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Introduction: Insulin-like growth factor-I receptor (IGF1R) mediated survival signaling is a crucial mech-
anism for cellular endurance and a potential indicator of recuperation in deteriorating hearts.
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Objective: This study evaluates the impact of long-term exercise training in enhancing cardiac survival
mechanism in D-galactose-induced toxicity associated aging rats.
Methods: Forty-eight male SD-rats were segregated into 4 groups (n=9) and were named as control, exer-
cise training groups, aging group and aging group with exercise training. Aging was induced by intraperi-
toneal (IP) D-galactose (150 mL/kg) injection for 8 weeks and for exercise training, the rats were left to
swim in warm water for 60 min every day and 5 times/week. Western blotting of proteins from the left
ventricles was performed to identify the modulations in the survival signaling. Tissue sections were ana-
lyzed to determine the extent of fibrosis and apoptosis.
Results: Western-blot analysis performed on the excised left ventricles (LV) showed that proteins of the
cardiac survival pathway including IGF1R and Akt and the pro-survival Bcl-2 showed significant decrease
in the aging group, whereas the levels were restored in the aging rats subjected to exercise training. In
addition, aging groups showed increased interstitial space and collagen accumulation. Further, TUNEL
assay showed higher number of apoptotic cells in the LV of aging group, which was correlated with
increase in the proteins involved in FAS-FADD-dependent apoptosis. However, these aging associated
effects were ameliorated upon exercise training in the D-galactose-induced aging rats that showed ele-
vated IGF1R/Akt signaling.
Conclusion: The results suggest that IGFIR survival signaling cascadeis elevated in following long-term
exercise training and thereby provide cardio-protective benefits in D-galactose induced aging rats.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Aging is a complicated biological process that causes a gradual
but steady decline in the normal physiological and biochemical
functions. Successful advancements in the health care has some-
what resulted in an increase in the population of the aging society.
Lack of physical activity may also associate with aging with corre-
sponding decline in physical function. Aging causes substantial
impact on normal health which include disorders such as muscle
atrophy [1], Alzheimer’s disease [2], and cardiovascular diseases
[3]. Cardiovascular diseases are a major cause of death worldwide,
and increase in the global aging population has also led to increase
in the mortality due to cardiovascular diseases which is estimated
to reach 23.3 million people by 2030 [4].

Exercise training is considered as an efficient strategy in the
treatment of cardiovascular diseases [5,6]. Exercise improves the
antioxidant capacity and mitochondrial viability in the heart cells
and cardio-protection of exercise is known to be correlated with
physiological cardiac growth that is distinct from pathological
hypertrophy [7,8]. Exercise training in diabetic murine models
has shown to provide PGC-1a and Akt mediated cardioprotective
effects [7,9]. Mitochondria are responsible to address various phys-
iological or metabolic demands, and they play an important role in
cellular proliferation [10]. Various studies have confirmed that the
aging disorders are associated with the loss of mitochondrial
homeostasis and deterioration of tissue mitochondrial function
[11,12]. Imbalance in mitochondrial function leads to increase in
cellular apoptotic events [13]. When the mitochondrial membrane
potential is lost, the mitochondrial cytochrome c is released to
cytosol which subsequently results in cellular apoptosis [14]. Fur-
ther, circulating insulin-like growth factor I (IGF-1) levels are neg-
atively correlated with cardiovascular risks and is considered as a
prognostic indicator in conditions such as ischemic heart disease
but most importantly, reduced levels of IGF-1 in aged persons
increases the risk for heart failure [15–17]. IGF-1 signaling is trans-
duced by its transmembrane tyrosine kinase receptor IGF1R. Dock-
ing of IGF-1 to its receptor results in the activation of its
downstream signaling in cardiomyocytes by triggering receptor
autophosphorylation [18,19]. The downstream signaling cascades
subsequently regulate metabolism, cellular proliferation, differen-
tiation, cellular hypertrophy and cell survival in heart [15]. IGF1R
mediated activation of Akt survival pathway and the ERK pathway
are well studied in cardiomyocytes for their involvement in cell
survival [20,21]. Activated Akt may exhibit direct inhibition effects
on pro-apoptotic Bcl-2 family proteins [22,23]. In addition, recent
studies show that MitoKATP-mediated mitochondrial transloca-
tion of pAkt potentially provide cardio-protection against
hypoxia-induced apoptosis [24]. For its importance for being a sur-
vival factor, it is imminent to determine if IGF1R activation can be
restored in aging condition following exercise.

