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A reliable in vivo imaging method to localize transplanted cells and monitor their viability would enable a systematic investigation
of cell therapy. Most stem cell transplantation studies have used immunohistological staining, which does not provide information
about the migration of transplanted cells in vivo in the same host. Molecular imaging visualizes targeted cells in a living host, which
enables determining the biological processes occurring in transplanted stem cells. Molecular imaging with labeled nanoparticles
provides the opportunity to monitor transplanted cells noninvasively without sacrifice and to repeatedly evaluate them. Among
several molecular imaging techniques, magnetic resonance imaging (MRI) provides high resolution and sensitivity of transplanted
cells. MRI is a powerful noninvasive imaging modality with excellent image resolution for studying cellular dynamics. Several types
of nanoparticles including superparamagnetic iron oxide nanoparticles and magnetic nanoparticles have been used to magnetically
label stem cells and monitor viability by MRI in the urologic field. This review focuses on the current role and limitations of MRI

with labeled nanoparticles for tracking transplanted stem cells in urology.

1. Introduction

Molecular imaging technologies have evolved recently and
facilitate functional monitoring and evaluation of genes and
organs for their roles in health and disease [1, 2]. Stem cell
transplantation has good prospects for clinical application.
However, the challenges in molecular imaging are to develop
effective imaging strategies with a combination of imaging
modalities, labeling reporter systems, and probes. Several
studies have used magnetic resonance imaging (MRI) to trace
transplanted stem cells in animal models [3, 4].

Several molecular imaging modalities including positron
emission tomography (PET), MRI, and newer modalities
are based on transmitting light through tissues, such as
in vivo bioluminescence imaging and fluorescence imaging.
Among them, MRI is the most popular imaging modality.
MRI used in conjunction with magnetically labeling is a
powerful technique for noninvasively detecting and tracking
transplanted cells in longitudinal animal studies [1, 2, 5].

Labeling materials have great importance in the field of
molecular imaging. Labeling stem cells makes merged cells

distinguishable from host cells to follow transplanted stem
cells.

Molecular materials for labeling should first reveal cel-
lular and molecular processes throughout the entire study
period. Secondly, the probes should be highly sensitive to
small changes in cell function and distribution. Finally, they
should not significantly alter the labeled biological process
itself [1, 2, 5].

Gadolinium and ferric oxide are two common cell label-
ing contrast media used during MRI [6]. New technologies
with tumor targeting and drug delivery are being concep-
tualized. Developments in nanotechnology have provided
more innovative and effective approaches in various areas
of clinical research, such as diagnosis [7], monitoring [8,
9], and therapy [10-12]. Labeling with nanoparticles is an
emerging trend, particularly in oncology such as “cancer
nanotheranostics,” which includes simultaneous imaging and
treating cancer cells by applying nanoparticles [13].

Although many studies have investigated the efficiency
of molecular imaging using MRI with labeled nanoparticles,
few studies are available in the urologic field. The aim of
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FIGURE 1: Schematic imaging of stem cell tracking using magnetic resonance imaging (MRI) combined with nanoparticle labeling.

this study was to review MRI and labeling techniques for
tracking transplanted stem cells (physiological labeling) in
the urologic field and to review the characteristics and
limitations of current nanoparticle labeling methods.

2. Stem Cell Labeling

Cell labeling can be divided into physical cell labeling and
reporter gene imaging. Physical cell labeling is completed
before cell administration and can be accomplished with
superparamagnetic iron oxide (SPIO) particles for MRI [14,
15] and radionuclide labeling for single-photon emission
computed tomography [16] and PET [17]. In reporter gene
imaging, a gene coding synthesis of a detectable protein
is introduced into a target cell line or tissue via viral or
nonviral vectors. As a result, changes in signals following cell
administration can be used as indicators of cell proliferation
and death [18].

Many labeling techniques involve incubating cells and
use of transfection agents. The different magnetic labeling
techniques result in a considerable increase in the cellular
iron content [26], which is 100 times greater than physio-
logical levels [27]. The largest amount of intracellular iron
oxide particles and the use of high-resolution gradient echo
sequences allow for highly sensitive in vivo MRI methods for
detecting viability and efficiency of transplanted stem cells.

