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Heterogeneous photoredox flow chemistry for the
scalable organosynthesis of fine chemicals

Can Yang 1 Run Li2, Kai ALl Zhang 2B \Wei Lin® !, Katharina Landfester® 2 & Xinchen Wang =

Large-scale photochemical synthesis of high value chemicals under mild conditions is an ideal
method of green chemical production. However, a scalable photocatalytic process has been
barely reported due to the costly preparation, low stability of photosensitizers and critical
reaction conditions required for classical photocatalysts. Here, we report the merging of flow
chemistry with heterogeneous photoredox catalysis for the facile production of high value
compounds in a continuous flow reactor with visible light at room temperature in air. In the
flow reactor system, polymeric carbon nitrides, which are cheap, sustainable and stable
heterogeneous photocatalysts, are immobilized onto glass beads and fibers, demonstrating a
highly flexible construction possibility for devices of the photocatalytic materials. As
an example of the production of high value chemicals, important chemical structures such as
cyclobutanes, which are basic building blocks for many pharmaceutical compounds, like
magnosalin, are synthesized in flow with high catalytic efficiency and stability.
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hotochemical synthesis of high valuable chemicals under

mild reaction conditions is a green and sustainable manner

for organic transformations, which has been actively
pursued by chemists! 3. Many valuable natural compounds and
pharmaceutical products have been synthesized in laboratory
using photochemistry protocols®>. However, when scaling
up these laboratory-developed photocatalytic reactions in
dimension-enlarged reactors for scalable productions, several
associated issues came up®. One is the decrease in the irradia-
tion efficiency. In principle, the light cannot penetrate deeply
into the reaction mixtures with low surface-area-to-volume
ratios in traditional batch reactors, leading to the decrease of
productivity. In addition, a poor selectivity toward target pro-
ducts is often obtained when prolonging the reaction time to
improve the conversion. The development and application of
flow reactors is therefore recommended to conduct photo-
chemical reactions, efficiently.

Continuous-flow chemistry with inherent advantages of effi-
cient mass- and heat transfer and easy scale-up production has
been extensively used for decades in the chemical industry®-8.
The special module (e.g., narrow channel) of continuous-flow
microreactor enables the uniform irradiation of the entire reac-
tion mixtures, thus ensuring the maximum utilization of irra-
diation energy to drive photochemical reactions and avoiding the
over-irradiation to induce the formation of byproducts. Some
homogeneous continuous-flow photochemical systems® have
been developed for organic synthesis. Even though significant
progress has been achieved in these homogenous flow systems,
the issues inherited from homogenous photocatalysts still remain,
in particular, the poor catalyst stability and the complicated
process for catalyst separation and product purification. On this
point, the use of heterogeneous photocatalyst in flow reactors
ought to be a promising solution because of their facile separation
and cost-effective feature. Nevertheless, the development of het-
erogeneous flow photochemistry has been greatly hampered by
the solid and insoluble nature of heterogeneous photocatalysts,
which could induce the blockage of flow systems and the
shielding of light absorption. Therefore, a new design of a pho-
toredox flow system is highly demanded, which involves suitable
solid photocatalysts, reactors, and their immobilizations, as well
as device fabrications in a harmony way.

Metal-free polymeric carbon nitride (PCN) photocatalyst has
attracted extensive attentions owing to its outstanding properties
such as tunable redox potentials, high photo- and thermal-stability,
facile preparation, and easy processibility in various forms®-11. In
fact, PCN has been frequently employed as a sustainable hetero-
geneous photocatalyst for various photoredox reactions including
water splitting!2-1%, CO, reduction!®!7, and organic transforma-
tions. The ease engineering of PCN organic photocatalyst in band
structure and surface functionality makes it particularly promising
for various organic transformations'®!°. For instance, the oxida-
tions of primary benzylic amines??, alcohols?!, and sulfides?? were
reported under O, atmosphere by PCN with a high conversion and
selectivity. The sp> C-H bond on phenyl ring could be activated by
a PCN/Fe hybrid material?3. C-C bond formation such as Suzuki
coupling reaction has been achieved with palladium-loaded
PCN?4, Photocatalytic Diels-Alder reaction between electron-rich
olefins and dienes was also achieved by PCN2°, and very recently
PCN-based organic photocatalysis has been further expanded to
bifunctionalize arenes and heteroarenes?®. Nonetheless, most of the
above PCN photoredox catalysis systems mainly focus on milli-
gram scale organic synthesis29-26, the scalable trial such as reaction
in a large-scale batch using PCN as photocatalysts has been barely
reported?’. For continuous-flow reactor, carbon nitride solids were
adhered on glass beads using abundant silica gel as the binder?8:2
or transformed to water gel using large among of cross-linker.

