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Abstract

Erectile dysfunction (ED) is a common clinical disease that is difficult to treat. We previously

found that hypoxia modulates the phenotype of primary corpus cavernosum smooth muscle

cells (CCSMCs) in rats, but the underlying molecular mechanism is still unknown. Platelet-

derived growth factor receptor (PDGFR)-related signaling pathways are correlated with cell

phenotypic transition, but research has been focused more on vascular smooth muscle and

tracheal smooth muscle and less on CCSMCs. Here, we investigated the role of PDGFR-

related signaling pathways in penile CCSMCs, which were successfully isolated from rats

and cultured in vitro. PDGF-BB at 5, 10, or 20 ng/ml altered CCSMC morphology from the

original elongated, spindle shape to a broader shape and promoted the synthetic phenotype

and expression of the related proteins vimentin and collagen-I, while inhibiting the contractile

phenotype and expression of the related proteins smooth muscle (SM) α-actin (α-SMA) and

desmin. Inhibition of PDGFR activity via siRNA or the PDGFR inhibitor crenolanib inhibited

vimentin and collagen-I expression, increased α-SMA and desmin expression, and consid-

erably inhibited serine-threonine protein kinase (AKT) and signal transducer and activator of

transcription 3 (STAT3) phosphorylation. STAT3 knockdown promoted the contractile phe-

notype, inhibited vimentin and collagen-I expression, and increased α-SMA and desmin

expression, whereas AKT knockdown did not affect phenotype-associated proteins. STAT3

overexpression in CCSMC cells weakened the suppressive effect of PDGFR inhibition on

the morphology and phenotypic transformation induced by PDGF-BB. Through activation of

the PDGFR/STAT3 signaling pathway, PDGF promoted the synthetic phenotype transition;

thus, regulation of this pathway might contribute to ED therapy.
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Introduction

Erectile dysfunction (ED) is a common clinical disease that can affect the quality of life of

patients and even the harmony and stability of their families [1]. Corpus cavernosum smooth

muscle cells (CCSMCs) are known to be the main effector cells in the male erectile response

and comprise 42–50% of the cells in the corpora cavernosum [2]. As the penis is considered as

a vascular tissue in a specialized configuration [3], many changes in the cardiovascular system

are expected be found in the penis. In contrast to the skeletal muscle cells and myocardium,

which are in a terminally differentiated state, vascular smooth muscle cells (VSMCs) retain

extensive plasticity, allowing them to undergo phenotypic modulation from a contractile state

to a synthetic state in response to local environmental stimuli [4]. Phenotypic modulation is

characterized by increased proliferation, migration, extracellular matrix production, and

vimentin and collagen-I expression combined with decreased expression of contractile cyto-

skeletal proteins such as smooth muscle (SM) α-actin (α-SMA), SM myosin heavy chain

(SMMHC), calponin, and desmin [5]. For approximately 23 h of each day, the penis of most

adult men is in the flaccid state; thus, CCSMCs spend most of their time in the contracted state

and retain a contractive phenotype [6,7]. Our previous studies have confirmed that CCSMCs

possess the ability to modulate their phenotype from a contractile to a synthetic state under

hypoxic condition, and these changes could play a role in cavernous nerve injury-induced ED

in rats [8,9].

Platelet-derived growth factor (PDGF) is the most robust phenotype-modulating agent and

comprises a family of heterodimers encoded by four genes PDGF-A, PDGF-B, PDGF-C,

PDGF-D. PDGF acts on cells by binding to homo- or heterodimers of the two PDGF receptor

proteins, PDGFRα and PDGFRβ [10,11]. Among the members of the PDGF family, only

PDGF-BB can bind both to PDGFRα and PDGFRβ; therefore, it is more important than other

isoforms in the pathogenesis of a variety of diseases [12]. Increasing data demonstrate that

PDGFR-related signaling pathways are correlated with cell phenotypic transition. PDGFR

interacts with PDGF to facilitate cell mitosis [13,14], which has a close relationship with pro-

cesses such as growth and development, wound healing, atherosclerosis, and tumorigenesis

