,
PAT_1436a/b, PAT_1529a/b, PAT_1569a/b, PAT_191a/b and PAT_326a/b). Among them,
PAT_1017a/b, PAT_1529a/b, PAT_191a/b and PAT_326a/b showed also different PFGE
profiles. Overall, different pulsotypes were observed for pairs PAT_1422a/b, PAT_1386a/b,
PAT_854a/b, PAT_476a/b, PAT_1529a/b, PAT_735a/b, PAT_191a/b and PAT_1216a/b
even though the PCR results were identical among the clinical and the rectal samples.
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. ISOLATE Iy DATE SOURCE PCR RESULT PULSOTYPE
L] 4 H I F 3 F L] i

PAT 1483 1cut 1812/2017 BRS KPC P1

PAT_1438a 1cu3 021172017 PUS NDM ]

PAT_1458a 1cut 0712017 PUS KPC F3

PAT_1441 1cut 221002017 PUS VM P4

PAT_1684 Icut 10002018 BLOOD NDM P5

PAT_1578 1cut 200512017 BRS NDM P5

PAT_1636 1cut 230712017 URINE NDM PE

PAT_1683 1cut 10002018 oV KPC T

PAT_1180 1cut 160172017 NASAL NDM 2]

PAT_1050 Icut 040412018 URINE NDM Fo

PAT_1184 1cu3 201212018 BRS NDM P10
PAT_1172 1cut 2001112018 oV NDM P11
PAT_g87 Icut 1501/2010 CSF KPG P12
PAT_1001 Icut 0002/2018 oV NDM P13
PAT_1305 1cu 120002017 PUS NDM+OXA48 P14
PAT_1222 1cu3 270212017 ove KPC P15
PAT_1220 1cuz 2102/2017 WOUND NDNMVIM P15
PAT_1401 1cut 281172017 8BRS KPC P16
PAT_1108 Ieut 300172017 B8RS KPC P18
PAT_1289 1cu3 19042017 8RS KPC P18
PAT_1203 1cut 19042017 oV KPC P16
PAT_1304 1cut 15002017 BLOOD KPC P17
PAT 1262 1cu3 20032017 BRS KPC P18
PAT_1388 1cut 140872017 oV KPC P12
PAT_1330 1cu3 1608/2017 WOUND KPC P20
PAT_1288 1cu3 1604/2017 WOUND KPC P21
PAT_1762 Icut 140172019 BRS KPC P22
PAT 7355 1cut 041212017 BRS KPC P23
PAT_1405a Icuz 201212017 WOUND KPC P24
PAT_1353a 1cut 0807/2017 BRS KPC P25
PAT_ 4785 1cut 2807/2017 oV KPC P26
PAT_414b Icut 030412017 BRS NDM P27
PAT_1218a 1cut 17022017 oV KPC P27
PAT_1030a Icut 15032010 PUS KPG P27
PAT_3915 Icut 27032017 URINE KPG P27
PAT_1915 Icut TR2016 BRS KPG P28
PAT_1451a 1cuz 031172017 BLOOD KPC P20
PAT_1215 1ot 1802/2017 BLOOD KPC P30
PAT_1107 1cus 310172017 URINE KPC P30
PAT_1210 1cu3 1502/2017 cve KPC P31
PAT 1138 1cut 260012018 BRS KPC P32
PAT_451b 1cu3 260512017 BLOOD KPC P33
PAT_3625 1cu3 310172017 URINE KPC P33
PAT 3755 1cut 190272017 BLOOD KPC P34
PAT 4185 1cu3 100472017 BRS KPC P35
PAT 3285 1cut 05/12/2018 BRS KPC P36
PAT_1508a Icut 00101/2018 BRS KPG Par
PAT_1485a 1cuz 11122017 PERITONEAL KFC Pas
PAT_1184a et 101172016 BRS KPC Pag
PAT_1184 Ieut 101172018 BRS KPC P40
PAT_1612 1cut 0207/2017 BRS NDM P41
PAT_1588 1cu3 280512017 BRS NDW P41
PAT_1635 1cut 240712017 oV NDM P41
PAT_1616 1cut 0207/2017 URINE NDM P41
PAT_1584 1cut 020512017 URINE NDM P41
PAT_1633 1cut 160772017 BRS DM P42
PAT_1602 1cut 190872017 BLOOD NDM P43
PAT_1540a 1eut 190372018 BRS KPC Pa4
PAT_1568a et 0705/2018 BLOOD KPC+NDM P44
PAT_1840 1cut 020812019 BLOOD NDM P45
PAT_1844 1eut 27052019 8BRS NDM P48
PAT 1670 1cut 280012018 oV NDM P47
PAT_1625 1cut 0007/2017 BLOOD KPC P48
PAT_1607 1cut 250812017 BRS KPC P48
PAT_1650 Icut 270812018 PUS KPC Pag
PAT_1784 1cut 210172019 URINE NDM P42
PAT_1204 Icut 070212017 oV NDM P50
PAT_1117 1cut 1708/2016 oV NDM P51
PAT_1414a 1eut 10102017 BLOOD NDM P52
PAT_1813 1ot 0804/2019 URINE KPC P53
PAT_1385 ieut 3008/2017 BLOOD NDM P54
PAT_1308 1cut 190072017 BLOOD KPC P55
PAT_1574a 1cut 14052018 URINE KPC+NDM P56
PAT_1013 1cu3 240212018 BRS KPC P57
PAT_1002 1cut 1002/2018 oV KPC P57
PAT_1018 1cut 250212018 BLOOD NDM P58
PAT_1043 1cu3 200312018 BRS KPC P58

Figure 1. Cont.
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Figure 1. Pulsotypes of the 165 clinical carbapenemase-producing K. prneumoniae isolates. Clusters

(A—Q) were defined at a similarity level of 80%.PAT: patient; ICU: intensive care unit; CVC: central

venous catheter; BRS: bronchial secretions; CSF: cerebrospinal fluid; P: pulsotype.
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Figure 2. Pulsotypes of the 48 rectal-clinical carbapenemase-producing K. pneumoniae isolate pairs.

