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Alcohol drinking alters oral microbiota
to modulate the progression
of alcohol-related liver disease

Chuyue Pan,1 Chang Liu,2 Wenxin Jia,1 Danyang Zhao,1 Xiaoshan Chen,1 Xiang Zhu,1 Maohui Yang,2

and Lirui Wang2,3,*

SUMMARY

Alcohol-related liver disease (ALD) is one of the leading causes of liver-related death worldwide. Howev-
er, roles of oral microbiota in regulating the progression of ALD remain unknown. Here, we fed mice with
control or ethanol diet to establish chronic-plus-binge ALD model. 16S ribosomal DNA sequencing was
performed on oral and cecum samples. We demonstrated that alcohol drinking influenced bacterial rich-
ness, microbial structure, and composition in oral samples of ethanol-fed mice compared with control
mice. Alcohol consumption also remodeled relationships among oral microbes and altered functions of
oral microbiota. Furthermore, oral microbiota, such as Streptococcus, Helicobacter, Alloprevotella, and
Psychrobacter were closely associated with ALD parameters. Finally, we observed Sutterellaceae_uncul-
tured,Dyella, andGemmatimonas possibly translocated alongwith oral-gut axis and positively correlated
with the severity of ALD. Altogether, alcohol consumption reprogramed composition and functions of
oral microbiota to promote ALD progression, suggesting that oral microbes might become a new target
for ALD therapy.

INTRODUCTION

Alcohol-related liver disease (ALD) is one of the most causes of mortality worldwide, with approximately half of the liver cirrhosis-induced

death associated with alcohol.1,2 The spectrum of ALD covers alcoholic fatty liver, alcoholic steatohepatitis (ASH), alcoholic fibrosis, and

cirrhosis.3 Besides, severe ASH may progress to alcoholic hepatitis, in which 20%–50% of patients will die within 3 months.2,3 Although

ALD has been a serious threat to human health, the studies about the pathological mechanism and effective therapeutic approaches are still

limited.2–4 Therefore, it is urgent to elucidate the pathogenesis and explore potential therapeutic strategies for ALD.

With further researches on the pathogenesis of ALD, increasing evidences have demonstrated that alcohol-associated dysbiosis of gut

microbiota contributes to ALD progression by various mechanisms, including the disruption of intestinal tight junction, the microbial trans-

location from gut to the liver, the release of microbial toxins (like lipopolysaccharides), and the metabolism of intestinal bile acids or fatty

acids.5–7 As the second largest microbiome after the gut microbiota, oral microbiota includes more than 700 different species of bacteria,

fungi, viruses, and protozoa.8 The disturbance of oral microbiota results in the increase of pathogenic bacteria, mucosal immunity damage,

and the translocation of oral microbiota to other tissues.9 In consequence, the dysbiosis of oral microbiota is not only associated with oral

diseases but also has intimate relationships to systemic diseases, such as liver cirrhosis, liver cancer, pancreatic cancer, inflammatory bowel

disease, and cardiovascular disease.10–13 Although heavy alcohol drinking has been reported to influence the composition of oral micro-

biota,14 whether oral microbiota could also take an active role in ALD progression remains unknown.

Here, we demonstrated that the impact of alcohol consumption on oralmicrobiota during the development of ALD. Themicrobial diversity

was reduced and themicrobial structure was changed in the oral cavity of ethanol-fedmice as compared with control mice. The relative abun-

dance of oral Helicobacter, Janthinobacterium, Alloprevotella, Paenalcaligenes, and Psychrobacter was increased, while Lactococcus and

Streptococcus was decreased following alcohol intake. In addition, we predicted the potential altered functions of oral microbiota during

alcohol consumption and analyzed the correlation between the oral microbiota and ALD progression. Finally, further investigation showed

that Sutterellaceae_uncultured, Dyella, and Gemmatimonas were probably translocated along with the oral-gut axis, and more importantly,

their intestinal abundance was positively associated with ALD. Collectively, our findings have illustrated the critical roles of oral microbiota in

promoting ALD progression.
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RESULTS

Alcohol feeding affects the microbial diversity of oral microbiota

Chronic-plus-binge model was utilized to generate mice with ALD (Figure 1A).15,16 Although alcohol feeding did not affect the body weight

and food intake significantly (Figures 1B and 1C), the liver weight/body weight ratio and plasma levels of ALT and AST were markedly

increased in ethanol-fed mice (Figures 1D and 1E). Histological staining revealed very obvious hepatic steatosis after alcohol diet feeding

(Figure 1F). Compared with mice fed with control diet, the real-time PCR data showed the elevated mRNA expression of inflammatory cyto-

kines, such as Il1b, Il6,Ccl2, and Tnf, in the livers of ethanol-fedmice. Gene-encoding fatty acid translocase (Cd36) was also upregulated, while

Ppara, the gene responsible for fatty acid b-oxidation was decreased following alcohol dinking (Figure 1G). Taken together, alcohol feeding

could induce severe hepatocytes death, hepatic steatosis, and inflammation in livers of mice.