In the present study, the effects of exercise on D-galactose
induced aging associated reduction in IGF1R function and cardiac
damages were determined on Sprague-Dawley rats. The results
show a positive influence of IGF1R in aging animals.

Methods and Material

Animal experiments

Three weeks old male Sprague-Dawley (SD) rats were procured
from BioLASCO (A Charles River Licensee Corporation, Yi-Lan, Tai-
wan). The rats underwent adaptation for a week. The rats were
provided with standard laboratory diet (Lab Diet 5001; PMI Nutri-
tion International Inc., Brentwood, MO, USA) and drinking water
was provided ad libitum and were properly housed in optimized
temperature (24 ± 2 �C and humidity 55 ± 10%). Rats were segre-
gated into different groups (n = 9): Control group, normal rats with
swimming exercise, aging, aging group with swimming exercise. In
order to induce aging, the rats were injected with D-galactose IP
(150 mL/kg of body weight) for 8 weeks. The control and the
exercise-training group were administered with 0.9% physiological
saline. The swimming training was performed following previous
report by Hart, et al [25]. In the first two weeks, the normal rats
from exercise training group and aged rats from the aging group
with swimming exercise were left for swimming for 20 min/day,
5 times/week. The duration of swimming was extended to 30 min/-
day starting from the 3rd week and to 60/min during fourth to
eighth wee. The rats were left for swimming in 50 cm deep of
water maintained at 35 ± 1 �C [26] individually in a 60 � 90 cm
water tub. All protocols were approved by the Institutional Animal
Care and Use Committee of China Medical University, Taichung,
Taiwan. The study followed the principles of laboratory animal
care [27].

Western blotting analysis

Protein extracts were derived upon homogenization using tis-
sues in a lysis buffer (100 mg tissue/mL buffer) containing
0.05 M Tris-HCl (pH 7.4), 0.15 M NaCl, deoxycholic acid (0.25%),
NP-40 (1%), 1 mM EDTA. After centrifuging the homogenates at
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12,000g for 40 min the supernatants were collected and stored at
�80 �C. The protein concentration was determined by Lowry
method and the Western blotting analysis was performed follow-
ing methods mentioned in other reports with slight modification
[28]. The PVDF membranes with transferred proteins were blocked
in 3% bovine serum albumin (BSA) in TBS buffer. The primary anti-
bodies Fas-L(SC-956), FADD(SC-6035), Caspase-8 (SC-6134), Bax
(SC-526), a-tubulin(SC-5286), b-actin (SC-47778), p-IGF1R (sc-
101703), Akt (SC-5298) and Bcl-2 (SC-7382) were purchased from
Santa Cruz Biotechnology (California, USA); IGF1R (ab19675) was
from Abcam Biotechnology (Cambridge, UK) and p-Akt (#9275),
Cleaved caspase-3 (#9664) and PARP (#9542) were from Cell Sig-
naling technologies (Maryland, USA)., Cell Signaling, Maryland,
USA). Appropriate secondary antibodies were used and the immu-
noblots were visualized and documented with Fujifilm LAS-4000
(GE healthcare UK limited, Buckinghamshire, UK).
Masson’s trichrome staining and TUNEL assay

Terminal deoxynucleotidyl transferase dUTP-mediated nick-end
labeling (TUNEL) assay for the tissue sections was performed as
mentioned in the previous report [29]. Briefly, the de-waxed and
rehydrated tissue sections were treated with proteinase K followed
by permeabilization solution and then with TUNEL reagent (Roche
Applied Science, Indianapolis, IN). The nucleus was then stained
using 4, 6-diamidino-2-phenylindole (DAPI). The TUNEL-positive
nuclei were illuminated in green and DAPI stained nucleus were
in blue. Photomicrographs were obtained using fluorescent micro-
scope (DP 74, Olympus, Tokyo, Japan). Masson’s trichromewas per-
formed following procedure mentioned in previous report [30] and
the de-waxed and rehydrated tissue sections were placed in freshly
prepared Weigert’s Hematoxylin reagent for 10 min and then in
Briebrch Scarlet for 10 min followed by placing in phosphotungstic
Fig. 1. Exercise attenuates aging-associated cardiac apoptosis. (A) Representative micr
different groups (Control and Exercise: rats under exercise training, induced-aging: D-gala
exercise training). Percentage of DAPI stained (upper panels, blue spots) nuclei and TUNE
group). **P < 0.01 denotes significant differences compared to that of the Control group. #
phophomolybdic acid for 10min. After applying anilin blue solution
for 10 min and in 1% glacial acetic acid, the slides were dehydrated
with graded ethanol and photomicrographs were captured in Zeiss
Axiophot microscope (Zeiss, Oberkochen, Germany).