Pairs with different pulsotypes are marked with the same symbol. PAT: patient; ICU: intensive care

unit; CVC: central venous catheter; BRS: bronchial secretions; CSF: cerebrospinal fluid.

2.3. Non-Susceptibility Rates of CRKP Isolates in the Hospital

The non-susceptibility rates of CRKP isolates in our institution’s ICUs for amikacin,
aztreonam, colistin, fosfomycin, gentamicin, piperacillin/tazobactam and tigecycline in
isolates during the study period are shown in Table 1 and Figure 3. CRKP isolates pre-
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sented with high level of resistance to both meropenem and imipenem (MICsy > 16 mg/L)
throughout the study years. On the other hand, a significant increase in resistance was
observed for gentamycin ranging from 15% in the first semester of 2016 to 66.7% in the
first semester of 2019. In regard to tigecycline, an increase was also observed (23.5% in the
2016a semester to 61.1% in the 2019a semester). As for colistin, an increase was observed
(15.8% in the 2016a semester to 27.8% in the 2019a semester).

Table 1. Imipenem resistant K. pneumoniae susceptibility rates per semester among single patient
isolates recovered from the hospital’s ICUs during the study period.

Semester Antimicrobial No Tested R I S R% 1% S%
2016a Amikacin 20 10 1 9 50% 5% 45%
Aztreonam 19 19 0 0 100% 0% 0%

Gentamicin 20 3 0 17 15% 0% 85%
Piperacillin/Tazobactam 20 20 0 0 100% 0% 0%

Colistin 19 3 0 16 15.8% 0% 84.2%
Tigecycline 17 4 13 0 23.5% 76.5% 0%

Fosfomycin 19 15 0 4 79.0% 0% 21.0%

2016b Amikacin 8 5 1 2 62.5% 12.5% 25%
Aztreonam 8 8 0 0 100% 0% 0%

Gentamicin 8 1 0 7 12.5% 0% 87.5%
Piperacillin/Tazobactam 8 8 0 0 100% 0% 0%

Colistin 8 3 0 5 37.5% 0% 62.5%

Tigecycline 8 5 2 1 62.5% 25% 12.5%

Fosfomycin 8 2 0 6 25% 0% 75%

2017a Amikacin 23 14 0 9 60.9% 0% 39.1%
Aztreonam 22 22 0 0 100% 0% 0%

Gentamicin 23 6 1 16 26.1% 4.3% 69.6%
Piperacillin/Tazobactam 23 23 0 0 100% 0% 0%

Colistin 22 0 0 22 0% 0% 100%

Tigecycline 21 10 5 6 47.6% 23.8% 28.6%

Fosfomycin 22 11 0 11 50% 0% 50%

2017b Amikacin 32 18 3 11 56.2% 9.4% 34.4%
Aztreonam 30 29 0 1 96.7% 0% 3.3%

Gentamicin 32 19 3 10 59.4% 9.4% 31.2%
Piperacillin/Tazobactam 32 32 0 0 100% 0% 0%

Colistin 30 7 0 23 23.3% 0% 76.7%

Tigecycline 30 13 12 5 43.3% 40% 16.7%

Fosfomycin 30 25 0 5 83.3% 0% 16.7%

2018a Amikacin 25 7 4 14 28% 16% 56%
Aztreonam 24 24 0 0 100% 0% 0%

Gentamicin 25 13 0 12 52% 0% 48%
Piperacillin/Tazobactam 25 25 0 0 100% 0% 0%

Colistin 24 1 0 23 4.2% 0% 95.8%

Tigecycline 24 14 8 2 58.3% 33.3% 8.4%

Fosfomycin 24 20 0 4 83.3% 0% 16.7%

2018b Amikacin 30 1 3 26 3.3% 10% 86.7%
Aztreonam 30 29 0 1 96.7% 0% 3.3%

Gentamicin 30 21 0 9 70% 0% 30%
Piperacillin/Tazobactam 30 30 0 0 100% 0% 0%

Colistin 30 2 0 28 6.7% 0% 93.3%

Tigecycline 30 14 14 2 46.7% 46.7% 6.6%

Fosfomycin 30 24 0 6 80% 0% 20%

2019a Amikacin 18 7 1 10 38.9% 5.5% 55.6%
Aztreonam 18 17 0 1 94.4% 0% 5.6%

Gentamicin 18 12 0 6 66.7% 0% 33.3%
Piperacillin/Tazobactam 18 18 0 0 100% 0% 0%

Colistin 18 5 0 13 27.8% 0% 72.2%

Tigecycline 18 11 5 2 61.1% 27.8% 11.1%

Fosfomycin 18 11 0 7 61.1% 0% 38.9%
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Figure 3. Non-susceptibility rates (line) and number (bars) of single patient imipenem non-susceptible

K. pneumoniae isolates recovered from the hospital’s ICUs per semester.

2.4. Systematic Review Results

Our systematic review search strategy yielded 290 results. After implementation
of the exclusion criteria, 39 studies remained. Fourteen studies reported monoclonal

dissemination. Data extracted from the remaining 25 studies are reported in Table 2.
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Table 2. Studies reporting non-monoclonal dissemination of carbapenem-resistant Klebsiella pneumoniae clinical strains, including ICU populations.