Therefore, it is highly desired to develop an alternative strategy for
carbon nitride-based continuous-flow reaction system in the field
of photocatalytic organic synthesis.

Herein, we merge flow chemistry with heterogeneous PCN
photocatalysis for the production of cyclobutanes through [2 + 2]
cycloadditions with visible light. Cyclobutanes are found in a
number of natural products3’-*2, and we chose magnosalin (US$
150/mg) as our target molecule because it is a potent binder for
glucocorticoid receptors in the treatment of inflammatory condi-
tions. Some strategies such as Lewis-acid catalyzed reactions,
amine-catalyzed reactions, and transition metal catalyzed reactions
have been developed to realize the polarized [2 4 2] cycloadditions
for the synthesis of cyclobutanes33-3¢. Yoon et al.37-8 reported a
homogeneous dual-catalyst system including Ru(bpy);Cl, to
achieve the asymmetric [2 4 2] photocycloaddition with visible
light, and later some other homogeneous systems>*~43 have also
been proven to achieve this significant reaction with visible
light. Also, some transition metal oxides***> (e.g., TiO,, CeO,)
were designed as heterogeneous catalysts to achieve [2+ 2]
photocycloaddition. Note that metal-free heterogeneous-catalyzed
[2 4 2] photocycloaddition with high conversion and durability is
still rarely achieved. In this paper, we develop a photoredox flow
reactor using heterogeneous PCN for the scalable synthesis of high
added-value fine chemicals, as exemplified here by cyclobutanes.
Three different precursors are used to optimize the PCN photo-
catalyst, and the conceivable mechanism of symmetric or asym-
metric photocycloaddition is investigated. PCN is immobilized on
the surface of commercially available glass beads or glass fiber with
an effective content of 1 wt.% and 1.2 wt.%, respectively (Supple-
mentary Fig. 1). The functionalized glass beads or fibers can be
easily constructed in a continuous-flow photoreactor with high
light penetration, and cyclobutanes can be synthesized in gram
scale in the continuous-flow photoreactor with a high yield of 81%.
The success of this case is expected to open a new avenue for the
application of heterogeneous photocatalysis in the green synthesis
of added-value fine chemicals in flow.

Results

Structural characterization of PCN photocatalysts. First, three
different PCN materials were obtained by simply heating cheap
and commercially available precursors such as urea, thiourea, and
melamine, which were labeled as UCN, TCN, and MCN,
respectively. Details on preparation procedures and characteriza-
tions are described in the Supplementary Information. The
transmission electron spectroscopy (TEM) images showed differ-
ent morphologies for the three PCN materials (Fig. la-c). UCN
possessed a layered structure with a thickness of 10 nm-20 nm,
whereas TCN and MCN showed a rather denser morphology with
a thickness between ~300 nm and ~600 nm measured by atomic
force microscope (AFM) displayed in Supplementary Fig. 2. The
chemical structure of three PCNs was further confirmed by the
powder X-ray diffraction (XRD) pattern, Fourier transform
infrared (FT-IR) spectrum and solid-state 13C cross-polarization
magic-angle-spinning NMR (13C CP-MAS NMR), respectively (as
shown in Fig. 1d—f). These results are highly similar and consistent
with the previous reports®1%13, It was noted that the diffraction
peak at ~13.1° corresponding to planar atomic structure kept
same and the intensity of the (002) peak ~27.3° decreased from
MCN to UCN, also illustrating the decrease of the thickness of
three CNs. The physical and optical properties of the three PCNs
including the Brunauer-Emmett-Teller (BET) surface areas, pore
sizes, band gap, and conduction band (CB)/valance band (VB)
position of these three CNs were listed in Table 1. The BET
surface of MCN and TCN were both ~10m2g~!, whereas the
BET surface of UCN was larger with ~52m? g~1. The average
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Fig. 1 The morphological and structural characterization of PCNs. a-c TEM images of MCN, TCN, and UCN, respectively. d XRD pattern. e FT-IR

spectrum. f Solid-state 13C MS-MAS NMR.

