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Abstract: Chronic hepatitis C virus (cHCV) infection is a major global health burden and the lead-
ing cause of hepatocellular carcinoma (HCC) in the Western world. The course and outcome of
HCV infection is centrally influenced by CD8+ T cell responses. Indeed, strong virus-specific CD8+

T cell responses are associated with spontaneous viral clearance while failure of these responses,
e.g., caused by viral escape and T cell exhaustion, is associated with the development of chronic
infection. Recently, heterogeneity within the exhausted HCV-specific CD8+ T cells has been observed
with implications for immunotherapeutic approaches also for other diseases. In HCC, the presence of
tumor-infiltrating and peripheral CD8+ T cell responses correlates with a favorable prognosis. Thus,
tumor-associated and tumor-specific CD8+ T cells are considered suitable targets for immunothera-
peutic strategies. Here, we review the current knowledge of CD8+ T cell responses in chronic HCV
infection and HCC and their respective failure with the potential consequences for T cell-associated
immunotherapeutic approaches.
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1. Chronic Hepatitis C Virus Infection and Hepatocellular Carcinoma: Major Global
Health Burdens Associated with the Liver

Both, chronic hepatitis C virus (cHCV) infection and hepatocellular carcinoma (HCC)
affect the liver and represent major global health burdens. Worldwide, more than 71 million
people are currently infected with hepatitis C virus (HCV) [1] with estimated 1.75 million
new chronically infected patients per year [2]. In more than 70% of cases, acutely infected
patients develop a chronic HCV infection. Acute and chronic HCV infection are mostly
asymptomatic, however, chronic hepatitis is highly associated with the development of
liver fibrosis which can progress to premalignant cirrhotic remodeling of the liver and
ultimately to hepatocellular carcinoma [3]. HCC is the most common form of primary liver
cancer in adults and is one of the main causes of cancer-related deaths worldwide [4–7]. By
2040, a further 65% increase in incidence is expected by the WHO [8].

The liver, although no lymphoid organ, has a rich and highly specified immune compo-
sition. The liver immune system is normally in a hypoimmune state, guaranteeing balance
between tolerance towards harmless molecules and immunity towards pathogens. This
state renders the liver susceptible towards infections and cancer [9]. Nevertheless, upon
viral infection for example with HCV, the innate immune system is induced with a rapid
activation of the interferon response, natural killer cells and a local increase in cytokines
and chemokines [10,11]. This is subsequently followed by a delayed infiltration of CD4+

and CD8+ T cells [12] leading to necro-inflammation. Chronic liver disease associated
with chronic necro-inflammation may induce an immunosuppressive, pro-tumorigenic
environment [6,13,14] and therefore favors a multifactorial process in which HCC can
develop. The tumor microenvironment in HCC consists of various immunosuppressive
immune cell populations (e.g., regulatory T cells and myeloid-derived suppressor cells)
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and immunosuppressive cytokines (e.g., IL-10) [15]. An immunosuppressive tumor mi-
croenvironment modulates T cell reactivity [15] and can lead to evasion of HCC from
immunosurveillance [16]. Besides chronic viral hepatitis, e.g., induced by cHCV infection,
chronic alcohol abuse and non-alcoholic steatohepatosis (NASH), e.g., associated with the
metabolic syndrome, frequently drive HCC development also through necro-inflammation.
Yet, cHCV infection is still the leading cause of HCC in the Western world [13].