Sample Type (Clinical

Number Of

. . . Study Population vs. Surveillance, CR-Isolates and Number of Clusters and
Study Setting Time Period (Eligible) Infection vs. Mechanism of Method(s) Isolates/Cluster
Colonization) Resistance
31 CRKP 3 CRE. coli A great diversity of Kp high-risk
Colistin-susceptible and . KPC-3 (n = 14) was the clones was observed associated
-resistant MDR Lower respiratory, most common with the KPC-3 carbapenemase
(I—iir:lanzc(l)zzl—ﬁi\;la 1 }lfgst?élll:se June 2017 to July 2018 Escherichia spp. (n = 30) uﬁ::;ﬁiiﬁ;r}aelc?;is carbapenemase WGS including some lineages first
v P and Klebsiella spp. of ¥CU atients followed by OXA-48 reported in Portuguese Hospitals
(n = 78) isolates b (n = 3) and OXA-181 (ST13, ST34, ST405, ST1563,
(n=3) ST4331)
blaxpc was present in
Tor Vereata 147 consecutive, 121/147 (87%) strains,
(Fontana et al., 2020) . ergata non-replicate clinical mainly Kp. The . .
University Hospital, May 2013 to Dec 2016 . Blood cultures .7 . WGS MLST 5 clusters with 2 to 9 strains
[16] Rome, Ttal strains of CRE from remaining strains
Sy different wards carried blaypy or
blaoxa-4s
7 patients colonized or
(Galani et al., 2020) 2 ICUs of Hygeia infected with Colonization or co-produced KPC-2 and PFGE classified the isolates in 2
[17] v General Hospital, Sept to Oct 2019 ceftazidime-avibactam infection the novel WGS MLST PFGE pulsotypes however, all but one,
Athens, Greece (CZA)-resistant K. plasmid-borne VEB-25 belonged to the second pulsotype
pneumoniae
Multi-clone epidemic event
- 26 of the 32 isolates belong
(9.4% carried KPC-2 to three genome clusters
an d.90 6% KPC-3: All 32 and the remaining six were
. : . by classified as sporadic
1 cardiorespiratory 23 patients with 32 analyzed isolates The fi 1
(Ferrari et al., 2019) ICU with 8 beds in a pat 12 colonized carried at least one - e first genome cluster
1 Aug 2015 to May 2016 CRKP isolates were . o WGS was composed of MDR
[18] 900-bed Hospital in analyzed 11 infected ESBL gene (3.1% ST512

Pavia, Italy

CTX-M-15, 3.1% SHV-1,
87.5% SHV-11, 6.3%
SHV-12

- The second infection
cluster comprised four
other genomes of ST512

- The third cluster ST258
colonized 12 patients
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Table 2. Cont.

Sample Type (Clinical

Number Of

. . . Study Population vs. Surveillance, CR-Isolates and Number of Clusters and
Study Setting Time Period (%ligirl))le) Infection vs. Mechanism of Method(s) Isolates/Cluster
Colonization) Resistance
The majority of CRKP
Kostantinopouleio- fronllBSIs V\Eere 203))(A-4(118
Patission G. Hospital, Bronchial secretions (1 producers 1 = 23) an
(Mavroidi et al., Athens, Greecpe . =105), blood (n = 53(), KPC producers (n.:.18) ST101 (OXA-48)
2020) [19] 280-bed general Jan 2014 to Dec 2016 248 CRKP in ICU central venous catheters whe'reas the remaining MLST ST258 (KPC)
g
hospital (including a (n =39), urine (n = 28) 12 isolates produced ST11 (NDM)
nine-bed ICU) and/or MBLs (6 VIM, 3
OXA-48+VIM, and 3
NDM producers)
1 pulsotype
Clinical isolates included a
common MLST (ST101), and 2
novel STs (ST3366 and ST3367),
which differ from ST101 by a single
nucleotide of rpoB gene.
PEGE The cgMLST method accurately
. . Neonatal ICU. All . . . characterized transmission events
(Gona et al., 2019) 1 teaching hospital Oct 2016 to Jan 2018 firmed CRKP 12 infections, 1 13 isolates all MLST of the 13 K. prieumoniae isolates in
[20] in Catania, Italy ¢ ° <0 - colonization NDM+OXA-48 Core genome P ) .
isolates included MLST three clusters: A containing only
ST101, B containing only ST3367,
and C containing both ST3366 and
ST101 due to the close relationship
between ST101 and ST3366. Four
isolates were included in cluster A,
two isolates in cluster B, and seven
isolates in cluster C.
10 pulsotypes
A: 24 isolates (all KPC)
A2: 1KPC
B: 11all VIM (2 VIM+KPC)
Hippokration Conducted in a 9-bed 4§nCdR\I;III’v§n;0§tll)yl\}[( I;C g 1
(Kara;r(lﬁg)t a[l;s] etal, T}?e E:slsfgililifsg;ilée Aug 2012 to Nov 2014 POl(}:’;/{iig;nSte{eCCIidM?) Infection or colonization OXA-48, 1 PFGE E: 1
900 bec,:ls randomly NDM+OXA-48, 1 k1
KPC+OXA-48) G:1
H:1
I 1

No relevant further information
available
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Table 2. Cont.