To investigate the effects of alcohol feeding on the oral microbiota and assess whether this impact will be different in themorning or in the

evening, oral samples were collected daily at 7:00 a.m. and 4:00 p.m. from control and ethanol-fed mice (Figure 2A). a-diversity which rep-

resents species richness and evenness was shown by Chao 1, Shannon, and Simpson indexes. In spite of the less impact of alcohol drinking

on samples collected in the morning from the oral cavity of mice (Figure 2B), oral samples collected in the evening showed obvious decrease

of microbial diversity following alcohol intake (Figure 2C). We also compared the a-diversity of oral samples collected in the morning or in the

evening and the cecum samples. As expected, we found that the microbial richness was quite higher in the gut microbiota than that in oral

cavity of both control and ethanol groups (Figure 2D). Moreover, in mice fed with ethanol diet, the oral bacterial richness was significantly

lower in samples collected in the evening than that in the morning as evidenced by Chao 1 index and Shannon index (Figure 2D), while in

control diet-fedmice, the oral bacterial diversity was not changed between these two time points (Figure 2D). The compositional dissimilarity

among groups was described by b-diversity. We firstly observed a significant difference in clustering between the gut microbiota of control

and ethanol-fed mice (p = 0.018) (Figure 2E). Further, the b-diversity analysis revealed an obvious separation between control and ethanol

diet-fedmice in oral samples collected in both the morning (p = 0.018) (Figure 2F, Left panel) and evening (p = 0.022) (Figure 2F, Right panel).

A B C

D E F

G

Figure 1. EtOH liquid diet feeding deteriorates the biochemical and histological characters to induce ALD

(A) Schematic of the mice ALD model. Mice were fed with control liquid diet for 5 days, and then diet was changed to 6% EtOH liquid diet in EtOH group for

10 days. At the 15th day, mice were gavaged EtOH or maltose dextrin, respectively. Oral samples were collected every 7:00 a.m. and 4:00 p.m. (n = 12 per group).

(B) Body weight.

(C) Food intake.

(D) Liver weight/body weight ratio.

(E) Plasma ALT and AST levels.

(F) Left: Representative images of H&E staining in liver sections. Scale bar: 100 mm. Right: Scores of steatosis.

(G) Gene expressions of inflammation and lipid metabolism in liver tissues (n = 10–12 per group). Data were presented as mean G SEM. *p < 0.05. Data were

analyzed by two-tailed Student’s t test except data in G were analyzed by Mann Whitney test.
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Of note, we have investigated the microbial structure in oral samples collected in the morning and in the evening and found that microbiota

composition in samples collected in the morning was not clustered with that in samples collected in the evening in control group (p = 0.422)

(Figure 2G, Left panel) and ethanol group (p = 0.372) (Figure 2G, Right panel). Overall, alcohol feeding altered the microbial richness and

structure of oral microbiota especially in samples collected in the evening.

Alcohol consumption alters the composition of oral microbiota

Since that oral samples collected in the evening showed themost significant differences inmicrobial diversity in control and ethanol-fedmice,

we thus chose these oral samples for further analysis on microbial composition. The relative abundance of oral microbiota in phyla levels was

described using bar charts (Figure 3A). We have compared the oral microbial composition between mice fed with control and alcohol diet,

and observed that at the phylum level, the relative abundance of Proteobacteria was obviously elevated in ethanol-fed mice compared with

control mice, while Firmicutes, Acidobacteriota, Chloroflexi, Myxococcota, and RCP2-54 was significantly decreased after alcohol feeding

(Figures 3A–3C). At the level of genus, the bar charts showed the remarkable upregulation in the amount of Janthinobacterium, Psychro-

bacter, and Paenalcaligenes in the oral samples of ethanol-fed mice. In contrast, we found that the relative abundance of Streptococcus

was significantly reduced in the oral cavity of alcohol-consumed mice, and there was also a decreased tendency in the abundance of Pseu-

domonas, Lactococcus, and Acinetobacter (Figures 3D–3F).

