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Abstract

Heart growth and pathological changes are accompanied by extracellular matrix-dependent alterations in integrins and
integrin-associated proteins, suggesting their role in heart development and disease. Most of our knowledge on the involve-
ment of integrins in heart pathology is provided by the in vivo experiments, including cardiac hypertrophy models. However,
in vivo studies are limited by the complex organization of heart tissue and fail to discern cell types and particular integrins im-
plicated in hypertrophic signalling. This problem is being addressed by isolated cardiomyocyte primary cultures, which have
been successfully used in different in vitro disease models. This review aimed to analyse the general approaches to studying
integrins and integrin-associated signalling pathways in cardiac hypertrophy focusing on the in vitro systems. The lessons
learned from culture experiments on the models of hypertrophy induced by stretch, stimulating factors, and/or extracellular
matrix components are summarized, demonstrating the major involvement of integrin-mediated signalling in cardiac hypertro-
phic response and its apparent crosstalk with signal pathways induced by stretch or hypertrophy stimulating factors. The
benefits and perspectives of using cardiomyocyte primary culture as a hypertrophy model are discussed.
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Introduction

Cardiac tissue is composed of different cell types and the ex-
tracellular matrix (ECM), which is a cell-produced organized
network of macromolecular proteins. Cardiomyocytes (CMs)
are functional heart cells responsible for contractility,
whereas cardiac fibroblasts are the main producers of ECM.
Myocardial ECM consists of collagens and glycoproteins in-
cluding fibronectin and laminin, as well as proteoglycans
and elastins,1 with type I collagen being the most abundant
structural component.2 A detailed description of ECM in
heart tissue may be found in recent reviews.3,4

Cardiac ECM is known to be a highly dynamic system. Its
composition and stiffness are altered during physiological as
well as pathological changes in the heart,5 including hypertro-
phic growth.6 While it had previously been considered that
ECM functions to provide the integrity and mechanical
stiffness of the heart, now it seems to be a major regulator
of intracellular processes within the cardiac cells leading to
changes in their function and phenotype.7–9 Because the

interactions between cells and ECM are provided by trans-
membrane integrin receptors,10 there is growing interest over
recent years in understanding the role of integrins in heart dis-
eases. This review aimed to analyse the general approaches to
studying integrins and integrin-associated signalling pathways
in cardiac hypertrophy and focuses on the in vitro models.

Integrins in cardiac muscle cells

Integrin receptors are composed of α–β heterodimeric units
and are expressed in all cell types. There were identified
more than 18 α and 8 β subunits, which may combine to form
at least 24 different receptors. In cardiac muscle cells, the
most abundant integrins are α1β1, α5β1, and α7β1 being
mainly collagen, fibronectin, and laminin receptors, respec-
tively. Some integrins including β1 and α7 have additional
alternative splicing variants named isoforms,11,12 which were
shown to be developmentally regulated. In cardiogenesis,
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β1D isoform is known to replace the embryonic β1A variant.13

Expression of α-chains was also shown to be altered during
heart development. Integrin subunit α5 is mainly expressed
in foetal and neonatal CMs, but in postnatal development,
it is replaced by α7 integrin, which remains the major α sub-
unit in adult CMs.13 Furthermore, foetal and neonatal rat
ventricular myocytes were shown to express α1 and α3 sub-
units, whereas in freshly isolated cells of adult hearts, the lack
of α1 chain was demonstrated.14

Integrins were initially considered to function as a physical
connection between cell cytoskeleton and ECM. However,
there is accumulated evidence to indicate that integrins are
involved in signal transduction from the extracellular space
into cells. This process is known as mechanotransduction,
which is the converting of mechanical forces, in particular,
ECM tension, into biochemical signals.15 Integrins do not
possess enzymatic activity, so they use downstream mole-
cules to transmit their signals within the cell.16 Integrin activa-
tion is followed by their clustering and the attraction of
non-receptor kinases to cytoplasmic domains with the activa-
tion of relevant signalling pathways that modulate transcrip-
tional activity and direct particular cellular activities.4,17