Sample Type (Clinical

Number Of

. . . Study Population vs. Surveillance, CR-Isolates and Number of Clusters and
Study Setting Time Period (Eligible) Infection vs. Mechanism of Method(s) Isolates/Cluster
Colonization) Resistance
Isolates from
hospitalized patients in
the [CL. It was a 110 included in PFGE 3 pulsotypes
.(Papa}dlmltrlou- University Hospital 2010-2016 case—control study . . 91 KPC, A: 76 mostly KPC
Olivgeris et al., 2018)  of Patras, Greece 800 . Blood infections 4 VIM, PFGE
Months not specified conducted among B: 24 mostly KPC
[22] beds. o . . . 5 KPC+VIM,
critically ill patients in 10 NDM C: 10 only NDM
order to identify the risk
factors of ColR-Kp and
TigR-Kp bacteraemia
ICU patients; The aim
of the study was to
analyze the mode of 2 pulsotypes
Tzaneio Hospital spread and the 2STs
(Avgoulea et al., . characteristics of . . ) PFGE Pulsotype A was ST147
2018) [23] Athensiggézece 450 June 2014 epidemic OXA-48-Kp Blood infections 19 selected OXA-48 MLST (the first 4 cases-PDR)
strains responsible for Pulsotype B was ST101
bloodstream infections (the next cases-MDR)
in ICU patients
emerged in June 2014
16 clusters and 26 pulsotypes
(Ripabelli etal, 2018)  2ntonio Cardarelli 5,5 5414 5016 Months 30 from the ICU Infection (1 =27)or 25 WILD TYPE (2010), PFGE 23 clusters and 33 patterns
[24] Hospital, Molise, not specified 10 from wards colonization (1 = 13) 17 NON-WILD TYPE RAPD 2010 and 2014-16 isolates were
Italy P - (KPC) (2014-2016) grouped in different clusters by
both methods
16 different CPKP strains without
predominance:
Adult patients from the 355T-258, 85 ST-512,
. 32 ST-745,
ICU, surgical and
(Bartolini et al., 2017) Padova Hospital medical department Rectal swabs and 311 CPKP: gé iggzl
v prial 1/2015-9/2106 and patients with - 258 KPC, 17 OXA-48, 12 MLST !
[25] Ttaly . 2 . . clinical samples 5 ST-15,
epidemiological link to NDM
) 11 ST-16,
persons with CPKP 35T-101
isolates 3ST-11,

1S5T-37,1ST-45,1 ST-211, 1
ST-398, 1 ST-147, 1 ST-1458
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Table 2. Cont.

Sample Type (Clinical

Number Of

. . . Study Population vs. Surveillance, CR-Isolates and Number of Clusters and
Study Setting Time Period (Eligible) Infection vs. Mechanism of Method(s) Isolates/Cluster
Colonization) Resistance
(Mavroidi et al KOS{)?;;‘;I;OSEIO' meii)rglejr?:;rr;;?stant Surveillance rectal collisgnc iI;Zt:r?tV:f\I;all The 19 COL-R CP-Kp isolates
v . . July 2012 to Dec 2013 . 1 swabs and clinical MLST belonged to 2 STs: 18 to ST-258
2016) [26] Hospital, Athens, isolates of all hospital’s 1 of them harbored the d1ST. li
Greece 280-beds department sampres blaxpc gene. and 1 5T-383 lineages.
10 pulsotypes: A(4), B(1),
C(subtypes:C1(15), C2(2)),
. D(subtypes:
3 acute general All carbapenem Isolates from any sight 94 carbapenem non
(Bonura[;tﬂa 1, 2015) hospitals in Palermo, March-Aug 2014 resistant isolates of all of infection or susceptible isolates all PFGE and MLST F](Dll)(Zé()éll)D%EI’a’()l,;D ?((11)),](3)%?7))),1]50(51%5
Italy hospital’s department colonisation KPC-3 producers 37ST258, 1 ST512, 27 ST307, 17
ST273, 4 ST405, 4 ST101, 1 ST15, 1
ST147,1 ST323,1 ST491
. . 16 CRKP isolates. 3
. Ospedale di Circolo Infections due to .
(Onori et al., 2015) e Fondazione Macchi  Jan 2011 to March 2013 carbapenem-resistant Clinical samples harbored the blaxpc. WGS 2STs. 10 isolates belonged to
[28] V. Ttal K and 13 the blagpc.3 ST512 and 6 to ST258.
arese, Haly P variant.
MLST available for 238/496
. . isolates. In total 15 STs were
Patients from the 496 CPKP strains out of _soa
(Parisi et al., 2015) Padova Hospital, Intensive care, surger Clinical and which 436 tested with identified: 90 ST258, 86 ST512, 31
P Jan 2012 to Dec 2014 gery MLST ST745, 5 ST15, 2 ST101, 1 ST868, 6
[29] Italy and medical surveillance samples molecular methods: 432 T 7’ T ! 4 1ST ’2 1ST4 ’7
departments KPC, 3 OXA-48, 1 NDM §T307, 3 ST554, 1 ST392, 1 ST437,
! ! 1ST1207, 1 ST1326,1 ST395, 1
ST1199, 1 ST1543.
Seven types (A-G) according to
(Katsiari et al., 2015) onstantopou elo hospital. Athens. 11CU, . . producers an PFGE Representative custer. type 51255 Type
General Hospital, 2010-2012 clinical or surveillance VIM-producers) were . A was further divided into 12
[30] 9 beds, all isolates to MLST .
Athens, Greece imipenem-resistant K recovered from 58 ICU subtypes (A1-A12) according to
P P patients. 100% pattern similarity, 10/13

VIM classified in type B
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Table 2. Cont.