Most studies have tracked physically labeled trans-
planted stem cells (Figure 1). Migration of lymphocytes [28],
hematopoietic stem cells [29], mesenchymal stromal cells
(MSCs) [30], neuronal precursor cells [31], and tumor cells
[32] has been demonstrated in different disease models using
in vivo MRI Specific cancer stem cell antigens or receptors
have been detected by reporter gene imaging.

Application of conventional GFP-like fluorescent pro-
teins, including eGFP, DsRed, and mCherry, has limitations
due to the penetration depths of visible light in the body
[33]. To overcome this limitation, near-infrared fluorescent
protein (IFP) has been developed from the DrBphP bacte-
rial phytochrome of Deinococcus radiodurans and showed

the possibility in the application of IFPs for protein labeling
and in vivo tracking imaging [5].

3. Iron Oxide Nanoparticles

The original iron oxide nanoparticles were developed in 1995
and were Dextran-coated iron oxide nanoparticle with a
100-150 nm hydrodynamic radius and contained a 5-10 nm
iron oxide core [34]. These standard, well-characterized
iron oxide nanoparticles have been used widely, but low
labeling amounts and efficiencies were shortcomings [35]. To
overcome this weak point, simple transfection agents were
combined with ferumoxides enabling robust labeling of a
number of cell types [36].

Most recently, a nanomaterial consisting of a mixture of
ferumoxytol, heparin sulfate, and protamine sulfate has been
reported and can be used to safely label various types of cells
for tracking by MRI [8]. Ferumoxytol, heparin sulfate, and
a protamine sulfate conjugate is currently the most popular
material for physical cell labeling in urology [37]. Dextran-
coated superparamagnetic iron oxide nanoparticles (SPI-
ONs) and micron-sized iron oxide particles were developed
for MRI-based cell tracking [26, 38]. The size of iron oxide
particles for cell labeling ranges from very small particles to
micron-sized particles, and SPIO is a medium-sized particle
[39-41].

Among the different types of nanoparticles, SPIONs are
promising candidates for use with molecular imaging modal-
ities due to their superparamagnetic behavior and surface-
modification properties. One of the important features of
SPIONES is that they lose their magnetism and become highly
dispersed when the magnetic field is switched off, which
prevents easy recognition and engulfment by macrophages
[42].

As SPIONs are biodegradable and biocompatible, they
can be applied in various biomedical fields, such as magneto-
fection [43], gene therapy [44], and cell and biological mate-
rial separation [45]. SPIONs are mostly magnetite (Fe;0,),
and they convert to maghemite when exposed to oxygen.
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They can be metabolized easily and transported by proteins,
such as ferritin, transferrin, and hemosiderin, and they can be
stored in endogenous iron reserves of the body for later use
(1, 2].

The advantage of applying a magnetic field to guide
nanoparticles to their target is to reduce stem cell waste,
lower the frequency of stem cell administration, and avoid
unwanted side effects [1, 2]. SPIONs are very promising
materials for biomedical applications due to their increased
ability to covalently attach to various receptors, peptides,
antibodies, or ligands [46]. Furthermore, SPIO particles have
no adverse effects on viability or proliferation of labeled cells
(40, 47].

4. Non-SPION Nanoparticles

Most magnetic labeling procedures depend on Dextran-
coated magnetic nanoparticles. Several magnetic cell labeling
methods have been developed but the most commonly used
one is coincubating Dextran-coated nanoparticles with a
transfection agent [48].

However, these materials follow a low-efficiency fluid-
phase endocytosis pathway and require long incubation times
or the use of transfection agents to achieve substantial iron
uptake. Moreover, the complexes formed by the nanoparticles
and transfection agents are not easily controlled.