Among non-receptor kinases, focal adhesion kinase (FAK) is
believed to be a key player in further proceeding the intracel-
lular signals after integrin activation.4,18 In vivo studies re-
vealed increased FAK activity in the heart following pressure
overload,19,20 and mouse models with the heart-specific
knockout of FAK demonstrated its role in regulation of cardiac
hypertrophy.21,22

Focal adhesion kinase is known to stimulate extracellular
signal-regulated kinases (ERK1/2) and small GTPase RhoA, a
major regulator of the actin cytoskeleton.15 Moreover, in dif-
ferent cell types, FAK is involved in the regulation of PI3K/Akt
signalling implicated in cell proliferation and survival.23 In car-
diac muscle cells, the interaction of cytoplasmic domains of
integrins with FAK was shown to mediate the phosphoryla-
tion of mitogen-activated protein (MAP) kinases, such as
ERK, p38, and c-Jun N-terminal kinases (JNKs).24 Despite
some studies arguing against a major role for these MAP ki-
nases in hypertrophy,25,26 ERK1/2, p38, and JNKs were shown
to be activated in hypertrophic myocardium27,28 and have
been implicated in the development of pathological cardiac
hypertrophy.29–33

The genetic ablation of several integrin subunits has clearly
demonstrated their essential role in normal development and
function.34 Integrin expression was shown to be altered
during heart pathological changes. In vivo data demonstrated
that cardiac hypertrophy is accompanied by the up-regulation
of β1, α3, and α7 integrins as well as redistribution of β3
integrin along with the re-expression of α1 and α5 subunits,
which are known to be expressed during cardiogenesis.34–37

This knowledge generated a renewed interest in studying
the involvement of integrins in cardiac hypertrophic response.
Most of what we know about the role of integrins in heart dis-
eases is based on in vivo integrin modulation studies.38 In par-
ticular, β1 integrin deficiency was shown to cause
hypertrophic changes with the reduced basal contractility
and relaxation39 and to induce the increased myocardial

Table 1 In vivo models with modulation of gene expression demonstrating the role of integrins in heart pathology

Integrin subunit In vivo model
Effect on the heart as compared

with wild-type animals Reference

Integrin β1 Mice with β1 integrin knockout
exposed to myocardial infarction

Higher levels of cardiomyocyte apoptosis
and poorer left ventricular function

Krishnamurthy et al.40

Mice with β1 integrin knockout
exposed to heart failure

Less hypertrophic growth with reduced
heart weight/body weight ratio and myocyte
cross-sectional area; higher levels of apoptosis

Krishnamurthy et al.42

Mice with cardiomyocyte-specific β1
integrin knockout exposed to pressure
overload

Intolerance to haemodynamic loading with
high mortality; blunted hypertrophic response
with reduced increases in wall thickness
and left ventricular mass

Shai et al. and
Li et al. 41,43

Mice with cardiomyocyte-specific β1
integrin knockout exposed to
ischaemia/reperfusion injury

Significant increase of the percentage
myocardial infarction area/area at risk

Okada et al.44

Integrin β3 Mice with β3 integrin knockout exposed
to pressure overload

Inhibited hypertrophic response with reduced
increases in left ventricular mass and wall
thickness; increased cell death; reduced
cardiac output with increased mortality

Johnston et al.6

Mice with β3 integrin knockout exposed
to pressure overload

Enrichment of μ-calpain and programmed
cell death

Suryakumar et al.45

Integrin α7β1D Mice with cardiomyocyte-specific α7β1D
integrin overexpression exposed to
ischaemia/reperfusion injury

Substantial reduction of the infarct size Okada et al.44

Integrin α5β1D Mice with cardiomyocyte-specific α5β1D
integrin overexpression exposed to
ischaemia/reperfusion injury

No effect on the infarct size Okada et al.44
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dysfunction after myocardial infarction.40 The excision of the
β1 integrin gene in mice induced their intolerance to pressure
overload,41 while β3 integrin knockout was shown to inhibit
pressure overload-induced hypertrophic growth and result
in reduced cardiac output.6