A B C

D E

F G

Figure 2. Alcohol consumption affects the microbial diversity of oral microbiota

(A) Schematic of the samples collecting.

(B and C) The a-diversity was showed by Chao 1 index, Shannon index, and Simpson index. Oral samples were collected frommice fed with control and EtOHdiet

in the morning (B) or in the evening (C).

(D) Comparison of the a-diversity of oral samples collected in the morning or in the evening and the cecum samples from mice fed with control and EtOH diet.

(E) b-diversity in cecum microbiota of Ctrl and EtOH groups.

(F) b-diversity of control group and EtOH group in oral samples collected in the morning (Left) and in the evening (Right).

(G) The b-diversity between samples collected in the morning or in the evening in control (Left) and ethanol-fed mice (Right). *p < 0.05, **p < 0.01, ***p < 0.001,

****p < 0.001.

ll
OPEN ACCESS

iScience 26, 107977, October 20, 2023 3

iScience
Article



Consistently, the linear discriminant analysis effect size (LEfSe) analysis of oral microbiota in control and ethanol-fed mice also demon-

strated that ethanol intake significantly increased the relative abundance of Campilobacterota and Proteobacteria at the phylum level and

dramatically elevated the relative abundance of Helicobacter, Janthinobacterium, Alloprevotella, Paenalcaligenes, and Psychrobacter at

the genus level, while genus of Lactococcus and Streptococcus were obviously decreased in the oral cavity following alcohol feeding

(Figures 3G and 3H). Altogether, we revealed that alcohol consumption significantly upregulated the abundance of Janthinobacterium, Pae-

nalcaligenes, and Psychrobacter and remarkably reduced the relative abundance of Streptococcus and Lactococcus in oral cavity.

A B C

D

E

F

G H

Figure 3. Alcohol drinking changes the microbial community structures in oral cavity

(A–C) The relative abundance of oral bacterial at phylum level. (A) Top 14 phyla were presented in order of their relative abundance in the bar chart and the rest

was assigned as ‘‘others’’. (B) The relative abundance of Proteobacteria and Firmicutes. (C) The relative abundance of Acidobacteriota, Actinobacteriota,

Bacteroidota, Chloroflexi, Verrucomicrobiota, Myxococcota, and RCP2-54 in the oral cavity. Data were presented as mean G SEM. *p < 0.05.

(D–F) The relative abundance of oral microbiota at genus level. (D) Bar chart of the top 14 genera in order of their relative abundance. (E) The relative abundance

of top 5 genera with abundance >5%. (F) The relative abundance of other 9 genera. Data were presented as mean G SEM. *p < 0.05.

(G) The cladogram of oral microbiota in different taxonomic levels. Red and green represented the differential taxa from control and ethanol-fed mice,

respectively (n = 5 per group) (Wilcoxon rank-sum test, p < 0.05).

(H) Significantly changed bacterial taxa between control and ethanol group ofmice (LDA score, >2 or <�2). Data were analyzed by two-tailed Student’s t test in B,

C, E, and F.
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Ethanol diet reprograms the relationships among oral microbiota

Apart fromproviding information about taxonomic composition of oralmicrobiota, we further analyzed the relationships amongmicrobiota in

mice fed with control or ethanol diet. In the oral cavity of control mice, most microbes displayed positive interactions with each other

(Figures 4A and 4B, Left panels), but following alcohol feeding, we observed that a larger proportion of microbiota shifted to behave

A

B

Figure 4. Ethanol diet feeding reprograms the correlation between oral microbiota

(A) Correlation between oral bacteria under control diet (Left) or ethanol diet (Right) feeding.

(B) The significant relationships between oral microbes (p < 0.05) were selected to be shown.
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negatively correlated with other bacteria as evidenced by more blue-color area in the correlation plots (Figures 4A and 4B, Right panels).

Specifically,Monoglobuswas positively correlated with Lactobacillus, Aerococcus, Sutterellaceae_uncultured, Ileibacterium, Jeotgalicoccus,

and Staphylococcus in control mice (Figure 4B, Left panel), while it was only positively correlated with Parabacteroides after alcohol feeding

(Figure 4B, Right panel). Acidothermus and Dubosiella were both positively correlated with Candidatus_Xiphinematobacter, Sutterella-

ceae_uncultured, Bryobacter, and Candidatus_Solibacter, but these correlations were disappeared after alcohol feeding. These results indi-

cated that alcohol drinking disrupted the relationships among oral microbiota. Meanwhile, we found that new correlations appeared

following alcohol feeding. For example, Paenarthrobacter almost failed to correlate with other microbiota in the oral cavity of control

mice, while Paenarthrobacter was inversely correlated to Candidatus_Solibacter, Parasutterella, and Bacillus following alcohol feeding.