Sample Type (Clinical

Number Of

. . . Study Population vs. Surveillance, CR-Isolates and Number of Clusters and
Study Setting Time Period (Eligible) Infection vs. Mechanism of Method(s) Isolates/Cluster
Colonization) Resistance
4 pulsotypes among all the
KPC-producing Kp (A, B, C and
D), MLST 4 distinct STs: All
. ulsotype A strains belonged to
1 general ICU ICU Kp isolates . p
(Mezzatesta et al, Catania Hospital, 1-31 July 2013 responsible for severe clinical isolates 25 Kp 57 patients, all PFGE MLST STZSS and pulsotype B was .
2014) [31] . . harbored blagpc.3. categorized as ST512 detected in
Italy infections .
most isolates. Pulsotypes C and
D were also identified, in a few
strains, as ST147 and ST395,
respectively.
s General ICU (13 . Recovered from clinical 53 KPC-Kp isolates from Two PFGE types (A and B) were
(Papadimitriou- b Hospital of Patras, or rectal samples from : . i f o .
. . eds) of the 2 . _ 48 patients identified, with 36 (67.9%) strains
Olivgeris et al., 2014) . . . 26 months Greece, a 770-bed patients (n = 273) who . PFGE .
[32] University Hospital teaching hospital stayed more than 6 days All 53 KPC-Kp isolates belonging to PFGE type A and 17
i of Patras, Greece ’ in the ICU carried the blagpc (32.1%) to PFGE type B.
92}?2:\1,?:tsr§§§‘iadm Among strains producing KPC-3,
suscep%ibility to two major clones identified by
T ertapenem (MIC 1 . . MLST: ST5.12 an.cl.ST2.58, KPC-3
1 teaching institution, 6 mg/L), Clinical samples Strains producing was also identified in clones
tertiary hospitals, 1 1g1rine/ (n = 34) blocl)) 4 blaxpc.3 were identified ST646 (new ST), ST650 (new ST),
(Capone et al., 2013) 9 hospitals of Rome Clu;rllcs:at}t?l?g Z\i\sdealmh (1 =34), lower " ?ﬁrzztlzr’:it:;lféa:rllﬁ " SZrllﬁ 3\1:;1 ?gelr?tllflzg 61: lcal\(/)lnMe-;
P v P ! Dec 2010 to May 2011 ! 1 respiratory tract p . MLST &
[33] Italy long-term care facility, (n = 13), surgical wound blactx-m-15 plus porin ST646, ST647 and ST648 (three
with a total of 4000 beds, (n=8) ,intrfab dominal defects in the remaining new STs). Among strains
ranging from 100 to fuid (,n —=7), CVC tips five patients. 1 isolate producing ESBL combined with
1200 beds per centre (n = 12)_ reétal swag per patient outer membrane protein (OmpK)
- (n " 3) and defects, three belonged to ST37,
cerebro_s inal fluid and the other was assigned to the
(nz 1) new ST649
. Clinical and
(Tofteland etal, 1;' Eﬁj z‘;;ﬁallw Nov 2007 to April 2011 KPC-producing surveillance 7 KPC-2 strains from 7 PFGE A 6 5ST258
2013) [34] hospital. Nor p outbreak strains samples/Infection or patients MLST B 1ST461
ospiial, Norway colonization
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Table 2. Cont.

Sample Type (Clinical

Number Of

. . . Study Population vs. Surveillance, CR-Isolates and Number of Clusters and
Study Setting Time Period (Eligible) Infection vs. Mechanism of Method(s) Isolates/Cluster
Colonization) Resistance
Al 52 isolates carried the blagpc_3
gene belonging in sequence type
- . . . ST258
24 beds in two Al.l Cohstm—reglstant. Kp 58 colistin-resistant Kp 52 isolates carried the Rep-PCR confirmed that the
. isolates during this . blaxpc.z and SHV-11. 6 . . .
. general ICUs, in 1 . : isolates were recovered . . colistin-resistant isolates
(Mammina et al., period (possible : isolates susceptible to .
acute general June to Dec 2011 - . from 28 patients . Rep-PCR belonged to three different
2012) [35] hospital i outbreak) irrespective . . . carbapenems, resistant .
ospital in Palermo, of their source patient irrespective of their to fluoroquinalones and clusters, one that contained all
Italy nd clinical ljn 1 source minq ] id ST258 KPC-3 producing isolates,
and clinical sampre amnoglycosiaes and two clusters with unrelated
patterns including the ST15 and
ST273isolates
. Phenotypic and 4 PFGE profiles
(Richter et al., 2012) 2;88?;};:;&%1%1‘:1 June 2000 to Dec 2011 BCOtypicinvestigation o o ation 189 KPC2orKPC-3 &EGS],EF ST37, ST147,ST258, ST307, ST437,
[36] Ttal ’ for KPC in clinical strains ERIC ST510,5T512, ST527, ST554
Y samples 3 ERIC profiles
55 patients harbouring .
P 613 bed teaching Any carbapenem non .. . VIM-1 -PFGE: A 54,
(Sanchez-Romero . . . . Clinical or surveillance/ . PFGE B4
hospital, Madrid, Jan to Dec 2009 susceptible strain from R L. strains/molecular . .
etal., 2012) [37] . . Infection or colonization . . MLST -MLST: 6 A isolates ST15,3 B
Spain -52 ICU beds ICU patients epidemiology for 99 .
. isolates ST340
strains
University General
Hospital Attikon Any clinical Kp isolate o
Soulictal, 2010  ©3bed teaching with imipenem or  Clinical or surveillance fg{?}ﬁ 2 isolates (34 4 PFGE types: A41,B6,C1,D2
[3 8]./ hospital, Athens, Jan 2007 to Dec 2008 meropenem MIC > 1 samples/Infection or infections (9 ICU 9,non— PFGE Only A was responsible for
Greece—1 ICU (18 mg/mL producing KPC colonization ICU)/32 coloniz,ation) infections
beds till 10/2008, 21 (hospital-wide)
after)
(Giakkoupi et al., 3 teaching hospitals Sep to Dec 2002 arci(i:\tig?rtrign;;‘e/vr:}r\wn Clinical samples/ at 17 blaypy-1 strains from PFGE 4 PFGE types: the majority (5 and
2003) [39] in Athens, Greece P P least 12 infections 17 patients 10 isolates) belonged to two types