The lessons learned from integrin modulation studies in the
context of in vivo disease models are summarized in Table 1.
However, these data only indirectly link integrins with heart
pathological changes, because knockout models do not ex-
clude the influence of countless signalling pathways within
the organism. Moreover, even in heart-specific knockout
models, it is hard to distinguish the impact of CM integrin sig-
nalling from the engagement of non-muscle cells. In particu-
lar, most of the heart pathologies, including hypertrophy, are
accompanied by fibroblast-driven fibrosis,46 which was shown
to be controlled through integrin-mediated feedback from the
ECM.47–49 The involvement of certain fibroblast-specific
integrins in the onset of the fibrotic programme was con-
firmed on lung fibrosis models. For example, αvβ3 integrin
was shown to be crucial in driving progressive pulmonary fi-
brosis in humans,50 whereas α6 integrin conferred an invasive
phenotype to human fibroblasts and mediated experimental
lung fibrosis in mice.51 Moreover, fibroblast-specific knockout
of β3 integrin substantially reduced fibrosis in the mouse
model of pressure overload hypertrophy.52 The engagement
of integrin signalling associated with cardiac fibroblasts into
the general picture of heart pathology interferes with the es-
timation of CM-specific response accounting for intracellular
changes.

To address this problem, hypertrophic models using
isolated CM primary cultures may be used. Even though
in vitro systems are just approximating natural conditions,
they allow revealing the involvement of particular compo-
nents of integrin signalling in CM during their pathological
changes.

Culture systems for studying cell–
matrix interactions in cardiac muscle
cells

Integrin-mediated mechanotransduction has been exten-
sively studied in vitro for different non-muscle as well as
smooth muscle cells,53,54 whereas data obtained on cardiac
muscle cells are much less. This may be because CM cultures
are difficult to prepare and manipulate as compared with the
majority of non-muscle cells. However, several in vitro
systems for CMs culturing have been well established and ap-
proved for studying cell–matrix interactions. In these in vitro
systems, primary cultures of neonatal and adult ventricular
CMs isolated from rats and mice are commonly used.

Two-dimensional (2D) culture systems including ECM pro-
teins applied onto the dish surface are the traditional models

for CMs culturing. Such models allowed isolating the effect of
specific ECM components on cell morphology and function.
For example, our previous results show that the organization
of contractile apparatus in rat neonatal CMs differs depend-
ing on the type of ECM substrate.7 A further benefit of 2D
systems is the opportunity to specify matrix geometry. In
one study, CMs cultured on micropatterned islands were
shown to develop unique myofibrillar patterns corresponding
to ECM geometric cues.55

Another approach is a three-dimensional (3D) format using
one or a combination of ECM components. 3D culture sys-
tems are considered as approaching natural conditions with
the cells surrounded by ECM rather than plated onto it.
Therefore, 3D systems allow recapitulating cell–matrix inter-
actions observed in heart tissue. To support that opinion,
culturing of rat neonatal CMs in 3D collagen gels vs. 2D
ECM substrates prevented the rearrangement of their myofi-
brillar apparatus according to our previous data.56 Moreover,
3D cardiac ECM scaffold was shown to enhance the matura-
tion of CMs derived from induced pluripotent stem cells as
compared with 2D cultures.57 Importantly, 3D cultures of
CMs were shown to differ significantly from traditional 2D
models in the formation of focal adhesion complexes and
the integrin involvement therein.58,59

A particular advantage of 3D culture systems is the ability
to finely tune matrix stiffness, which was shown to influence
significantly cell behaviour.60 However, these systems have
their apparent drawbacks associated with sample analysing
methods. For example, it is much more difficult to recover
cells from 3D vs. 2D systems for some experiments, including
protein assays.61 Furthermore, the abundant amount of ECM
proteins in 3D cultures makes it difficult to analyse samples of
lysed cells using SDS-PAGE protocols as compared with 2D
cultures.61

In general, both 2D and 3D primary cultures of cardiac
muscle cells have their advantages and disadvantages and
should complement each other in studying ECM-mediated
mechanotransduction.

In vitro models of cardiac hypertrophy

Cardiac hypertrophy

The described 2D and 3D culture systems have been success-
fully used to generate cardiac disease models, including hy-
pertrophic models.