Notably, alcohol reprogramed the connections of Psychrobacter with other bacteria, making it become the busiest hub in ethanol-fed

mice, while Psychrobacter had no remarkable correlations with other bacteria under the control diet feeding (Figure 4B). Collectively, alcohol

consumption remodeled the relationships among microbiota in the oral cavity.

Effects of alcohol on the function of oral microbiota

We further predicted the functions of oral microbiota in control and ethanol-fed mice, and the significant altered pathways were demon-

strated in Figure 5A.More specifically, among the pathways which were decreased after alcohol feeding, a large part of themwere associated

with carbohydrate metabolism and glycan biosynthesis and metabolism, including pathways of galactose metabolism, glycosaminoglycan

degradation, starch and sucrose metabolism, fructose and mannose metabolism, and so on (Figure 5B, orange and green panels). We

also noticed that alcohol feeding decreased theDNA replication and repair pathway in ethanol-fedmice, indicating that alcohol consumption

damaged the survival of bacteria (Figure 5B, yellow panel). In contrast, alcohol upregulated the pathways related to alcohol metabolism, such

as glutathionemetabolism andmetabolism by cytochromeP450 (Figure 5B, blue and gray panels).We next revealed that alcohol feeding also

increased pathways of microbial secretion system, suggesting that alcohol might promote the communication between oral microbiota and

the host cells (Figure 5B, purple panel). Finally, the upregulation of pathways about bacterial motility proteins, bacterial chemotaxis, and

flagellar assembly in alcohol-fed mice implied that oral microbiota might have higher capability to translocate from oral cavity to internal tis-

sues following alcohol feeding (Figure 5B, pink panel).

The relative abundance of oral microbiota reflects the severity of ALD

To investigate whether the change of the oral microbiota after alcohol feeding was associated with ALD progression, we analyzed the rela-

tionships of the top 50 abundant oral bacteria with ALD symptoms including ALT, AST, steatosis, and hepatic mRNA levels of inflammation

and lipid metabolism (Figure 6A). Among them, 24 genera were significantly correlated with these ALD phenotypes; their Spearman corre-

lations were described in Figure 6B. The relative abundance of Helicobacter, Oligella, Alcaligenes, Psychrobacter, and Alloprevotella was

positively correlated with ALT, AST, and hepatic steatosis. In contrast, we found that the relative abundance of Streptococcus, Lactococcus,

A B

Figure 5. Effects of alcohol on the functional profile of oral microbiota

(A) The prediction of functional profiles by 16S rRNA sequencing analysis of oral microbiota in control and EtOH group of mice.

(B) The upregulated and downregulated pathways influenced by alcohol consumption.
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A

B

Figure 6. Oral microbiota is associated with ALD progression

(A) Heatmap of Spearman’s correlation among top 50 genera in the oral cavity and several ALD parameters. *p < 0.05, **p < 0.01, ***p < 0.001.

(B) Correlation network of the significant (p < 0.05) related nodes. Colors of edge represent Spearman’s correlation coefficients, and colors of nodes for their

categories.
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and Acinetobacter showed negative relationships with the hepatic ALT, AST, and steatosis levels (Figures 6A and 6B). Additionally, the abun-

dance of Blautia and Lachnospiraceae_NK4A136_groupwas negatively correlated with the expression of Il1b in liver tissues. The alteration of

Acidothermus, Rhodanobacter, and Dubosiella was revealed to be inversely correlated with hepatic Il6 expression, and the relationship of

Paenarthrobacter abundance with Ccl2 mRNA level was negative as well. We also observed that the abundance of Psychrobacter, Jeotga-

licoccus, and Alcaligenes had positive relationships with the hepatic Tnf level (Figures 6A and 6B). Finally, we noticed that the relative abun-

dance of Lachnospiraceae_uncultured, Blautia, and Lachnospiraceae_NK4A136_group was dramatically negatively correlated with the

expression of fatty acid translocase (Cd36) and Ppara, suggesting that this microbiota might contribute to liver steatosis (Figures 6A and

6B). Collectively, the reprogramming of oral microbiota by alcohol drinking possibly indicated the development of ALD.