susceptible specimens

MLST: Multi-Locus Sequence Typing; WGS: Whole Genome Sequencing; ERIC: enterobacterial repetitive intergenic consensus; MDR: multi-drug resistant; PDR: pan-drug resistant; Kp:
Klebsiella pneumoniae; ColR-Kp: Colistin resistant-Kp; TigR-Kp: Tigecycline resistant-Kp.
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3. Discussion

The present study evaluated the type of carbapenemases and the molecular epi-
demiology of K. pneumoniae strains circulating in the ICUs of a tertiary hospital in
Thessaloniki, Greece between 2016 and 2019. During the study years, KPC was the
predominant carbapenemase; NDM were also present, and a few double-carbapenemase-
producers were isolated. On the basis of PFGE, a total of 17 different CRKP transmission
clusters were identified.

CRKP isolates have been introduced in our hospital since 2004. At that time, no
phenotypic or molecular testing was performed to reveal the type of carbapenemase up to
2010. From 2010 to 2014, phenotypic testing among CRKP isolates revealed that the majority
carried KPC enzymes (60%), 25% produced MBL, and 7% co-produced KPC and MBL
enzymes. In the time period of 2011-2014, we also observed the first OXA-48 producers in
our hospital at a rate of 1.7%. Molecular testing showed that KPC positive strains harbored
the blaxpc.o, while MBL-positive strains harbored blayy.1.

During 20132015, an oligoclonal outbreak caused by 45 CRKP occurred in our hospital [40].
All the patients were hospitalized in the three intensive care units of the hospital, and 17 (68%)
of them developed bloodstream infections; the overall mortality of the patients involved in
the outbreak was 48% (12/25). Molecular testing verified that all 45 K. pneumoniae isolates
co-harbored blagpc, and blayp.1 and were associated with OmpK35 deficiency and OmpK36
porin loss. PFGE clustered all isolates into a single clonal type, and multi-locus sequence typing
(MLST) assigned them to the emerging high-risk ST147 clonal lineage.

Starting from 2014 until 2016, while KPC producers still prevailed (approximately 75%
of the CRKP), we observed a shift among MBL producers from blayy.1 towards blanpm-1-
More specifically, VIM-type carbapenemases decreased from 17.6% in 2014 to 6.7% in
2016, whereas NDM-type increased from 1.2% in 2014 to 19.4% in 2016 [41]. In the years
2013-2015, the co-production of KPC and MBL enzymes corresponded to approximately
10% of all CRKP strains [35]. Finally, in 2019, we isolated a strain carrying both NDM-1
and OXA-48 genes classified as ST-11 [42].

In our study, PFGE analysis identified 128 distinguishable pulsotypes and 17 clusters
indicating an extended dissemination of CRKP within the hospital setting. Moreover,
the dissemination took place over a long-time frame since we included in our study
isolates recovered during a 3.5-year period. The presence of identical isolates in all three
ICUs highlights their successful dissemination through different hospital wards. More
worryingly, the persistence of certain strains throughout the whole study period, despite the
various infection control measures that were applied, reflects the difficulties that undermine
the efforts for their eradication once they are well-established in a certain geographical
area. Indeed, such strains may have persisted in the hospital or/and may have been
re-introduced by carrier admissions.

In fact, most of the CRKP carriers that later presented a CRKP infection had identical
pulsotypes between their rectal and clinical isolates. The most probable explanation for this
finding is that gut colonization preceded infection. In some cases, however, the pulsotypes
of rectal and clinical isolates were different indicating that the infection was caused by
another nosocomial K. pneumoniae.

There were also two clinical-rectal pairs (PAT_1436a/b and PAT_1569a/b) that har-
bored different carbapenemase-encoding genes according to PCR results but had identical
PFGE pulsotypes. This could be explained by the mobilization of mobile genetic elements,
most likely by the loss and acquisition of plasmids [43] even though an infection by a
different isolate of the same pulsotype harboring different resistance determinants could
not be excluded. PFGE studies in our hospital performed in several CRKP strains during
the period of 2011 to 2013 revealed that KPC strains prevailed and that the majority of them
belonged to two distinct clones (unpublished data).

A similar pattern of carbapenemases was observed in Hippokration General Hospital
of Thessaloniki, Greece where KPC carbapenemases have prevailed among CRKP since
2009 outnumbering the VIM-type carbapenemases that predominated previously [44].
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In the same report, KPC-producers belonged to two distinct clones, the predominant
of which correspond to the hyperepidemic Greek clone. In a multicenter nationwide
surveillance study conducted in several Greek hospitals for CRKP from 2014 to 2016, NDM-
producing isolates belonged mainly to one clone, whereas KPC, VIM, OXA-48 and double
carbapenemase-producers were mainly categorized in three clones [45]. On the contrary, in
our study, both KPC and NDM CRKP isolates showed extremely multiclonal profiles.