Table 1 The physical and optical properties of three CNs.

Photocatalyst BET surface (m2g~1) Pore diameter (nm) Band gap (eV) CB/VB position (V vs NHE) Conversion in 8 h (%)
MCN 10 329 2.65 -1.29/1.36 ~35%
TCN 10 331 2.67 -1.30/1.37 ~83%
UCN 53 21.9 274 —1.36/1.38 >99%

absorption pore width was obtained by the automatic system
calculation from Barret-Joyner-Halenda (BJH) equation, which
was showed in Supplementary Fig. 3. From the UV-vis diffuse
reflection spectroscopy, optical band gaps in a range from 2.65 to
2.75 eV could be derived for three PCNs (Supplementary Fig. 4).
The conduction band (CB) positions could be determined by the
electrochemical Mott-Schottky plots (Supplementary Fig. 4c-e),
and VB positions were calculated from above two values. All
PCNs illuminated light activity properties as demonstrated in
photocurrent measurement with clear response for the light-on
and light-off events (Supplementary Fig. 5). The highest intensity
indicated the most efficient light-induced electronic conductivity,
as well as charge separation and charge transfer in UCN among
PCNs*6, which could be further illustrated by electrochemical
impedance spectrum (EIS) in Supplementary Fig. 6.

Photocatalytic performance on milligram scale. To test the
photocatalytic efficiency of the PCN materials, visible light-
induced [2 + 2] cycloaddition between trans-anethole and styrene
was chosen as a model reaction. The monitoring experiments
indicated that three PCN photocatalysts exhibited the same
reaction character of second kinetic order for catalyzing [2 + 2]
cycloaddition reaction under the irradiation of a white LED lamp
(0.1 W/cm?) (Supplementary Fig. 7). However, reaction conver-
sion differed after 8 h with 99%, 83%, and 35% for UCN, TCN,
and MCN, respectively (Supplementary Fig. 8), which was in
accordance with the results of photocurrent and EIS test. The
highest photocatalytic efficiency for UCN probably resulted from

reduced exciton-binding energy in its two dimensional structure,
which likely promoted the light-induced charge transfer in CN
sheets and thereby accelerated the electron transfer between the
substrate and photocatalyst.

A series of control experiments with UCN photocatalyst were
performed as listed in Supplementary Table 1 to optimize the
reaction condition and reveal the possible interaction between the
substrate and photocatalyst. Trace conversion was determined in
darkness or without UCN, indicating the essential role and light-
driven nature of the UCN photocatalyst (Supplementary Table 1,
entry 4-5). Nitromethane was found to be the best reaction
medium among tested solvents, while no product was obtained in
DMSO and toluene (Supplementary Table 1, entry 6-10). In
addition, molecular oxygen could accelerate the cycloaddition
reaction, as an obvious decrease was found in nitrogen atmo-
sphere (Supplementary Table 1, entry 11). Furthermore, specific
electron and hole scavengers were added into the reaction to
analyze the specific roles of photo-generated electron/hole pair.
With the addition of KI, trace conversion was detected
(Supplementary Table 1, entry 12). Although K,S,05 was added,
both conversion and selectivity decreased markedly (Supplemen-
tary Table 1, entry 13).

Based on the observations and previous reports?’—>1, we proposed
the reaction mechanism with the oxidation of trans-anethole by the
photo-generated hole as the initiation step (Supplementary Fig. 9).
As the VB of UCN lay at 1.36 V vs. SCE, it was sufficient to oxidize
trans-anethole (E,; =1.17V vs. SCE)°2. Then, the generated
cationic radical underwent the [2 + 2] cycloaddition with another
alkene partner to form a cyclic intermediate, which afterwards got
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Fig. 2 The DFT calculation of absorption model. Optimized structures and adsorption energies of a anethole. b Methyl isoeugenol. ¢ a-asarone on the

surface of UCN.