Cardiac hypertrophy occurs in response to cardiac stress,
including an increased mechanical load due to pressure or
volume overload. In contrast to physiological hypertrophy,
hypertrophic response induced by pathological stimuli
generally progresses to heart failure, myocardial infarction,
arrhythmias, and death.62 The differences between
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physiological and pathological hypertrophy are governed by
distinct cellular signalling pathways dependent on the nature
of upstream stimuli rather than the duration of cardiac
stress.63,64 The characteristic feature of pathological hyper-
trophy is that it is accompanied by the induction of foetal
gene programme similar to the developmental pattern, in-
cluding the expression of myosin heavy chain β-isoform
(MYH7), skeletal α-actin, and atrial (ANF) as well as brain na-
triuretic factor (BNF). Moreover, pathological hypertrophy is
defined by the increase in protein synthesis, CM size, and cy-
toskeletal remodelling, which are not observed in physiolog-
ical hypertrophy.64

In general, the ANF is considered to be one of the
most conserved and well-characterized markers of cardiac
hypertrophy.65 Its induction along with the increased cell
size and protein synthesis is commonly used to confirm the
hypertrophic response in culture models.

Stretch-induced hypertrophy models

Mechanical stretch is considered to be an initial factor for
cardiac hypertrophy induced by haemodynamic overload.
This knowledge gave rise to the idea of using mechanically
stretched CM cultures as a relevant model of pressure
overload-induced hypertrophy. Mechanical forces were
shown to regulate integrin dynamics in CMs cultured on
ECM proteins.66 Therefore, stretch-induced hypertrophy
models have been used to study the involvement of integrins
and integrin-associated proteins in hypertrophic response in
cardiac muscle cells.

The role of integrin β1 in hypertrophic signalling was
confirmed on the neonatal rat ventricular myocyte culture
exposed to persistent centrifugal force stretch, where
anti-integrin β1-blocking antibodies were shown to partially
inhibit stretch-induced hypertrophic response in these cells.67

The involvement of integrin-associated proteins in
stretch-induced hypertrophy was demonstrated on the pri-
mary culture of neonatal rat ventricular myocytes plated on
type I collagen and exposed to cyclic stretch. The results have
shown that hypertrophic response, including ANF gene acti-
vation, was accompanied by an increase in FAK phosphoryla-
tion and its redistribution from perinuclear regions to
aggregates distributed along the myofilaments.68 Disruption
of endogenous FAK/Src signalling using a dominant-negative
FAK mutant or an Src kinase pharmacological inhibitor mark-
edly attenuated stretch-induced FAK activation and inhibited
stretch-induced ANF expression. These results suggest that
FAK signalling is an important component of the early hyper-
trophic response induced by stretch68 (Figure 1). Another
study using neonatal rat ventricular myocytes plated on de-
formable membranes coated with collagen IV and exposed
to equiaxial static stretch revealed the apparent crosstalk be-
tween β1 integrin and angiotensin II receptor signalling in me-
diating FAK-dependent regulation of ERK1/2 in response to
mechanical stretch. Furthermore, β1 integrin was shown to
be required for FAK-independent activation of ERK1/2, p38,
and JNK MAP kinases.24 In neonatal rat ventricular myocytes
grown on collagen I-coated stretch plates, mechano-
transduction of the stretch signal was associated with a small
increase in JNK activity but did not cause p38 MAP kinase
activity.69 However, another study revealed elevated activity
of p38 in high-density cultures of CMs plated on collagen I

Figure 1 The interplay between hypertrophic signalling induced by extracellular matrix, stretch, and stimulating factors in cardiac myocytes.
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and exposed to stretch, where p38 was shown to induce BNF
expression through activation of the transcription factor NF-
κB.70 These data suggest that the engagement of p38 MAP ki-
nase in hypertrophic response may depend on culture
density.