In our study, we also observed a rise in the resistance rates of tigecycline, gentamicin
and colistin. This is in accordance with other studies reporting elevated resistance rates to
last resort antibiotics driven, among other factors, by a vicious cycle of increased last resort
antibiotic consumption and subsequent resistance [46].

Our systematic review results showed that non-monoclonal dissemination of K. pneu-
moniae strains in ICU settings has been described before in countries participating in the
EARS-Net (Table 2). Of note, such observations have been reported almost exclusively
by Mediterranean countries, mainly from Greece and Italy, and this is in accordance with
the epidemiological situation of the region regarding carbapenem-resistance determinants.
However, and despite the heterogeneity of settings and methods used, most studies re-
ported rather oligoclonal transmission with further identification of sporadic cases.

In our study, multiple clones circulating simultaneously achieved sustainable dissemi-
nation and, according to our knowledge and our systematic review results, this is the first
time that such polyclonal dissemination has been observed in Europe. This multi-clonal
PFGE observation highlights a possible additional reason for their endemic persistence in
our hospital even though infection control measures, including hand hygiene, surveillance
for colonization among high-risk patients and contact precautions have been established.

In this context, active surveillance with rectal swab cultures is of outmost importance
to control the spread of these pathogens by isolation or cohorting of the colonized pa-
tients [29]. However, the spread of CRKP in an endemic environmental niche is a dynamic
and multifaceted phenomenon that involves many variables. In a similar situation, more
than one CRKP clone may be simultaneously present in the hospital; whereas new admis-
sions may be CRKP carriers most likely by previous hospitalizations in the same or other
hospitals. Consequently, a multi-clonal spread is very likely to occur and, even when a
previously colonized subject presents a CRKP infection, it is not certain that this infection
is directly related to the strain that colonized the patient upon admission.

Our study has several limitations. A multi-centric study would be able to evaluate
whether the epidemiological pattern that we observed in our single center study was
an isolated phenomenon or more widespread. Including non-ICU along with ICU K.
pneumoniae strains would yield a more complete picture for their dissemination. In our
analysis, we did not include clinical patient level information, and this limits our ability to
draw conclusions with regard to precipitating factors. Finally, we were not able to employ
sequencing-based methods to better characterize the molecular epidemiology of the strains
included in our study.

4. Materials and Methods
4.1. Study Design

This was a retrospective study that was carried out at AHEPA University Hospital, a
700-bed institution with three ICUs, a central surgical and medical ICU (8 beds, ICU 1), a
surgical ICU (4 beds, ICU 2) and a cardiosurgical ICU (5 beds, ICU 3) as well as surgical
and internal medicine departments. The study was approved by the institutional medical
scientific board. Sample related patient data were retrieved from the laboratory database.

CRKP clinical isolates, recovered in the aforementioned ICUs between January 2016
and June 2019 from 165 single patients, were included in the study. In 48 cases, a rectal
isolate (isolated upon admission in ICU for infection control purposes) and a subsequent
clinical isolate (isolated by an infection that occurred during ICU stay) were considered,
thus forming 48 pairs of surveillance-clinical isolates. Isolates taken from the remaining
117 patients were all recovered from clinical specimens only.
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Rectal swabs taken from ICU patients upon admission were inoculated on MacConkey
agar plates supplemented with meropenem and ceftazidime discs. All Gram-negative
colonies that grew after 24 h of incubation near the discs were further identified and K.
pneumoniae isolates were tested for carbapenemase production with phenotypic and molec-
ular techniques. For clinical specimens, standard laboratory procedures were followed
depending on each specimen source.

Bacterial identification and antimicrobial susceptibility testing were performed with
the Vitek2 automated system (Biomerieux, Marcy-l’Etoile, France). Furthermore, the mini-
mum inhibitory concentration of tigecycline was determined by E-test (Liofilchem, Roseto
degli Abruzzi, Italy) and for colistin using the broth microdilution method (Liofilchem,
Roseto degli Abruzzi, Italy). The results of all antimicrobial testing were interpreted in
accordance with the CLSI criteria. For tigecycline, the breakpoints recommended by the
United States Food and Drug Administration were used (susceptible: MIC < 2 mg/L;
resistant: MIC > 8 mg/L).

4.2. Carbapenemase Detection

All isolates were phenotypically screened for carbapenemase production with the
Modified Hodge Test (MHT), [47] while the type of MBL or KPC was assessed with the
Combined Disk Test (CDT) [48]. Following phenotypic identification, PCR assays were
performed for carbapenemase-encoding genes using specific primers for blaxpc, blayv,
blapvp, blanpwm and blapxa-as (Appendix A) [49].

4.3. Pulse-Field Gel Electrophoresis

The genetic relationship among the CPKP isolates was determined by PFGE according
to standardized protocol [50] with the Xbal endonuclease (New England Biolabs, Beverly,
MA, USA) by using a CHEF-DR III apparatus (Bio-Rad Laboratories Inc., Hercules, CA,
USA) for the separation of DNA fragments. Xbal-digested DNA from Salmonella enterica
serotype Braenderup H9812 was used as a reference size standard, while PFGE patterns
were digitally analyzed using the FPQuest (Bio-Rad Laboratories Pty Ltd., Hercules, CA,
USA) software package.