Table 2 Screening and control experiment of gram-scale [2 + 2] dimerization of a-asarone catalyzed by UCN under white light2.

o~ CN, CH3NO,, air, o-

S white light, r. t. o

~o .

[N I
Entry Light Reactor Reaction condition variations Yield®
1 + Batch UCN powders® 48%
2 + Flow UCN@glass fibersd 70%
3 + Flow UCN@glass beads 81%
4 — Flow In dark Trace
5 + Flow In acetonitrile 2%¢®
6 + Batch UCN@glass beads 53%
7f + Flow UCN@glass beads 87%
aStandard reaction conditions of flow system: (a-asarone) = 0.167 M, Vpanoz = 60 mL, white LED lamp (0.1 W/cm2), room temperature, air, irradiation time 48 h.
blsolated yield.
€The amount of UCN is 200 mg.
dThe amount of UCN coated on glass fibers is 80 mg.
€Conversion from GC-MS.
fUsing a photoreactor assembled from six paralleled glass tubes with irradiation time 8 h.

an electron from the photocatalyst UCN, the superoxide radical or
the reactive neutral trans-anethole to form the final cyclobutane
product. As shown in Supplementary Fig. 10, oxygen could quench
the fluorescence of UCN suspension with high efficiency for several
cycles, indicating that electron transferred from photocatalyst to
oxygen. The electron spin resonance (EPR)-trapping experiment
using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as active oxygen
species trapping agent revealed typical EPR patterns for superoxide
radical (O,°~) adducts (DMPO-O,°*~) (Supplementary Fig. 11a). In
addition, with N-tert-butyl-a-phenylnitrone (PBN) as radical
trapping agent in EPR trapping experiment showed the character-
istic patterns of the obtained PBN-radical, which indicated clearly
the formation of the cationic radical of anethole (Supplementary
Fig. 11b). The region- and steoro-selectivity was attributed to the
sterically favored bond formation at p-position of the double bond
than that at a position??,

To further understand the adsorption patterns between
anethole derivatives and UCN, the possible interaction models
were calculated. As shown in Fig. 2, one n—m interaction is formed
in all three systems. The -t interaction between the electron-rich
PCN and aromatic molecules is beneficial for activation of the
molecules by promoting further charge transfer. The adsorption
energies of anethole derivatives on UCN are ~—0.8 eV, which
indicates that the main contribution of the adsorption is from the
n-7 interactions, while the -OCH; group has an ignorable effect.

Photocatalytic performance on gram scale. As an important
example of potential industrial application, magnosalin was pre-
pared in a gram-scale batch condition with UCN photocatalyst.
Starting with 4 g a-asarone (the moles of substrate increased by

factor of 80, 0.1 M), CH3NO, (200 mL), and 200 mg UCN (Sup-
plementary Fig. 12), the conversion of a-asarone reached 79%,
but the selectivity to the product, magnosalin, was 63% (with an
isolated yield of 48%) (Table 2, entry 1). The decreased yield was
mainly attributed to more oxide side-products formed because of
the reaction heat from the amplification system. In order to
demonstrate the scalability of our reaction condition and the
possibility of carbon nitride as a highly efficient photocatalyst
for large-scale preparation of pharmaceutical product, a new type
of heterogeneous photoredox flow system was designed and
constructed.