Statistical analysis

The results are shown as means ± SEM obtained from 3 inde-
pendent experiments. The differences among the groups were ana-
lyzed by one-way ANOVA analysis using Graphpad prism software
(GraphPad Software Inc, San Diego, CA, USA) followed by Tukey’s
post hoc test and all results were quantified using ImageJ software
(NIH, MD). p < 0.05 was considered statistically significant.

Results

Exercise training attenuates aging-associated cardiac apoptosis

TUNEL assay was performed to determine if D-galactose
induced-aging could induce cardiac apoptosis and if exercise train-
ing could help overcome the aging-associated cardiac apoptosis.
TUNEL assay on the left ventricular section from aging-induced
rats show that increased number of apoptotic nuclei compared to
the control group. The number of TUNEL-positive cardiac cells
was 6.5 folds higher in D-galactose induced-aging rats and exercise
treatment in the aging rats reduced the apoptosis by 66% with
respect to the number of apoptotic cells (Fig. 1).

Effects of aging and exercise training on cardiac fibrosis

Masson’s Trichrome staining of the heart sections show that D-
galactose induced-aging rats displayed large amounts of collagen
accumulation which was reduced in aging rats with swimming
oscopic images show stained apoptotic cells in heart tissue sections of rats from
ctose induced aging rats and Aging + Exercise: D-galactose induced aging rats under
L stained (lower panels, green spots, x400) nuclei are presented in bars (n=3 in each
P < 0.05 denotes significant differences compared to that of the Induced-aging group.



Fig. 2. Exercise training attenuates aging associated cardiac fibrosis. Representative
Masson’s trichrome stain showing Collagen accumulation (blue color) in heart
tissue section of Control, exercise training, aging and aging with exercise group rats.
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(Fig. 2). The results therefore show that exercise training in aging
group potentially restore the cardiac contractile function due to
reduction in the cardiac remodeling.
Exercise training on D-galactose-induced modulations in cardiac
extrinsic apoptotic pathway

To determine the changes in the cardiac Fas receptor-involved
apoptosis mechanism in the aging model after exercise training,
Fas ligand (Fas-L), FADD and active caspase-8 levels were checked
by Western blot analysis. The results reveal that Fas-L and FADD
increased significantly in the aging rats (Fig. 3) and thereby
revealed the involvement of these factors in the aging-associated
apoptosis. Further, while exercise training did not cause any nota-
ble changes in the apoptosis events in normal rats, exercise train-
Fig. 3. Effect of exercise training on proteins involved in extrinsic apoptosis. (A) Repres
Caspase-8 in the left ventricle tissue in from different groups (Control and Exercise:
Aging + Exercise: D-galactose induced aging rats under exercise training). (C) Bars repres
represents mean values ± SEM. *P < 0.05 and **P < 0.01 represent significant differences w
to aging group.
ing in the aging group were significantly reduced up on exercise
training as evident the active caspase-8 protein levels. Therefore,
8 weeks of exercise training potentially ameliorates aging associ-
ated extrinsic apoptosis.

Modulations in aging associated cardiac intrinsic apoptotic pathway

To determine the changes in the mediators of cardiac
mitochondria-dependent apoptotic pathways, the levels of Bax,
cleaved caspase-3 and PARP were analyzed by Western blotting
(Fig. 4). The results show that cardiac Bax, cleaved caspase-3 and
PARP levels were significantly elevated in the aging group. Mean-
while, there was no notable change in Bax, cleaved caspase-3
and PARP levels between the control group and the normal rats
with exercise training. But, aging rats with exercise training
showed a strong reduction in the level of cleaved caspase-3. The
results therefore reveal that exercise training effectively suppress
aging associated intrinsic apoptosis.

Effect of exercise training on cardiac pro-survival pathway

Further to ascertain the changes in cardiac IGF1R/AKT survival
cascade in the aging rats caused due to exercise training, the pro-
survival associated proteins of the heart were measured by west-
ern blotting (Fig. 5). The cardiac p-IGF1R, p-Akt and Bcl-2 protein
levels were significantly downregulated in the aging group. How-
ever, exercise training showed significant enhancement in the
levels of survival proteins like IGF1R, p-Akt & Bcl-2 in the aging
rats. The results therefore highlight that IGF1R associated survival
cascade is an important prognostic even in exercise induced pro-
tection against the pathological phenomenon of aging.
Discussion