PFGE profiles were compared using the Dice correlation coefficient with a maximum
position tolerance of 1.5% and an optimization of 1.5%. Similarity clustering analysis was
performed by using the Unweighted Pair Group Method using Averages (UPGMA), and a
dendrogram was generated. Two PFGE profiles were classified as indistinguishable if the
DNA fragment patterns matched each other completely, while clusters were selected using
a cutoff at the 80% level of genetic similarity.

4.4. Non-Susceptibility Rates of CRKP Isolates

For every semester of the study period, we determined the K. preumoniae non-susceptibility
rates of amikacin, aztreonam, colistin, fosfomycin, gentamicin, piperacillin/tazobactam and
tigecycline in imipenem non-susceptible single patient isolates from the ICUs using the CLSI
2020 breakpoints.

4.5. Systematic Review

In order to evaluate the extent of non-monoclonal transmission of CRKP strains in
the intensive care environment in countries participating in the European Antimicrobial
Resistance Surveillance Network (EARS-Net), we undertook a systematic review of the
recent literature. We searched MEDLINE via PubMed from 1 January 2000 to 28 April
2021, implementing the search strategy described in Appendix B. Titles and abstracts were
screened for studies, which incorporated a molecular epidemiology investigation (PFGE or
sequencing methods) of CRKP strains, including samples obtained from ICU patients.

We excluded reviews, case reports, studies restricted to environmental samples, studies
that did not explicitly include any ICU clinical samples and studies not conducted in
EARS-Net participating countries. No language and patient age restrictions were applied.
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Eligibility assessment was conducted in duplicate (D.P. and G.M.) and discrepancies were
adjudicated by a third author (E.P.).

Next, studies reporting monoclonal transmission were excluded, and, from the
remaining studies, we extracted the following data: study setting and eligible samples,
sample type (clinical versus surveillance and infection versus colonization), the num-
ber of carbapenem-resistant isolates and mechanism of resistance detected, the method
used to investigate molecular epidemiology and the number and size of clusters in-
volving ICU patients. If ICU-level data were not available, hospital-wide data were
reported. Data extraction was conducted by A.T., G.M., T.P.,, D.P. and E.P. All steps
were conducted in duplicate.

5. Conclusions

In our study, we demonstrated that CPKP in our hospital belonged to a great variety of
pulsotypes and clusters, thus, indicating their extended dissemination within the hospital
ICU settings. Among them, KPC carbapenemase predominated. The presence of multiple
clones harboring variable resistance-determinants poses additional challenges. Further
studies are required to identify suitable infection control strategies in a setting of polyclonal
dissemination within a context of carbapenem resistance endemicity. Our results highlight
the need to urgently reinforce infection-control measures along with antimicrobial steward-
ship and together with a generous increase in the nosocomial budget in order to contain
the transmission of antibiotic resistant organisms.

Author Contributions: Conceptualization, E.P. and L.S.; methodology, E.P., G.M., D.P. (Dimitrios
Pilalas), C.K. and T.P; investigation, E.P.,, PM., A.T., D.P. (Dimitra Papadopoulou) C.K., T.P., M.P.
and S.M.; resources, D.P. (Dimitra Papadopoulou) and C.K,; software, G.M., D.P. (Dimitrios Pilalas),
C.K. and M.P; validation, E.P.,, GM., C.K,, formal analysis, G.M., D.P. (Dimitrios Pilala) and M.P,;
data curation, E.P, G.M., D.P. (Dimitrios Pilalas), A.T., D.P. (Dimitra Papadopoulou), CK., M.P;
writing-original draft preparation, E.P., G.M., D.P. (Dimitris Pilalas), A.T., C.K.; writing—review and
editing,, E.P., G.M., D.P. (Dimitrios Pilalas), C.K., T.P, L.S,; visualization, E.P., G.M., D.P. (Dimitrios
Pilalas) and L.S.; supervision, E.P. and L.S.; project administration, E.P. and L.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We wish to express our gratitude to the laboratory technicians of the Microbiol-
ogy Laboratory for the performance of the phenotypic and antimicrobial susceptibility tests. We are
also grateful to the nurses of the Infection Control Unit of AHEPA Hospital for assistance in collecting
the rectal samples.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Primers for Carbapenemase Detection

Gene Primers (5'-3')
blaxpc TGTCACTGTATCGCCGTC
TATTTTTCCGAGATGGGTGAC
blapp CTACCGCAGCAGAGTCTTTG
AACCAGTTTTGCCTTACCAT
blayim TCTACATGACCGCGTCTGTC
TGTGCTTTGACAACGTTCGC
blanpwm-1 GGTTTGGCGATCTGGTTTTC
CGGAATGGCTCATCACGATC
blaoxass TTGGTGGCATCGATTATCGG

GAGCACTTCTTTTGTGATGGC
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Appendix B. Systematic Review Search Strategy

#1  (critical care OR ICU OR intensive care OR critical ill OR critical illness OR criti-
cally ill OR “Intensive Care Units”[Mesh] OR “Critical Care”[Mesh] OR “Critical
Illness”[Mesh])

#2  carbapenem* OR meropenem OR imipenem OR ertapenem

#3  Klebsiella

#4  (epidem* OR outbreak OR clon* OR strain®)

#5 (PFGE OR puls* OR genom* OR typing OR sequenc* OR MLST OR NGS OR WGS
OR cgMLST or wgMLST OR MLVA)

#6  (“1January 2000”[Date-Publication]: “28 April 2021”[Date—Publication])

Final search(29 April 2021): #1 AND #2 AND #3 AND #4 AND #5 AND #6 — 290 results
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