The increased phosphorylation of FAK upon cyclic
stretching of neonatal rat ventricular myocytes plated on
type I collagen in the model of stretch-induced hypertrophy
was accompanied by the increase in the amount and
DNA-binding activity of transcriptional factor NF-κB in cell nu-
clear extracts. Treatment with FAK/Src pharmacological in-
hibitor attenuated NF-κB redistribution and DNA-binding
activity induced by cyclic stretch, indicating the involvement
of NF-κB in hypertrophic response and suggesting that FAK
signalling may regulate NF-κB activation in pressure
overloaded cardiac myocytes.71

Stimulating factor-induced hypertrophy models

Along with mechanical stretch, several factors have been
identified to induce hypertrophic changes in CMs, including
adrenergic agonists and peptide hormones.65,72 These factors
have been demonstrated to induce hypertrophy in vitro,
including ANF expression and an increase in cell size.73

Using these models allowed revealing the crosstalk be-
tween ECM-mediated transduction and stimulating
factor-mediated signalling during the hypertrophic response
in CMs (Figure 1). For example, the adrenergic signal path-
ways leading to CM hypertrophy were shown to be strongly
dependent on integrin-mediated signalling.74 Stimulating rat
neonatal CMs, cultured on laminin or fibronectin, with phen-
ylephrine, which is known to be a pharmacological agonist of
the α1-adrenergic receptor,

75 induced hypertrophic response,
including increased cell size and expression of ANF. In
contrast, CMs plated on the non-adhesive substrate
gelatin exhibited a reduced capacity to undergo these
phenylephrine-stimulated hypertrophic changes. Moreover,
in CMs cultured on ECM proteins, phenylephrine stimulated
a rapid increase in tyrosine phosphorylation of focal adhesion
proteins including FAK, whereas the mutant form of FAK at-
tenuated phenylephrine-stimulated hypertrophic response,
indicating the role of ECM-mediated mechanotransduction
in phenylephrine-induced hypertrophy.74 A large increase in
the expression of integrins α1 and α5 was observed in rat neo-
natal ventricular myocytes cultured on collagen-coated
dishes during phenylephrine-induced hypertrophic growth
with the redistribution of these integrins from a diffuse pat-
tern on the cell surface to a sarcomeric banding pattern. In-
terestingly, phosphorylation of integrin β1 significantly
inhibited phenylephrine-induced hypertrophy, suggesting
that integrin β1 phosphorylation may be regulated during hy-
pertrophic growth of cardiac myocytes.76

Phenylephrine was also shown to strongly up-regulate the
expression of β1D integrin and its subcellular redistribution as
well as the rapid and sustained increase in FAK phosphoryla-
tion in neonatal rat ventricular myocytes cultured on
collagen I.73 In turn, the overexpression of β1 integrin could
augment phenylephrine-induced hypertrophic response,
whereas inhibition of β1 reduced the adrenergic hypertrophy.
Likewise, phenylephrine-stimulated hypertrophic response
was apparently down-regulated by inhibiting FAK signalling,
despite the overexpression of FAK did not enhance
hypertrophy.73 Interestingly, β1D integrin overexpression per
se was also shown to cause elevation of endogenous ANF, in-
duction of hypertrophic reporter genes, and increases in cell
size similar to those caused by adrenergic stimulation. Like-
wise, overexpression of FAK induced ANF up-regulation.73

These data strongly suggest integrin-mediated FAK signalling
as an important component of hypertrophic response in car-
diac muscle cells and support its engagement with adrenergic
hypertrophic signalling.73,77 Laminin binding to β1 integrin
receptors was also shown to down-regulate the adrenergic
hypertrophic signalling via FAK/PI3K/Akt pathway in cat atrial
myocytes treated with a β1-adrenoreceptor stimulator and a
selective β2-adrenoreceptor antagonist.

78

Figure 2 Schematic of the integrin-mediated regulation of hypertrophic
response in cardiomyocyte culture models.
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Endothelin-1 and angiotensin II are two peptide hormones
that were shown to induce cardiac hypertrophy by an auto-
crine mechanism.75 Endothelin stimulation of rat neonatal
ventricular myocytes plated on collagen-coated dishes re-
sulted in time-dependent FAK activation,79 and stimulation
of cells by different hypertrophic agonists, including phenyl-
ephrine, endothelin-1, and angiotensin II, demonstrated nu-
clear translocation of NF-κB and stimulation of its
transcriptional activity. Importantly, the inhibition of NF-κB
activity suppressed hypertrophic agonist-induced expression
of ANF and increase in cell size. Conversely, overexpression
of NF-κB induced the expression of ANF as well as an increase
in cell size, suggesting this transcription factor to be an im-
portant participant in cardiac hypertrophic growth.80

The key components of integrin signalling involved in
hypertrophic response as confirmed by the data of in vitro
experimentations are summarized in Figure 2.