[15,16]. PDGF induces the proliferation and phenotype change of airway smooth muscle cells

[17]. Moreover, the PDGFR pathway regulates the vascular smooth muscle phenotype via

mammalian target of rapamycin complex 1 and also contributes to attaining the synthetic phe-

notype under high oxidative stress in vascular lesions [18]. PDGF is expressed at high levels in

the penile tunica albuginea of patients with Peyronie’s disease, suggesting that it could be

involved in the pathogenesis of tunica albuginea fibrosis, which is frequently associated with

ED in men [19]. In addition, PDGF infusion promotes the proliferation and migration of

CCSMCs and causes phenotypic transition from the contractile to synthetic type [20]. How-

ever, to our knowledge, the regulatory mechanism of the PDGF/PDGFR pathway in CCSMCs

is poorly understood.

In this study, we focused on the relationship between the PDGFR signaling pathway and

the phenotypic transition of CCSMCs and attempted to identify the mechanism regulating the

transition, which might aid in clinical therapy of ED.

Material and methods

Crenolanib (CP-868596) was purchased from Selleck Chemicals LLC (USA). Recombinant

human PDGF-BB protein was purchased from R&D system (USA). α-SMA, desmin, vimentin,

and collagen-I, signal transducer and activator of transcription 3 (STAT3), phosphor-STAT3

(p-STAT3), signal transducer and activator of transcription 5 (STAT5), phosphor-STAT5 (p-

STAT5), serine-threonine protein kinase (AKT), phosphor-AKT (p-AKT), extracellular
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regulated kinase (ERK), phosphor-ERK (p-ERK), PDGFRα, phosphor-PDGFRα (p-

PDGFRα), PDGFRβ, phosphor-PDGFRβ (p-PDGFRβ), and β-actin were purchased from

Abcam technology (USA).

Cell isolation and culture

In total, 10 adult male Sprague-Dawley rats aged 8 weeks (body weight: 275–325 g) were pur-

chased from SLRC Laboratory Animals (Shanghai, China). All animal experiments were per-

formed in strict accordance with the recommendations of the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The protocol was approved by the

Committee on the Ethics of Animal Experiments of Zhejiang Chinese Medical University (per-

mit number 2008–0115). All of the surgical procedures were performed under anesthesia

induced by sodium pentobarbital administration, and all efforts were made to minimize

suffering.

The primary culture of CCSMCs obtained from Sprague-Dawley rats was prepared as

described in a previous study [21]. Briefly, the corpus cavernosum tissues from rats were

washed with ice-cold phosphate-buffered saline (PBS) several times and cut into 1- to 2-mm3-

thick segments. The segments were incubated in 0.5% collagenase A for 4 h and cultured at

37˚C in a humidified atmosphere of 95% air and 5% CO2. Then, the cavernosal tissues were

placed uniformly at the bottom of a 25-cm2 culture flask (Corning, NY, USA) containing

approximately 2 ml of high-glucose Dulbecco’s modified Eagle medium (DMEM; Invitrogen,

Grand Island, NY, USA) supplemented with 20% fetal bovine serum (FBS; Invitrogen), 100 U/

ml penicillin, and 100 mg/ml streptomycin. Third- or fourth-passage cells were used for subse-

quent experiments.

Hypoxia treatment

The hypoxia treatment was applied following the protocols described in our previous report

[8]. CCSMCs plated in degassing medium were incubated in a modular incubator chamber

(StemCell, Vancouver, BC, Canada) filled with hypoxic gas (1% O2, 5% CO2, and 94% N2) and

cultured in a 37˚C incubator for 24, 48, and 72 h. Normoxic cells were regarded as the control

and were incubated under normal conditions (air containing 5% CO2).

RNA interference assay

STAT3 siRNA, PDGFR siRNA, and negative control siRNA were purchased from Sigma

(USA). The cells were plated at 50% confluence, transfected with 50 nM siRNA complexed

with Lipofectamine 2000 (Invitrogen) in Opti-MEM overnight, and then incubated for various

amounts of time.