With the optimized reaction condition on hand, a photo-
chemical continuous-flow setup was performed in order to
simulate the general process of industrial production (Fig. 3a, b).
Here, the photocatalyst UCN was immobilized into a photoreactor
(d=0.7cm, 1 =7 cm) to construct a heterogeneous flow reaction
system. Originally, commercially available glass fiber was chosen as
the support to immobilize the photocatalyst UCN. Precisely, a
UCN-coated glass fiber could be obtained via direct thermal
condensation of urea on the surface of fresh fiber (detailed
information in Methods). As shown in Supplementary Fig. 13a, b,
the fresh glass fiber demonstrated a smooth and glassy surface, the
surface became rough and flake-decorated after coating with UCN
photocatalyst. Strong blue emission could be clearly observed
in fluorescence microscope images (Supplementary Fig. 13c, d),
indicating that glass fiber was successfully covered with UCN
photocatalyst. The average thickness of the UCN layer was
~20 nm (Supplementary Fig. 13b) and the amount was estimated
to be 1.2 wt.% after calcination. Subsequently, the UCN-coating
glass fiber was filled into photoreactor. Herein, the cycloaddition
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Fig. 3 The construction of the fixed-bed photoreactor. a Photograph of the flow-continuous photoreactor. b Scheme of fixed-bed photoreactor filled with
supported carbon nitrides for magnosalin production. € Commercial glass beads (left) and UCN-coated glass beads (right). d General process for UCN

coating on the surface of glass beads.

of a- asarone was employed in flow because the generated
product magnosalin is an important anti-inflammatory agent®3.
As expected, a high reaction conversion of 79% for a-asarone and
yield of 70% for magnosalin was achieved with almost quantitative
selectivity (Table 2, Entry 2, and Supplementary Fig. 14a), which
indicated a high catalytic efficiency of UCN photocatalyst and
feasibility of creating a heterogeneous flow photochemistry.
Unfortunately, a decreased conversion was found during the
repeating experiments (Supplementary Fig. 14a). The possible
reason lay in the separation and loss of UCN from glass fiber due
to the high pressure and speed during the flow process, which was
also demonstrated by the decrease of absorption for the UCN-
coating glass fibers after 50 h and 200 h, respectively (Supplemen-
tary Fig. 13e). In order to enhance the binding between support
and photocatalyst UCN, a revised coating method needed to be
designed.

Afterwards, commercially available glass beads with diameter of
1 mm were employed as another support for UCN immobilization
through a modified approach. With details described in methods
(see in Fig. 3d), the glass beads were successively etched with
piranha solution, decorated with silylation reagent (3-aminopro-
pyltriethoxysilane, APTES) and coated with UCN via thermal
condensation of urea, thus producing the final UCN-coated glass
beads (showed in Fig. 3c). The introduction of APTES could
function as bridge for connecting glass bead and UCN
(Supplementary Fig. 15). With this modified method, the obtained
UCN@glass beads showed obvious yellow and rough surface
(Fig. 3¢c). In addition, the glass beads displayed a strong blue
fluorescence, indicating that the surface was completely covered
with UCN photocatalyst (Fig. 4a, b). The thickness of the UCN
flake was 5~10nm from SEM (Fig. 4c) and the amount was
calculated to be ~1 wt. % from calcination test. The element
mapping on the deliberately damaged surface demonstrated a
clear separation between support and photocatalyst, offering a
direct proof for the successfully coating of UCN on the surface of
glass beads (Fig. 4d-g). Chemical structure and morphology of
UCN coated on the surface of glass beads were further
demonstrated by XRD (Supplementary Fig. 16a), FT-IR (Supple-
mentary Fig. 16b), XPS (Supplementary Fig. 17), and SEM
(Supplementary Fig. 18). In addition, the MCN and TCN on the
surface of glass beads were characteristic by PL (Supplementary
Fig. 19), FT-IR (Supplementary Fig. 20) and XPS (Supplementary
Fig. 21) to show the universality of this method. At last, UCN-
coated glass beads exhibited a highly flexible processing possibility
in various shapes, as demonstrated in Supplementary Fig. 22.

The obtained UCN-coated glass beads were then employed to
test the photocatalytic efficiency and stability in continuous-flow

Fig. 4 Fluorescence and SEM images of UCN@glass beads. a Optical
microscope image and b fluorescence image with scale of Tmm. ¢ SEM
image (the red marking region is a man-made removal of carbon nitride to
distinguish the surface of UCN and glass beads). d-g Element mapping
images. Elements from top to bottom are Si, O, C, and N, respectively.