Anionic magnetic nanoparticles (AMNPs) have negative
surface charges, are free of a Dextran coating, adsorb readily
to cell membranes, and are internalized without the need
for transfection agents or long incubation times [20, 49,
50]. AMNPs permit controlled uptake by various cell types
[20, 51-53]. AMNPs have advantages of easy and rapid
absorption and subsequent internalization by endocytosis
[50, 54, 55]. AMNP biocompatibility has been demonstrated
in many preclinical studies, including local cell grafts for
tissue regeneration [20, 56] and immune cell trafficking after
systemic injection [52, 57, 58].

Fluorescent magnetic nanoparticles (MNPs) contain rho-
damine B isothiocyanate within a silica shell to overcome
the negative surface charge. This tagging material does not
require a transfection agent during cell labeling, the MNP
core is composed of ferrite, and the inner silica shell portion
contains fluorescent materials [59]. It has both magnetic and
optical features, and Prussian blue staining is not necessary
to detect viability and efficiency of transplanted stem cells
within tissue. In vivo tracking of transplanted MSCs labeled
with fluorescent MNPs in a liver cirrhosis rat model by MRI
has been reported [60].

Among the six studies that used MRI and physical
labeling, three used SPIONSs, two used MNPs, and one used
AMNPs (Table 1).

Gadolinium (Gd) based contrast agents are normally
used to reduce T'1 period and to give positive contrast in MR
images. Available agents are different kinds of gadolinium
ion based chelates which are relatively stable molecules. To
date, Gd based contrast agent has evolved to be more efficient
contrast agents including Gd3+ based agents with higher
molecular weight like Gd-DTPA functionalized polymers,

Gd-DTPA terminated dendrimers, and Gd complex loaded
liposomes as well as high density lipoprotein nanoparti-
cles or micelles [61]. Recently, several new nanoparticles
are introduced for in vivo imaging including Fe;O,@SiO,
nanoparticles and Gd-DOTA-peptides [62-64].

5. Ideal Features of Labeled Nanoparticles

Nanoparticles for any biological application must be bio-
compatible, nontoxic, and stable at physiological pH. The
ideal features are high magnetization and a narrow size dis-
tribution. The nanoparticles should have contrast enhance-
ment properties for imaging and tracking of malignant
cells/tissues, and their surfaces should be coated with
biodegradable material. They should have the ability to
conjugate with a range of receptors with high targeting and
drug-delivery efficiencies. The half-life should be long, and
the zeta-potential should be optimized [1, 5, 9].

6. Current Uses for
MRI Techniques in Urology

MRI is a widely used powerful imaging technique that
provides high resolution in the field of urology. It is used
to evaluate stem cells transplanted to urologic organs. MRI
alone or MRI with a physical labeling method has been
used to monitor the efficiency of cell transplantation, cellular
homing, and targeting. MRI has been used in prostate cancer
research, bladder dysfunction research, urethral sphincter
studies, and a penis study (Table 1).

6.1. Prostate Cancer. Molecular imaging combined with a
labeling technique has been used to detect specific prostate
cancer antigens. Two studies showed the efficiency of MRI
for detecting transplanted stem cells as a vector for prodrug
therapy. Abrate et al. [21] reported that MRI can be used to
follow orthotopic tumor progression. Although those authors
did not apply a physical labeling method, they demonstrated
that intravenous injections of CD-MSC cells, followed by
intraperitoneal administration of 5-fluorocytosine, caused
tumor regression in transgenic adenocarcinoma of the mouse
prostate model, which develops aggressive and spontaneous
prostate cancer.

Lee et al. [19] reported monitoring the migration of
genetically modified stem cells by MRI after labeling the cells
with fluorescent MNPs. Human neural stem cells encoding
CD (HBLF3.CD) were prepared and labeled with MNPs
(Figure 2). HBL.F3.CD stem cells systemically transplanted
into tumor-bearing C57B mice migrated toward the tumor,
and tumor implant volume decreased significantly in combi-
nation with the prodrug 5-FC.