STAT3 overexpression in CCSMCs

Lentivirus carrying cDNA for STAT3 and control virus were purchased from Shanghai Gene-

chem Company. CCSMCs were inoculated in 12-well plate and incubated with complete

medium containing lentivirus. At 24 h after seeding, the medium containing the lentivirus was

aspirated and replaced with 1 ml of fresh medium overnight, and the cells were cultured for 2

days. To obtain a stably transduced cell line, the lentivirus-infected cells were treated with cul-

ture medium containing 2 μg/ml puromycin, and the culture medium was changed every

three days.
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In vitro cell assay

The cells were seeded in 6-well plates at a density of 50,000 cells per well. After 24 h, the cells

were treated with PDGF-BB at a concentration of 0, 5, 10, 20 ng/ml or crenolanib at a concen-

tration of 100 nM for 24 h. The cells were then collected for protein extraction.

Immunofluorescence staining

Immunofluorescence staining was performed to identify cells. The cells were fixed in 4% form-

aldehyde (freshly prepared from paraformaldehyde) in PBS (pH 7.4) for 30 min and permeabi-

lized for 15 min with 0.5% Triton X-100 in PBS. The CCSMCs were rinsed with PBS, blocked

in 10% goat serum for 1 h, and incubated overnight with a primary antibody against α-SMA;

the antibody was diluted 1:1000 in skimmed milk [22] (Abcam, Cambridge, MA, USA) and

desmin [23] (Santa Cruz Biotechnology, Santa Cruz, CA, USA). The cells were then incubated

with a fluorescein isothiocyanate (FITC)-conjugated secondary antibody (Abcam) at 25–30˚C

for 30 min. Finally, the CCSMCs were analyzed using a Nikon Eclipse Ti inverted microscope

(Nikon, Tokyo, Japan).

Western blotting

CCSMCs were cultured in 6-well plates and treated with PDGF-BB at 5, 10, or 20 ng/ml or

PDGFR siRNA for 48 h. The cells were lysed in cell lysis buffer (20 mM Tris [pH 7.5], 150 mM

NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% TritonX-100, 2.5 mM sodium pyrophosphate, 1

mM beta-glycerophosphate, 1 mM Na3VO4, and 1 μg/ml leupeptin) for 30 min on ice and cen-

trifuged at 8,000g for 10 min. The protein concentration was determined using a BCA protein

assay kit (Pierce, Rockford, IL, USA). Then, 40 μg of cellular protein was loaded onto 10%

SDS-PAGE gels and transferred to polyvinylidene fluoride (PVDF) membranes (Millipore

Corporation, Bedford, MA, USA). After blocking with Tris buffer solution containing 5%

non-fat milk for 1 h at 25–30˚C, the membranes were incubated overnight at 4˚C with primary

antibodies against α-SMA, desmin, vimentin, collagen-I, STAT3, p-STAT3, STAT5, p-STAT5,

AKT, p-AKT, ERK, p-ERK, PDGFRα, p-PDGFRα, PDGFRβ, p-PDGFRβ, and β-actin; the

antibodies were diluted 1:1000 with skim milk [24–29]. After thorough washing, the blots were

incubated with a horseradish peroxidase (HRP)–conjugated secondary antibody diluted

1:1000 in skim milk. Protein band intensity was analyzed using enhanced ECL reagents

(Amersham, Piscataway, NJ, USA) and a Versa Doc MP5000 imaging system (Bio-Rad, Hercu-

les, CA, USA).

Statistical analysis

All experiments were performed in triplicate. Data were analyzed using one-way analysis of

variance (ANOVA) followed by a post hoc test in SPSS 15.0 software (SPSS Inc., Chicago, IL,

USA). The data have been expressed as the mean ± standard error of mean (SEM). P<0.05 was

considered to indicate statistical significance.

Results

Isolation and characterization of CCSMCs

The primary CCSMCs initially appeared to have a spindle shape and maintained their original

morphological features even in the second passage (Fig 1A). Immunofluorescence staining
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studies showed that the isolated cells predominantly included SMCs that stained positively for

α-SMA and desmin (Fig 1B), consistent with a previous report [30].