condition. In all, 8 g UCN-coated glass beads were filled in the
flow photoreactor with a-asarone concentration being 0.167 M in
60 mL CH;NO, and a flow speed of 0.5 mL min—1. As shown in
Table 2 (Entry 3), a comparable catalytic efficiency was achieved.
The reaction conversion reached 61% after 24h and further
increased to 89% after 48 h with a final isolated yield of 81%,
corresponding to 1.6 g magnosalin. No conversion was deter-
mined in darkness and trace conversion was detected in other
reaction medium such as acetonitrile (Table 2, Entry 4-5).
Moreover, an obviously improved stability was found with UCN-
coated glass beads. In repeating experiments, the reaction
conversion stabilized in five cycles without obvious decrease
(Supplementary Fig. 14b). Therefore, the turn over number for
the reaction was calculated with a value of 106 based on the moles
of UCN on the surface of glass beads for total five cycles. This
improvement is mainly attributed to the strong binding force
between the glass beads and UCN photocatalyst in the modified
approach, which offers a miniature for continuous industrial
pharmaceutical compound, magnosalin, production. The flow
reactor delivered a much higher reaction yield than that in batch
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Fig. 5 Application of the flow reactor in heterogeneous photosynthesis. Scope of unsymmetrical [2 + 2] cycloaddition reaction.

(Table 2, Entry 6), indicative of a great advantage in the flow
reaction system. AQY measurment of both batch and flow system
under a 420 nm monochromatic light (Supplementary Fig. 23)
was compared with further demonstrate the advantage of the
continuous-flow system for scale-up (description in detail shown
in Supplementary Discussion and Supplementary Figs. 24 and
25). The photocatalytic efficiency can be further improved when
using a photoreactor assembled from six paralleled glass tubes
(Supplementary Fig. 26) to enlarge the irradiation surface area
(Table 2, Entry 7 vs. Entry 2).

At last, to demonstrate the general accessibility of the [2 + 2]
cycloaddition reaction with UCN photocatalyst, the unsymme-
trical [2 + 2] cycloaddition reaction was tested with UCN-coated
glass beads in continuous-flow photoreactor under the visible light
irradiation. As showed in Fig. 5, various styrene derivatives with
both electron-donating groups such as methyl (b-d) and electron-
withdrawing groups such as ester (i) and halides (e-j) were
accessible for the reaction with remarkable reaction vyield.
Although some side-reactions such as dimerizaztion and oxidation
of anethole may present, the crossed-cycloaddition with styrene
derivatives always took place as the major pathway, with a
considerable amount of unsymmetrical cyclobutane products
being achieved. In addition, the position of the functional group
had slight influence on the reaction yield. Both methyl-substituted
(b-d) and bromine-substituted (e-g) styrene on ortho-, meta-, or
para- positions demonstrated generally comparable reaction yield,
respectively. Furthermore, anethole derivatives, such as methyl
isoeugenol (k), methoxycinnamyl alcohol (1), and asarone (m)
were also tolerated with moderate reaction yield. The slight lower
conversion for methyl isoeugenol and asarone starting compound
may be resulted from the over-oxidation and decomposition of
electron-rich cycloadduct intermediates. However, trace products

were determined even after a longer reaction time (48 h) when
p-methoxycinnamaldehyde (n) and p-methoxycinnamic acid (o)
were employed as reactive substrates, probably due the high
oxidation potentials of the starting compounds. Although many
reports have been conducted about cyclobutanes preparation,
direct synthesis of pharmaceutical product, such as magnosalin,
as far as we know, is still rare. The UCN-catalyzed [2+ 2]
cycloaddition in continuous-flow reaction system offers a green
approach for drugs production in a mild condition.

Discussion

The most-challenging feature of using photocatalysts in hetero-
geneous reaction lies in the terms of the light absorption, design
of photocatalytic devices and a balance between activity and
stability during the amplification reaction. We have demon-
strated the use of carbon nitride as cheap, processable, and stable
photocatalyst in scalable and continuous-flow system for cyclo-
butanes production, especially for magnosalin preparation in
gram scale. Both commercial available glass fiber and glass beads
have been employed as translucent support for the carbon nitrile
photocatalyst. The flow photoreactor with UCN-coated glass
beads demonstrates the highest reaction yields. Unsymmetrical
[2+2] cycloaddition with extended styrene derivatives have
been conducted with UCN photocatalyst with considerable
conversion. The flow photochemical system is compatible for
crossed [2+2] cycloaddition reaction with corresponding
cyclobutanes being achieved with a remarkable yield. We believe
that this study can demonstrate an important step toward the
utilization of carbon nitride for photo-catalyzed industrial pro-
duction of fine chemicals under mild and sustainable reaction
conditions.
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Methods