Alcohol induces the oral-intestine translocation of microbiota

Bacterial translocation from oral cavity to other internal tissues was one of the major routes for oral microbiota to influence systemic dis-

eases.10–13 Considering that gut microbiota has been reported to regulate ALD progression,5–7 we investigated whether oral bacteria could

translocate to the intestine and take part in modulating ALD development. Through comparing of oral microbiota with gutmicrobiota in con-

trol and ethanol-fed mice, we demonstrated that the relative abundance of Sutterellaceae_uncultured, Dyella, and Gemmatimonas was

decreased in oral cavity and increased in cecum after ethanol diet feeding (Figure 7A). We further revealed that the relative abundance of

Sutterellaceae_uncultured, Dyella, and Gemmatimonas in the oral cavity exhibited negative correlations with alcoholic liver phenotypes

including ALT, AST, steatosis, inflammation, and lipid metabolism-related genes, while in the gut, the abundance of these three bacteria

was positively correlated with the previously described ALD symptoms (Figure 7B), suggesting that the shift of microbiota from oral cavity

to gut might promote the ALD progression. Notably, the elevated relative abundance of Sutterellaceae_uncultured in intestine showed sig-

nificant positive correlations with the hepatic levels of ALT, AST, and steatosis, as evidenced by the linear regression analysis in Figure 7C.

Taken together, we found that oral microbiota possibly translocated along with the oral-gut axis to the intestine, and their enrichment in

the intestine might promote the progression of ALD.

A machine learning prospective model predicts ALD development

Based on the oral microbiota which was found to be associated with alcohol drinking, we established a noninvasive risk assessment model to

estimate whether mice developed ALD or not. This predictive model was created using 5 increased oral microbiota (Helicobacter, Janthino-

bacterium, Alloprevotella, Paenalcaligenes, and Psychrobacter) and 2 downregulated oral microbiota (Lactococcus and Streptococcus), as

well as Sutterellaceae_uncultured, Dyella, and Gemmatimonas which had possibility to translocate from oral cavity to gut following alcohol

drinking (Figure 8A). According to the results of 16S rRNA sequencing of oral microbiota collected in the evening from mice fed with or

without alcohol drinking in this study, we calculated that this predictive model achieved a performance with the area under the receiver oper-

ating characteristic curve of 0.78 (Figure 8B), indicating that the discriminatory ability of this model was acceptable.15 However, the suitability

of this model for clinical usage needs further verification, since that the samples’ number used here to establish the predictivemodel was very

limited.

DISCUSSION

ALD contributes markedly to the global morbidity and mortality of liver diseases.2,16 Given the complexity of ALD pathogenesis, the clinical

diagnostic and therapeutic strategies are still limited.6 Increasing evidences have showed the importance of oral microbiota in systemic dis-

eases;17,18 however, the detailed connection of oral microbiota with ALD has not been well described.14,19 Therefore, here we performed 16S

rRNA sequencing on the oral microbiota of chronic-plus-binge-induced ALD mice to investigate the changes of oral microbiota forced by

alcohol intake. We demonstrated that alcohol feeding altered the microbial diversities and compositions as well as functions of oral micro-

biota in ethanol-fed mice as compared with control mice. The relationships among oral microbiota were also changed following alcohol

feeding. Notably, we observed the significant correlations between the alterations of oral microbiota and ALD progression after ethanol

intake. We further identified that three genera of bacteria, Sutterellaceae_uncultured, Dyella, and Gemmatimonas, might shift along with

the oral-gut axis to the intestine to promote the development of ALD (Figure 8C). Consistent with our findings, several studies also demon-

strated that human participants with the long-term alcohol drinking habit or alcohol dependence had the altered oral microbiota composi-

tions and metabolisms.14,19,20 Although there is no report up to today about the roles of oral microbiota in ALD patients in clinics, our results

and the previously mentioned studies indeed shed new light on the potential important functions of oral microbiota in regulating ALD pro-

gression in human patients, which merits further investigation.