6.2. Bladder. Traditionally, many studies showed the effi-
cacy of stem cell treatment in bladder dysfunction [65-67];
however only several studies introduced molecular imaging
techniques. Yun and Ja [24] showed similar viability of MSCs
loaded with SPIONs compared to unlabeled cells. SPIO-
labeled MSCs underwent normal chondrogenic, adipogenic,
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FIGURE 2: Intravascular delivery of stem cells (HBL.F3.CD) targeting prostate cancer. (a) Schematic illustration of inducing prostate cancer
using TRAMPC2, a systemic injection of HBL.F3.CD cells, and migration of the gene-modified stem cells toward the prostate cancer. Blue =
TRAMPC?2; red = HB1.F3.CD cells. (b) X-gal staining of induced prostate cancer 2 days after injecting HBL.F3.CD cells. Arrow indicates the
cells. (c) Magnetic resonance imaging (MRI) of prostate cancer 48 hr after injecting HB1.F3.CD cells into mice. Arrow indicates the cells (scale

bar, 100 ym). HBLF3, neural stem cells; CD, cytosine deaminase.

and osteogenic differentiation. MRI signal intensity in the
areas of SPION-labeled MSCs in rat and rabbit bladders
decreased and was confined locally. MRI demonstrated that
SPION-labeled MSCs injected into the bladder could be seen
for at least 12 weeks.

Lee et al. [22] reported that MRI images were use-
ful to track transplanted MSCs in bladder outlet obstruc-
tion induced bladder dysfunction. Serial T2-weighted MRI
images were taken immediately after transplant of SPION-
labeled MSCs and at 4 weeks after transplantation. T2-
weighted MRI showed a clear hypointense signal induced by
the SPION-labeled MSCs. Collagen and transforming growth
factor-3 expression protein increased after bladder outlet
obstruction, and the expression of both returned to original
levels after MSC transplantation.

Lee et al. [25] reported the efficiency of MRI for tracking
transplanted MSCs in a spinal cord injury-induced bladder
dysfunction model. MNP-labeled B10 cells were injected into
the bladder wall 4 weeks after the spinal cord injury. Serial

MRI was taken immediately after MNP-B10 injection and at
4 weeks after transplantation.

6.3. Penis. Song et al. [23] suggested that MRI can be used
to investigate the long-term therapeutic potential of MSCs
to treat erectile dysfunction. SPION-labeled MSCs injected
into the corpus cavernosa of rats and rabbits were evaluated
noninvasively by molecular MRI. MRI signal intensity at
the areas of SPION-labeled MSCs in the rat and rabbit
corpus cavernosa decreased and was confined locally. MRI
demonstrated that the MSCs could be observed for at least 12
weeks after injection into the corpus cavernosum.

6.4. Urethral Sphincter. Riviere et al. [20] magnetically
labeled muscle implants with AMNPs. They evaluated the
biocompatibility of the labeling procedure and its utility
for noninvasive MRI follow-up of cell therapy in a female
pig model. AMNPs were adsorbed onto the implant surface
of myogenic precursor cells and were magnetically labeled



within the implants. Magnetic labeling did not affect cell
proliferation or differentiation. Autograft detection in vivo by
0.3-T MRI was possible for up to 1 month.

7. Discussion

Although molecular imaging techniques have evolved signif-
icantly during the last decade, no single imaging modality
can provide all the information required to track transplanted
stem cells and monitor their functional effects. Each imaging
modality used for stem cell tracing has its advantages and
disadvantages [54, 68]. PET has high sensitivity for tracking
biomarkers in vivo but lacks the ability to provide detailed
anatomic structure. Optical imaging has high molecular
sensitivity but provides less anatomical localization and is
mainly used in small animals. MRI coupled with physical
labeling has high resolution and the capabilities of three-
dimensional anatomical imaging. However, MRI has low sen-
sitivity for cell tracing. Moreover, it cannot detect cell number
or location by cell division because cell division may dilute
intracellular markers with the shedding of iron particles [69].
Hence, it is necessary to combine complementary imaging
methodologies as with multimodality imaging approaches.