The therapeutic options of HCC are limited and curative therapies such as resection
and local ablation are only available for patients with small tumor nodes and well-preserved
liver function. Treatment options for patients in advanced stages are mostly restricted to
transarterial chemoembolization (TACE), systemic therapy with different agents, or best
supportive care due to tumor burden and poor liver function [6]. Thus, risk reduction
of HCC development is an important measure in patient care. With respect to chronic
viral hepatitis, this is reached by anti-viral treatment. In cHCV infection, the introduc-
tion of direct-acting antiviral (DAA) drug therapy in 2014 led to a sustained virological
response rate far exceeding 90% of treated patients [17] and thus reduced the risk of
HCC development with the exception of patients with undefined/non-malignant hepatic
nodules [18–20]. Of note, this unique success story of hepatitis C research leading to
the development of the highly effective DAA treatment has recently been honored with
the Nobel Prize [21]. However, HCV is still far from being eradicated since high costs,
limited availability of DAAs, and infrastructural restrictions problems hamper a world-
wide campaign [22,23]. Additionally, the incidences of DAA-resistant cases and patient
groups with poor prospects for recovery [1] have to be considered. The recent setbacks in
vaccine development [24–28] and a lack of immunological protection from reinfection after
cure [17,29–31] demonstrate that the success of DAA therapy will most probably not be
sufficient to reach HCV eradication.

In both, HCV infection and HCC, CD8+ T cells constitute major immune effector cells
that elicit cytotoxic and non-cytolytic anti-viral and -tumoral effector functions. However,
in the context of chronic antigen stimulation, CD8+ T cells are often functionally impaired
resulting in chronic progression of both liver-associated diseases. Therapeutic approaches
that induce CD8+ T cells to release their full or at least an improved effector capacity
are therefore considered promising in combating the global health burdens by cHCV
infection and HCC. This strategy is nicely reflected by the recent attempts of treating
HCC by the PD-1 checkpoint inhibitor nivolumab, that among others target CD8+ T cells,
led to tumor reduction and to a sustained objective response in 15–20% of patients with
advanced HCC [32]. A similar response was achieved with the PD-1 checkpoint inhibitor
pembrolizumab [33] that also demonstrated a survival benefit after checkpoint blockade
therapy in HCC. Moreover, the combination of atezolizumab (anti-PD-1) and bevacizumab
(anti-VEGF) in patients with unresectable HCC (including but not stratifying viral and
non-viral etiologies) showed a progression-free survival rate of over 15 months that is
superior compared to multikinase inhibitor sorafenib [34] and is thus now considered first
line therapy for HCC. In this review, we summarize the current knowledge of CD8+ T cell
responses in cHCV infection and HCC with a special focus on their respective failure and
the open questions since this sets the basis for the design of new or additive therapeutic
strategies aiming at improving anti-viral and anti-tumoral CD8+ T cell responses.

2. CD8+ T Cell Responses in HCV

A robust and effective CD8+ T cell response in association with a strong support by
CD4+ T helper cells is necessary for the spontaneous clearance of acute HCV infection
[35,36]. Although the occurrence of virus-specific CD8+ T cells in the peripheral blood
and liver is delayed (6–8 weeks after infection), it is clearly associated with significant
reduction of viral load but also with the onset of liver disease [37,38]. Furthermore, CD8+

T cell depletion studies conducted in chimpanzees resulted in prolonged viremia, further
highlighting the central antiviral role of CD8+ T cells [36]. The central role of CD8+ T cell
responses is also supported by the observed protective effects of diverse human leukocyte
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antigen class I alleles, such as HLA-B*27 or –A*03 [39]. Virus-specific CD8+ T cells that are
associated with HCV clearance in humans are characterized by expression of activation-
associated molecules (PD-1, CD39) [38,40], high levels of T-bet [41], and a low cytokine
production [37]. After successful viral elimination and subsequent cessation of antigen
triggering, the phenotype of HCV-specific CD8+ T cells shifts toward a classical memory-
associated phenotype (high expression of CD127), inheriting a reduced frequency and the
ability to readily expand upon reinfection. This memory of CD8+ T cells contributes to
an increased likelihood of viral resolution in re-infected patients [42]. In chronic HCV
infection, however, the phenotype and functionality of virus-specific CD8+ T cells are
tremendously altered; the frequencies of virus-specific CD8+ T cells are lower and the
remaining virus-specific CD8+ T cells fail to clear the virus but still most likely contribute
to ongoing liver disease [43–45].