Since evidences showed that saliva microbiome was influenced by the diurnal rhythm in patient with alcohol dependence,20 we thus

collected oral samples from control and ethanol-fed mice at 7:00 a.m. and 4:00 p.m. daily to investigate the differences of oral microbiota

in the morning and in the evening. In our study, we observed a slight increase of a-diversity after alcohol feeding in oral samples collected

in the morning and significant decrease of microbiota diversity in oral samples collected in the evening, whereas previous report on saliva

microbiota in people with alcohol drinking showed an obvious increase in microbial richness at 7:00 a.m. or at 3:00 p.m.20 This discrepancy

might be due to the fact that experiment on human samples involvedmuchmore variables, including diet, smoking, diseases, and other con-

founding factors. However, our investigation on mice was able to exhibit a more direct impact of alcohol feeding on oral microbiota. Further,

although the effects of alcohol intake on oral microbiota were not obviously different between samples collected in the morning and in the
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evening according to the analyses about microbial structure, we still found that alcohol had affected much more on oral samples collected in

the evening, indicating that the changes of alcohol intake on oral microbiota were indeed influenced by diurnal rhythm in some degree.20

In this study, we observed significant increases in the relative abundance of Janthinobacterium and Helicobacter after alcohol feeding in

the oral cavity, while the abundance of Streptococcus was obviously decreased. It was reported that oral Helicobacter may promote peri-

odontal disease, and then induce the release of oral inflammatory cytokines.21 Moreover, the relationship between periodontal disease

and liver diseases has also been revealed.9 These might be consistent with our findings that the elevated Helicobacter in the oral cavity

was positively correlated with ALD parameters. In addition, Streptococcus is the dominant species of oral cavity, whose abundance may

be related to the pH level of oral cavity.22 The abundance of certain acid-nonresistant Streptococcusmight be decreased due to the influence

of organic acids produced by alcoholmetabolism.22 Further, evidences showed that Janthinobacterium played important roles in proteolysis,

lipolysis, and saccharolysis,23 while we have no clear clue about the function of Janthinobacterium in the oral cavity, which might need further

investigations.
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Figure 7. Ethanol consumption induces oral-intestine translocation of oral microbiota

(A) The relative abundance of Sutterellaceae_uncultured, Dyella, and Gemmatimonas in oral and cecum samples of mice fed with control and EtOH liquid diet.

(B) Correlations among abundance of Sutterellaceae_uncultured, Dyella, Gemmatimonas, and ALD symptoms.

(C) Linear regression of the relative abundance of Sutterellaceae_uncultured with ALT, AST, and steatosis level. Data were presented as meanG SEM. *p < 0.05.

All data were analyzed follow the procedure of statistical analysis.
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The dysbiosis of oral microbiota could influence the systemic diseases, such as pancreatic cancer, liver cirrhosis, and cardiovascular dis-

ease.10,13,18 Pathogenic bacteria and toxin metabolite in oral cavity may transfer to the systemic circulation via damaged oral mucosa.24 Oral

microbiota could also translocate to the gut and increase the permeability of the intestinal mucosa to invade to other tissues.24 In this study,

we observed that oral microbiota Sutterellaceae_uncultured, Dyella, andGemmatimonas translocated to the intestine after alcohol feeding.

One of the possibilities to explain the promotion of ALD progression by oral microbiota was that these oral microbiota or their metabolites

might further shift from gut to liver, since evidence showed that the breach of the intestinal mucosal barrier by alcohol facilitated gut micro-

biota translocation to liver.7,24 Nevertheless, all these findings indicated that the oral-gut axis might play an important role in the ALD

progression.

Currently, liver biopsy is the golden standard of clinical diagnosis of ALD, which is invasive and has the risk of complications and sampling

error.25 Developing novel noninvasive diagnosticmethods is thus urgently needed. Increasing evidence showed that oralmicrobiota could be

biomarkers for the clinical diagnosis in several diseases, such as hepatocellular carcinoma26 and colorectal carcinogenesis.27 In this study, we

established a machine learning model to predict ALD in mice; although the sample numbers were very limited, the model might still find its

way into the prediction of ALD in clinical samples in the near future.

Collectively, our study demonstrated that the microbial structure and compositions as well as functions of oral microbiota could be regu-

lated by alcohol drinking. We also discovered that the relationships amongmicrobes in the oral cavity were reprogrammed with alcohol con-

sumption. More importantly, the identified oral microbiota which translocated to the gut could be potential culprits for the progression of

ALD. All these findings indicated that oral microbiota might be served as novel noninvasive biomarkers and therapeutic targets for ALD

treatment.

Limitations of the study

The first limitation of the current study is that the findings observed inmice were not confirmed in the oral samples collected from the patients

with ALD, so it is not sure whether the oral microbiota in humans has similar alteration following alcohol drinking, which deserves further inves-

tigation. The second limitation is that themice numbers used to establish themachine learningmodel to predict ALDwere very small, and the

model was not tested in larger cohort, so the predictive power of this model also needs further verification in the future.