Hypoxia induced changes in the expression of proteins associated with

CCSMC phenotype and PDGF receptors

CCSMCs were exposed to hypoxic conditions for 24, 48, and 72 h, and the morphology and

expression of phenotype-associated proteins of CCSMCs was analyzed. Hypoxia altered

CCSMC morphology from the original elongated, spindle shape to a broader shape (Fig 2A).

Hypoxic cells showed significantly decreased expression of α-SMA and desmin and signifi-

cantly increased expression of vimentin and collagen-I compared with the normoxic control

cells. Furthermore, western blotting analysis showed that protein expression of PDGFRα and

PDGFRβ was increased in hypoxic CCSMCs. Obvious changes of β-actin protein expression

were not observed (Fig 2B and 2C).

PDGF-BB promoted the CCSMC synthetic phenotype and the

expression of related proteins

CCSMCs were exposed to 5, 10, or 20 ng/ml PDGF-BB; the shape of the cells changed from

the original elongated, spindle shape to a broader shape than that noted for normal cells (Fig

3A). To confirm the effect of PDGF on the phenotype of CCSMCs, the expression of CCSMC

markers was analyzed. PDGF-BB–treated cells showed considerably reduced α-SMA and des-

min expression and increased vimentin and collagen-I expression, whereas β-actin expression

did not show obvious changes (Fig 3B).

Fig 1. Identification and characterization of primary cultured CCSMCs. Scale bars = 20 μm. (A)

Microscopic imaging of first- to second-passage primary cells. (B) Immunostaining images of primary

CCSMCs stained with multiple markers. Scale bars = 100 μm.

doi:10.1371/journal.pone.0172191.g001
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Downregulation of PDGFR via PDGFR siRNA and crenolanib inhibited

the CCSMC synthetic phenotype and promoted the contractile phenotype

To confirm the effect of the PDGFR pathway on the CCSMC phenotype, the cells were treated

with PDGFR siRNA or crenolanib, and phenotype-associated proteins were detected. PDGFR

siRNA and crenolanib treatment reversed the phenotypic transition induced by PDGF-BB

that downregulated the synthetic phenotype–associated proteins vimentin and collagen-I and

upregulated the contractile phenotype–associated proteins α-SMA and desmin. In addition,

crenolanib reduced the proportion of phosphorylated PDGFR proteins but had no effect on

the expression of total proteins; in contrast, PDGFR siRNA decreased the total protein expres-

sion but not the ratio of phosphorylation (Fig 4).

Inhibition of PDGFR activity significantly decreased AKT and STAT3

phosphorylation, and knockdown of STAT3 promoted the contractile

phenotype

To identify the regulatory proteins in the CCSMC-associated phenotype from among the

PDGFR downstream proteins, vital proteins in the PDGFR pathway were investigated after

crenolanib treatment. Western blotting results suggested that inhibition of PDGFR activity

Fig 2. Hypoxia-induced CCSMC phenotype transition and PDGFR protein upregulation. (A) Microscopic imaging of CCSMCs exposed

to hypoxia of 0, 24, 48, 72 h. Scale bars = 20 μm. (B,C)Western blot analysis measuring CCSMC phenotypic-related proteins and PDGFR

proteins, including α-SMA, desmin, vimentin, collagen-I, PDGFRα, and PDGFRβ. β-Actin was used as the control. Data are the mean tumor

volume ± SD. P<0.05 was considered statistically significant. * P<0.05, ** P<0.01, versus normoxic control group (n = 4).

doi:10.1371/journal.pone.0172191.g002
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significantly inhibited AKT and STAT3 phosphorylation and reduced the proportion of phos-

phorylated proteins (Fig 5A and 5B). Then, we knocked down STAT3 expression, which pro-

moted the contractile phenotype, downregulated vimentin and collagen-I expression, and

upregulated α-SMA and desmin expression. AKT siRNA knockdown did not affect pheno-

type-associated proteins (Fig 5C–5E).