Various alternative approaches have been demonstrated to deli-
ver cardioprotective effects against numerous pathological condi-
tions [30–37]. According to American College of Sports Medicine
and the American Heart Association exercise training provide car-
entative Western blots show the changes in the protein levels of Fas-L, FADD and
rats under exercise training, induced-aging: D-galactose induced aging rats and

ent the ratio of band intensities with respect to that of the internal control. The data
ith respect to control group. ##P < 0.01 denotes significant differences with respect



Fig. 4. Effect of exercise training on proteins of intrinsic apoptosis. (A) Representative protein products of Bax, Cleaved Caspase-3 and PARP from left ventricles of Control (C),
exercise training (E), aging (A) and aging with exercise (AE) group rats were measured by Western blotting analysis. The b-actin was used as an internal control. (C) Bars
represent the relative fold changes in protein levels representing mean values ± SEM. *P < 0.05, and ***P < 0.001represent significant differences with respect to control group.
###P < 0.001 represents significant differences with respect to aging group.

Fig. 5. Exercise reboots survival signaling in the cardiac cells of aging rats (A) representative protein products of IGF1R, p-IGF1R, Akt, p-Akt and Bcl-2 extracted from the left
ventricles of Control (C), exercise training (E), aging (A) and aging with exercise (AE) group rat hearts were measured by Western blotting analysis. The b-actin was used as an
internal control. (C) Bars represent the relative fold changes in protein levels representing mean values ± SEM. *P < 0.05, **P < 0.01 and ***P < 0.001significant differences with
respect to control group. ##P < 0.01 and ###P < 0.001 significant differences with respect to aging group.
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diacprotection in conditions like hypertension, coronary artery dis-
ease and it is also widely known to attenuate ischemia-reperfusion
injury in aged adults [38,39].

In this study, nuclear staining in hearts of D-galactose-induced
aging mice showed that there was a 15% increase in the number
of apoptotic nuclei in cardiac cells. However, the D-galactose-
induced aging mice with exercise training, the cells apoptosis
found to be reduced to 3%. Various study show that apoptotic rates
of 2–12% affect the physiological function of the heart and causeir-
reversible damage to the heart and affects systemic blood supply
[40].

Our previous study also demonstrated that aging triggers car-
diac cell death mediated by Fas-L that binds to its receptor Fas.
Fas-L with Fas will activate its death-domain and downstream pro-
tein FADD and upon the release of pro-caspase-8 they combine
with FADD in the cytoplasm to activate caspase-8 that directs re-
activation of caspase-3 protein and induce the apoptosis program.
Activation of Caspase-8 could also lead Bid into t-Bid. The t-Bid
gets embedded into the mitochondrial outer membrane, causing
mitochondrial released of cytochrome-c which induces Caspase-3
activation by Caspase-9 and triggers cell apoptosis. In our results,
the Caspase-8 and Fas-FADD were augmented in D-galactose
induced aging group and were reduced in exercise training group
[41]. The results suggest that D-galactose induced aging rats, simi-
lar to natural aging rats, display cardiac physiological changes and
increased cardiac cell death (Fig. 6). Suppression of Fas-FADD path-



Fig. 6. Schematic representation on the molecular events involved in cardio-protection provided by exercise training.
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way by exercise training is a potential way for controlling myocar-
dial cellular apoptosis during the progression of cardiac disease. In
line with other reports, our results show that D-galactose induced
aging causes a notable increase in cleaved Caspase-3 levels and
PARP cleavage [42,43]. It should be also noted that, Caspase-3
and PARP remain inactive in control rats and in normal rats with
exercise.

The PI3K-Akt signal pathway is a notable survival mechanism
that could be regulated by IGF1R. Enhancement of IGFIR and its
associated survival factors is considered as a hallmark of efficient
cardioprotection against various pathological models of cardiac
defects [30–32,35,37,44]. IGF-I and its associated pro-survival pro-
teins p-PI3k, p-Akt, Bcl-2 and Bcl-xL were seen to be elevated in
STZ induced diabetic models as well, indicating their compen-
satory survival mechanism to suppress apoptosis under various
stresses [15,29,45]. In our study, p-Akt/Akt were significantly ele-
vated in young mice with exercise training and given exercise
training after D-galactose-induced aging mice. These results sug-
gested that regardless of young or old mice, PI3K-Akt signal cas-
cade plays a central role in cellular survival mechanism and
exercise training is an effective means in maintaining the PI3K-
Akt activation in vivo. Further, IGF1R survival mechanism could
be a possible hallmark for the beneficial effects in heart conferred
upon exercise training.
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