A C

B

Figure 8. Alcohol drinking remodels oral microbiota to modulate ALD progression

(A) Bar plot of feature importance in the random forest model. Blue and pink bar: microbiota with decreased or increased abundance, respectively, in the oral

samples collected in the evening following alcohol drinking. Yellow bar: bacteria which might shift along with the oral-gut axis to the intestine.

(B) Performance of the machine learning model discriminating mice fed with control or ethanol diet.

(C) The schematic diagram summarized our findings that alcohol feeding altered the bacterial diversities and compositions of oral microbiota in ethanol-fedmice

as compared with control mice. The relationships among oral microbiota were also changed following alcohol feeding. Notably, the alterations of microbiota in

the oral cavity were significantly correlated with ALD progression after ethanol intake. We further identified that three genera of bacteria,

Sutterellaceae_uncultured, Dyella, and Gemmatimonas, might shift along the oral-gut axis to the intestine to promote the development of ALD.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for any resources should be directed to and will be fulfilled by the lead contact, Lirui Wang (wanglirui@nju.

edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� 16S rRNA sequencing data have been deposited at National Center for Biotechnology Information Sequence Read Archive database

and are publicly available as of the date of publication. Accession numbers are listed in the key resources table.
� This article contains no original code.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mice

Female C57BL/6Jmice were obtained fromBeijing Vital River Laboratory Animal Technology Company (Beijing, China). For ALDmicemodel,

10-12 week-old female mice were fed with control liquid diet for 5 days, followed by 10 days 6% EtOH liquid diet.30 Mice from control group

were fed with control liquid diet for the total of 15 days. At the 7:00-9:00 a.m. in the final day, mice were gavage with 31.5% ethanol (5 g/kg) or

45% maltose dextrin and sacrificed after 9 h.30 Oral samples were collected every 7:00 a.m. in the morning and 4:00 p.m. in the evening. All

animals were maintained under a specific pathogen-free (SPF) room with a constant temperature (25�C) and 12:12-h light/dark cycle. All an-

imal procedures were approved by the institutional Animal Care and Use Committee of China Pharmaceutical University.

METHOD DETAILS

Plasma ALT and AST measurement

Blood from inferior vena cava was mixed with 0.5 M EDTA and centrifuged at 4�C, 100003g for 5 min to collect plasma. ALT and AST levels

were measured according to the manufacturer’s protocols (Nanjing Jiancheng Bioengineering Institute).31,32 Briefly, 20 mL of substrate

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw data This paper SRA: PRJNA943134

Critical commercial assays

ALT kit Nanjing Jiancheng Bioengineering Institute Cat#C009-2-1

AST kit Nanjing Jiancheng Bioengineering Institute Cat#C010-2-1

TIANamp Stool DNA Kit TIANGEN Cat#DP328

Control liquid diet Bio-Serv Cat#F1259SP

EtOH liquid diet Bio-Serv Cat#F1258SP

Experimental models: Organisms/strains

C57BL/6J mice Beijing Vital River Laboratory Animal Technology Company N/A

Software and algorithms

Prism 9 GraphPad https://www.graphpad.com/

R package R CRAN https://www.r-project.org/

USEARCH v10.0.240 Edgar28 http://www.drive5.com/usearch

VSEARCH v2.13.6 Rognes et al.29 https://github.com/torognes/vsearch

Cytoscape v. 3.9.1. Cytoscape Consortium https://cytoscape.org/
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solution was mixed with 5 mL plasma and incubated at 37�C for 20 min. The mixture then added 20 mL of phenylhydrazine solution and incu-

bated at 37�C for 30min. Next, 200 mL 0.4MNaOHwas added to each well, and the absorbance at 510 nmwas detect after 15min standing at

RT. For control wells, plasmawas added after the first step of incubation, and the concentration of ALT andASTwere calculated from standard

curves.

Histology

The fixing and embedding of liver tissues and the H&E staining with sections were performed according to our previous studies.31,33 Briefly,

liver tissues were fixed with formalin, embedded in paraffin and sectioned in 5 mm. Liver sections were deparaffinized by xylene and concen-

tration gradients of ethyl alcohol (100%, 95% and 70%). Hematoxylin and Eosin solution (Servicebio) were used for H&E staining. The score of

steatosis showed the percentage of steatosis in liver sections with H&E staining.