Synthesis of polymeric carbon nitride. Polymeric carbon nitride was synthesized
using three different precursors, i.e., urea, thiourea, melamine. Typically, a lidded
high-quality alumina crucible was charged with the precursor (15 g) and placed
inside a muffle furnace. Then the temperature was heated up to 550 °C with a rate
of 0.5 °C/minute and stabilized for 3 h. After cooling down to the ambient tem-
perature, the resultant powder was washed with water, HCl, NaOH solution,
respectively, to remove all the unreacted and potentially detrimental surface spe-
cies. The products based on the precursors were denoted as UCN, TCN, and MCN,
respectively.

Synthesis of UCN-coating glass fibers. The glass fibers were first cleaned in
piranha solution (H,O,: H,SO4 = 1:3) to remove the surficial contaminants. Then,
the glass fibers were immersed into a saturated urea solution (10 g/mL), followed
by reflux at 60 °C for 12 h. After water evaporation at 80 °C for overnight, the crude
mixture was heated in a muffle furnace with the same condition as that of UCN
synthesis. A UCN-coated glass fiber could be obtained after directly thermal
condensation polymerization on the surface of glass fiber.

Synthesis of UCN-coating glass beads. As shown in Fig. 3d, commercially
available glass beads were first cleaned and etched with piranha solution. Then,
silylation reaction was conducted in order to introduce an amine function group.
Precisely, a 20 mL anhydrous toluene was added with acid etched glass beads and
APTES and the mixture was reflux for 24 h. Afterwards, the glass beads were
collected from the mixture and washed with dichloromethane, and dried in vacuum
oven at 60 °C for overnight. The amine functionalized glass beads were mixed with
urea with a mass ratio of 1:1, and then heated in a muffle furnace using the same
heating program as that of UCN synthesis to produce UCN-coated glass beads.

Photosynthesis of cyclobutanes in batch condition. A flame-dried 40 ml vial was
charged with UCN (2.4 mg), E-anethole (50.0 mg, 0.24 mmol), and CH;NO,

(2.4 ml). Then, 10 equivalent of styrene derivatives partner was added into the
reaction mixture. Afterwards, the vial was placed under the irradiation of a white
LED lamp (0.1 W/cm?) in air condition. The conversion of was determined by GC-
MS measurement based on the consumption of anethole derivatives. After the
reaction was finished, the mixture was poured into a separatory funnel and
extracted with a mixture of 60 ml Et,O and water (v/v, 1/1). A crude product was
received after collecting the organic layer, drying over anhydrous MgSO,, and
concentrating with rotary evaporator. Finally, the pure cycloaddition products
could be obtained after further purification with flash-column chromatography.

Photosynthesis of cyclobutanes in continuous-flow reactor. As showed in

Fig. 3a, a 100 ml conical flask was charged with a-asarone (10 mmol) and 60 ml
CH;3NO,. A transparent glass tube (d =0.7 cm, =7 cm) with sealed bottoms was
filled with UCN-coated glass beads and used as photoreactor in flow system. Then,
creep pump was employed to connect the photoreactor and reaction solution. The
photoreactor was placed in front of a white LED light with a distance of 5 cm.

The rate of flow was 0.5 mlmin~! and the conversion was recorded by GC-MS
measurement. The flow reaction with glass fiber was conducted with a similar pro-
cedure while began with a same starting concentration of a-asarone (0.167 mol/L).
For the photocatalytic unsymmetrical [2 + 2] cycloaddition reaction, the amount of
reaction substrates was started as follows: E-anethole and its derivatives (1 equivalent),
styrene (10 equivalent), and CH;NO, (60 mL).

Data availability

All data supporting the findings of this study are available within the article as well as the
Supplementary Information file, or available from the corresponding authors on
reasonable request.
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