STAT3 overexpression in CCSMCs weakened the inhibitory effect of

PDGFR on phenotypic transformation

We further investigated the role of STAT3 in the CCSMC phenotype. Crenolanib inhibited the

morphological changes from spindle shape to broader shape induced by PDGF-BB, but

STAT3 overexpression could weakened the effect of crenolanib (Fig 6A). Western blot results

also showed synthetic phenotype induced by PDGF-BB via downregulation of vimentin and

collagen-I expression and upregulation of α-SMA and desmin expression. However, when

STAT3 was overexpressed in CCSMCs, the effect of crenolanib on phenotypic transformation

was significantly weakened (Fig 6B and 6C), which indicates that PDGF affects the phenotype

of CCSMCs via the PDGFR/STAT3 pathway. Partial original data set see supporting informa-

tion S1 File and S1 Table.

Discussion

Smooth muscle damage is an important cause of ED and may lead to decreased [22,31] or

increased SMC content [32]. α-SMA and desmin have been accepted as differentiation

Fig 3. PDGF-BB-induced changes in CCSMC phenotypes. (A) Microscopic imaging of CCSMCs exposed to 0, 5, 10, or 20

ng/ml PDGF-BB. Scale bars = 20 μm. (B, C) Western blot results showing increased vimentin and collagen-I expression and

decreased α-SMA and desmin expression on exposure to gradient-elevated PDGF-BB. β-Actin was used as the control. Data

are the mean tumor volume ± SD. P<0.05 was considered statistically significant. * P<0.05, ** P<0.01, versus control (n = 4).

doi:10.1371/journal.pone.0172191.g003
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markers for SMCs [33]. Our results showed that the isolated cells mainly included CCSMCs

with the contractile phenotype. Cellular morphology is another important marker of SMC

behavior [34,35]. In vitro, CCSMCs in the contractile state exhibit spindle or rhomboid mor-

phology, whereas CCSMCs in the synthetic state appear broader with a larger diameter

Fig 4. Inhibition of PDGFR activity changed the phenotypic transformation. Western blot analysis of CCSMC phenotype-related

proteins, including α-SMA, desmin, vimentin, and collagen-I, after treatment with PDGF-BB at 20 ng/ml, PDGFR siRNA at 50 nM (A, C), or

Crenolanib at 100 nM (B, D). Data are the mean tumor volume ± SD. P <0.05 was considered statistically significant. * P<0.05, ** P<0.01

versus PDGF-BB group (n = 4).

doi:10.1371/journal.pone.0172191.g004
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Fig 5. Proteins downstream of PDGFR and associated with changes in the CCSMC phenotype. (A, B)

Western blot analysis of proteins downstream of PDGFR after crenolanib treatment, including p-AKT, AKT, p-

ERK, ERK, p-STAT3, STAT3, p-STAT5, and STAT5 after treatment with PDGF-BB at 20 ng/ml or crenolanib

at 100 nM. (C, D, E) Western blot analysis of CCSMC phenotype-related proteins after treatment with STAT3

or AKT siRNA at 50 nM. β-actin protein was used as the control. Data are the mean tumor volume ± SD.

P<0.05 was considered statistically significant. * P<0.05, ** P<0.01, versus control (n = 4).

doi:10.1371/journal.pone.0172191.g005
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Fig 6. STAT3 overexpression changed the phenotypic transformation. (A) Microscopic imaging of CCSMCs exposed to PDGF-BB at 20 ng/ml or

Crenolanib at 100 nM, or when STAT3 was overexpressed. Scale bars = 20 μm. (B) Western blot analysis of phenotype-related proteins. The

expression of these proteins showed alterations after treatment with PDGF-BB at 20 ng/ml or Crenolanib at 100 nM, or when STAT3 was

overexpressed in CCSMCs. Data are the mean tumor volume ± SD. P<0.05 was considered statistically significant. * P<0.05, ** P<0.01 versus

control group; # P<0.05, ## P<0.01 versus STAT3 overexpression group (n = 4).

doi:10.1371/journal.pone.0172191.g006
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[36,37]. Phenotype modulation of SMCs has been involved in many human diseases, including

atherosclerosis and restenosis, which are believed to be caused by early phenotypic changes

from the contractile to synthetic phenotype in vascular SMCs in arteries [38,39].