Real-time PCR

The detailed procedure of real-time PCR was described in our previous studies.31,33 Total RNA of liver tissues was extracted with RNAiso Plus

(Takara), and then dissolvedwith DEPC-treatedwater (SangonBiotech). HiScript III 1st Strand cDNASynthesis Kit (Vazyme) was used to obtain

cDNA. Real-time PCR was performed using ChamQ SYBR qPCR Master Mix (Vazyme) for 40 cycles of 10 s at 95�C and 30 s at 60�C on an ABI

StepOnePlus instrument. Primer sequences for each gene were shown in the Table S1. Relative expressions of target genes were calculated

using DDCT and normalized to 18S as internal controls.

Genomic DNA extraction

The oral samples were collected using oral swabs by rubbing the oral cavity of mice for three times clockwise and scraping the inside and

outside of the mice teeth. The oral swabs after sampling were rinsed in 500 mL Buffer SA (TIANamp Stool DNA Kit) for 50 times. The genomic

DNA from oral samples and cecum samples were extracted by TIANamp Stool DNA Kit (DP328; TIANGEN). All the procedures were followed

by the manufacturer’s protocols.

16S rRNA sequencing and analysis

The isolated genomic DNA frommice oral cavity and cecumwere used for 16S rRNA sequencing and analysis. The 16S ribosomal RNA (rRNA)

V4 region was amplified and sequenced by the Illumina NovaSeq platform (Illumina, San Diego, CA) in Novogene Technology Co, Ltd (Bei-

jing, China) to evaluate microbiota diversity. The analysis of raw sequencing data were described as before.31,34 Briefly, the sequences were

denoised in amplicon sequence variants (ASV) by UNOISE3 based on USEARCH28 v10.0.240 (http://www.drive5.com/usearch) and

VSEARCH29 v2.13.6 (https://github.com/torognes/vsearch). The sequences were then aligned to SILVA138 database in order to calculate tax-

onomy table. a-diversity and b-diversity were calculated with USEARCH (https://drive5.com/usearch/manual/pipe_diversity.html) and online

tools (https://www.microbiomeanalyst.ca/). The R package ‘edgeR’35 was utilized to find differential genus. Then LEfSe was performed online

(http://huttenhower.sph.harvard.edu/galaxy) and the R package edgeR was obtained for identifying differential taxons.35,36 The correlation

analyses between microbiota and ALD phenotypes were performed using corr.test() function of psych package v.2.2.9 in R and visualized via

corrplot and pheatmap package v.1.0.12. The significant correlations between oral microbiota and disease parameters were visualized by

cytoscape v. 3.9.1. The raw data have been deposited in the National Center for Biotechnology Information Sequence Read Archive database

(accession no. PRJNA943134).

Function prediction and data analysis

TheASV sequences analyzedbyUSEARCHusing relevant procedures described in 16S rRNA sequencing and analysis, were further annotated

with Greengenes database: https://greengenes.secondgenome.com. v.13_5.37 Then the annotation results were adopted to predict meta-

genomic functions via PICRUST,38 a suite implanted on a Galaxy website (http://huttenhower.sph.harvard.edu/galaxy/). KEGG pathways

abundance of specific samples was extracted. R packages ‘edgeR’35 and ‘limma’39 were used to filter low-abundance features and find

the differential ones with a threshold of adj.P.Val <0.05, which is a p value adjusted by Benjamini – Hochberg method.40 After scaling by

row, the scaled matrix was obtained for plotting heatmap via R package ‘ComplexHeatmap’ v. 2.15.1.41,42 The visualization was used via

ggplot2 v.3.4.1.

Establishment of machine learning model

The establishment of machine learning prospective model was described as before.43 The machine learning model was built using 10 micro-

bial features. The randomForest package in R was used for model construction. A 10-fold cross-validation was utilized to evaluate themodel’s

performance. The pROC package was employed to generate the ROC curve, which assessed the discriminatory ability of this model.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis

In this study, data were presented asmeanG SEM and graphed using GraphPad PRISM 9. Two-tailed Student’s t test andMann-Whitney test

were used for statistical analysis of the two-group comparisons; PerMANOVA test was used for b-diversity analysis. For the relative abundance

of differential bacteria in control and ethanol group at the genus level, Wilcoxon rank sum tests and Paired samples t-test were utilized de-

pending on whether the abundance of bacteria apply to normal distribution. *p value < 0.05, **p value < 0.01, ***p value < 0.001, ****p

value < 0.001 were considered statistically significant.
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