Extracellular matrix-induced hypertrophy models

Besides mechanical stretch and stimulating factors, ECM
components per se have been also used to induce a hyper-
trophic response in cardiac myocytes. The hypertrophic ef-
fect of fibronectin was demonstrated by the increased cell
size and protein synthesis as well as secretion of ANF and
BNF in cardiac muscle cells cultured on fibronectin-coated
dishes in contrast to the cells grown on non-coated plates.
Fibronectin was also shown to induce reorganization of
actin structures, co-localization of β1 integrin with vinculin,
formation of focal adhesion complexes, and FAK
phosphorylation.81 Importantly, blocking antibodies against
β1 and β3 integrin significantly inhibited fibronectin-induced
secretion of ANF and BNF. The described effects were
inhibited in a dose-dependent manner by GRGDSP, which is
a competitive antagonist of the Arg–Gly–Asp (RGD) domains
found in fibronectin, vitronectin, and laminin.81 These data
suggest that fibronectin stimulation of cardiac hypertrophy
is RGD dependent82 and justify the use of RGD-stimulating
models in hypertrophic studies.

Three-dimensional ECM-based systems including fibronec-
tin/vitronectin or their RGD motifs have been mainly used
to recapitulate the in vivo formation of focal adhesion com-
plexes in hypertrophic myocardium. For example, adult feline
CMs embedded in 3D collagen I matrix with the addition of a
low concentration of fibronectin and vitronectin were shown
to form FAK-containing β3 integrin-mediated focal adhesion
complexes, characteristic of hypertrophic myocardium
in vivo.36,83 The benefit of 3D vs. 2D ECM-based hypertrophy
models was demonstrated by differences in the formation of
focal adhesion complexes between stimulated with synthetic
RGD peptide adult feline CMs that were cultured on laminin
support or within a type I collagen matrix. The results demon-
strated that only collagen-based 3D model provided for

cytoskeletal assembly of FAK, Nck, and Shc as well as c-Src
and ERK1/2 activation, as observed in hypertrophic
myocardium.59

Our previous data show that CMs in a long-term 2D culture
system lacking ECM proteins undergo substantial rearrange-
ments, including the significant increase in cell size, reorgani-
zation of contractile apparatus, and re-expression of foetal
genes,84,85 which changes are reminiscent of those observed
in hypertrophic CMs. Importantly, such alterations were ac-
companied by deposition and remodelling of ECM by CMs
themselves84,86 with the correlated dynamics in integrins
and integrin-linked kinase.87 Our preliminary data also show
the redistribution of FAK during such rearrangements, pre-
sumably corresponding to the formation of focal adhesion
complexes.88 These findings offer a new perspective for using
monolayer CM culture, considering it per se as a hypertrophic
model devoid of additional factors, suitable for the investiga-
tion of ECM-mediated integrin mechanotransduction in
cardiac muscle cells.

Conclusions

For the last decades, cardiac ECM is emerging as an impor-
tant regulator of cell morphology and function in heart de-
velopment and disease. As matrix-derived cues are known
to be transmitted via transmembrane integrin receptors,
the involvement of integrins and integrin-associated proteins
in heart pathological changes is under active consideration.
In vivo studies including knockout models demonstrated
the essential role of integrins in cardiac hypertrophy. How-
ever, complex organization of heart tissue interferes with
studying the engagement of particular integrins within the
cardiac muscle cells and the relationships between
integrin-mediated signalling and other hypertrophic signal-
ling pathways. In this context, the in vitro models are
becoming a highly significant component of cardiac hyper-
trophy research. Despite the limitations of different culture
systems, some of them have been demonstrated to suffi-
ciently recapitulate events found inside the hypertrophic
heart and have proven themselves as relevant models to
study hypertrophy-induced integrin signalling. In general,
lessons learned from culture experiments demonstrate the
major involvement of ECM-mediated signalling in cardiac
hypertrophic response and reveal the apparent crosstalk
between integrins and hypertrophic signalling induced by
stretch or stimulating factors (Figure 1).
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