PDGF secreted by senescent cells is a growth factor that regulates cell growth and division

of pericytes, which cover endothelial cell channels to provide stability and control perfusion

of blood vessels [40]. PDGF is a key mediator of vascular SMC phenotypic modulation [41].

PDGFR is a transmembrane receptor tyrosine kinase activated by PDGF. After activation,

tyrosine phosphorylation of the receptor activates several downstream signaling pathways,

including the phosphatidylinositol 3-kinase/serine-threonine protein kinase (PI3K/AKT),

ERK1/2, phospholipase C/protein kinase C (PLC/PKC), and STAT pathways, which are

involved in processes such as cell growth and survival, transformation, and migration

[42,43].

Incubation under hypoxic conditions stimulates PDGF and PDGFR expression in the rat

corpus cavernosum in vivo [44]. Furthermore, in impotent penile tissue in the case of Peronei’s

disease and venocclusive dysfunction, fibroblasts from tunica albuginea tissue with pathologi-

cal changes show increased PDGF expression [19]. Consequently, higher PDGF and PDGFR

expression may determine imbalance in CCSMCs, resulting in ED. In this study, in vitro analy-

sis showed morphological and phenotypic changes and PDGFR upregulation in CCSMCs sub-

jected to hypoxic conditions. Moreover, CCSMCs also underwent changes from a contractile

to a synthetic phenotype when treated with PDGF-BB, which was associated with significantly

decreased α-SMA and desmin expression and increased vimentin and collagen-I expression.

We also found similar changes in their morphology from the original elongated, spindle shape

to a broader shape, which constitutes the initial stage of fibrosis. When the cells were treated

with PDGFR siRNA or the PDGFR inhibitor crenolanib, the CCSMC synthesis phenotype was

induced by PDGF-BB with decreased vimentin and collagen-I expression and promotion of

the contractile phenotype with increasing α-SMA and desmin expression.

In the last few years, a latent relationship between the ERK, AKT, and STAT signaling

pathways and phenotype modulation has been found [45–47]. In the present study, we found

that inhibition of PDGFR activity significantly inhibited AKT and STAT3 phosphorylation,

which indicates that PDGFR inhibition regulates the CCSMC synthesis phenotype via phos-

phorylation of proteins downstream of PDGFR. We knocked down STAT3 expression and

found that it promoted the contractile phenotype, inhibited vimentin and collagen-I expres-

sion, and promoted α-SMA and desmin expression. However, knockdown of AKT did not

affect the phenotype-associated proteins. STAT3 is a transcription factor that is activated pri-

marily by tyrosine phosphorylation and then transcriptionally modulates a range of targeted

genes. A possible link between STAT3 signaling and phenotype modulation was suggested by

a previous study [48]. In that study, STAT3 knockdown was found to decrease the phosphor-

ylation of STAT3 and enhance the vascular SMC contractile phenotype by interaction with

myocardin. In the present study, we observed that STAT3 overexpression in CCSMC cells

weakened the effect of the PDGFR inhibitor on phenotypic transition induced by PDGF-BB.

Thus, we suggest that the PDGFR/STAT3 signaling pathway regulates the phenotypic transi-

tion of CCSMCs and that STAT3 phosphorylation plays a vital role in the PDGFR/STAT3

signaling pathway.

In conclusion, PDGF induced phenotype modulation of primary CCSMCs through activa-

tion of the PDGFR/STAT3 signaling pathway. It is conceivable that this pathway may be

involved in the pathogenesis of ED, which frequently complicates atherosclerosis and deregu-

lates the PDGFR/STAT3 pathway, and might contribute to clinical ED therapy. The in vivo
effect of PDGF requires further study.
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