Some nonspecific signal problems occur with differ-
ent imaging modalities as a result of dead transplanted
cells. For example, dead transplanted cells containing iron
oxide nanoparticles may result in MRI signals representing
macrophage phagocytosis of labeled cell debris [1, 2, 5].
Limitations continue in the basic knowledge about the
pivotal biological characters of transplanted stem cells, such
as survival, integration, and migration, and the influence
of the host microenvironment. Despite the potential for
biomedical applications, SPIONs face some targeting and
imaging limitations. The proportion of SPIONs that reach
the target through surface-bound antibodies is low, thereby
limiting their application for imaging and drug delivery.

MRI is a commonly used imaging modality and it could
be used in a large animal model. To detect successful
delivery and subsequent migration using iron oxide-based
agents, ex vivo labeling of the stem cells are required [1].
The robust negative contrast image generated by iron oxide
agents has shown efficient cell labeling. Studies have also
reported successful tracking at near single-cell resolution
[70]. However, to assess the viability additional techniques
are needed such as using promoter genes, engineering cells to
overexpress transferrin receptors, and nongenomic technique
using manganese-enhanced MRI.

To date, the important pitfalls of MRI with SPIO labeled
cells or luciferase-based bioluminescent imaging are that
these modalities could provide the information about cell
survival, anatomical coregistration of engrafted cells together
with real time, and image-guided delivery. To overcome
these limitations, chemical exchange saturation transfer is
an emerging MRI contrast mechanism based on the use of
radiofrequency saturation pulses to detect agents containing
protons that exchange rapidly with water [27]. Chan et
al. [9] reported that pH nanosensor-based MRI technique
can monitor cell death in vivo noninvasively. They demon-
strated that specific MRI parameters related with cell death
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of microencapsulated hepatocytes are associated with the
measured bioluminescence imaging radiance.

To overcome this problem, classic physical labeling must
be upgraded with a reporter gene imaging technique. In fact,
this combined modality is being investigated in cancer stem
cell studies. SPIONs with specific tumor-targeting ligands
and sensitive imaging probes must be developed [71]. To
date, most in vivo imaging studies showed the limitations in
detecting the engraftment of stem cells [72].

Another major problem facing drug delivery using
nanoparticles is the burst effect. When drug-coated nanopar-
ticles are injected into a system, a significant quantity of
the drug is liberated suddenly due to alterations in the
physiological host environment, which can be dangerous to
the patient [1, 2, 5]. To overcome this effect, nanoparticles
must be cross-linked with polymers or incorporated into a
polymer matrix that provides more rigidity and helps provide
sustained drug delivery under in vivo conditions for longer
times [1, 2, 5]. Mahmoudi and Laurent [73] demonstrated
increased stability of drug-loaded SPIONs under in vivo
conditions using a PEG-cofumarate cross linking agent.
Other issues that must be solved regarding nanoparticles
include toxicity, gene alternations, penetration of the blood-
brain barrier, and colloidal stability [1, 2, 5].

Molecular imaging combined with a nanoparticle label-
ing method is useful not only for physical labeling to monitor
stem cells but also to detect prostate cancer antigens. Recent
preclinical studies on multimodal molecular imaging meth-
ods have the potential to be helpful for noninvasive prostate
cancer diagnosis and image-guided immunotherapy [74, 75].
Multiple groups are actively pursuing the development of
imaging probes for cellular and molecular MRI [75-79]. More
studies are needed to develop various molecular markers,
including ligands, antibodies, and peptides that can easily
bind MRO probes.

In vivo imaging represents a dedicated platform to eval-
uate and quantify molecular and cellular events related to
cellular engraftment. This integrative approach should be
more developed with validation for systematic translation of
stem cell therapy.

8. Conclusions

Molecular imaging is a new discipline that allows for in
vivo cellular and molecular imaging of pathophysiological
processes and the results of therapeutic interventions. MRI
is a contending and complementing modality for stem cell
studies in urology. MRI can be used to evaluate migration
and survival of transplanted stem cells in prostate cancer
and bladder dysfunction models. It has also shown potential
utility for use on erectile dysfunction and urethral sphincter
dysfunction. Noninvasive imaging methods using MRI have
the advantage of longitudinal monitoring of transplanted
stem cells in animals.
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