Failure of Virus-Specific CD8+ T Cells in HCV

Two main mechanisms are associated with the failure of virus-specific CD8+ T cells in
cHCV infection. One mechanism is the evasion of the virus from the immune system, a
phenomenon called viral escape. Viral escape mutations can lead to a loss of HCV-specific
CD8+ T cell epitopes and loss of de novo T cell priming, contributing to reduced recognition
and thus altered anti-viral activity of virus-specific CD8+ T cells [40,46–48].

The other mechanism is T cell exhaustion, a phenomenon first described in chronic
lymphocytic choriomeningitis virus (LCMV) infection in mice [49,50] which can be ob-
served in many chronic viral infections and cancer also in humans. Exhausted virus-specific
CD8+ T cells have an impaired survival, an altered metabolic, epigenetic, and molecular
signature [48,51–54] and are characterized by a gradual loss of effector functions and pro-
liferative capacity. In particular, exhausted CD8+ T cells exhibit an increased expression
of co-inhibitory molecules such as PD-1, TIM-3, LAG3, 2B4 [55–57], high expression of
the transcription factors Eomes [58,59] or the recently identified HMG-box transcription
factor TOX [60–63]. The mechanisms leading to T cell exhaustion are manifold, with high
viral load and large number of antigen presenting cells [64–66], as well as a loss of CD4+

T cell-mediated help and absence of IL-21 signaling playing important roles [50,67–69].
Noteworthy, recent studies by the groups of Georg Lauer and Carlo Ferrari showed that
transcriptional and metabolic differences in HCV-specific CD8+ T cells are already present
at early time points of infection and influence the outcome of infection [48,51].

Exhausted virus-specific CD8+ T cells are heterogeneous and consist of subpopulations
with different functional and phenotypic properties [56,59–61,63,70–74]. Based on the
expression of the inhibitory receptor PD-1 and the IL-7 receptor α-chain CD127, Wieland
et al. could identify CD127+ PD-1+ memory-like subsets expressing the transcription factor
TCF-1 and CD127- PD-1high Eomeshigh terminally differentiated subsets of exhausted HCV-
specific CD8+ T cells in cHCV infection. CD127+ PD-1+ memory-like subsets determine
the proliferative capacity of the HCV-specific CD8+ T cells population in cHCV infection
that can be further appointed to the TCF-1 expression of this subset. Furthermore, only
the memory-like subset is maintained independently from antigen recognition either after
viral escape or after antigen withdrawal by DAA therapy [75]. These findings have two
important implications: first, ongoing antigen recognition drives differentiation towards
terminal exhaustion; and second, the memory-like subset maintains the virus-specific CD8+

T cell pool during and after cHCV infection. In addition, it has been shown that different
exhausted virus-specific CD8+ T cell subpopulations in mice and humans are differently
responsive towards checkpoint blockade with memory-like CD8+ T cells representing the
best responders [55,76].

Noteworthy, the memory-like HCV-specific CD8+ T cell subset retains characteristics
of exhausted T cells even after viral elimination by DAA therapy, like a molecular scar
of chronicity, and remains functionally inferior compared to conventional memory HCV-
specific CD8+ T cells emerging after self-limiting HCV infection [75,77]. Consequently,
antigen withdrawal after long-term persisting antigen recognition does not lead to full
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recovery of exhausted HCV-specific CD8+ T cells and thus to an impaired CD8+ T cell mem-
ory [77]. These findings have important translational consequences as they at least partially
explain the limited protective capacity of the HCV-specific CD8+ T cells after DAA cure
and reinfection [75]. Thus, these results clearly implicate the need to therapeutically target
molecular determinants associated with T cell exhaustion to unleash a fully functional
and robust CD8+ T cell response after DAA-mediated HCV clearance. Further studies are
therefore required to fully explore the imprinted molecular and epigenetic signatures in
exhausted HCV-specific CD8+ T cells including the definition of master regulators associ-
ated with the differentiation program of T cell exhaustion. A first step in this direction was
the recent identification of the HMG-box transcription factor TOX that regulates the epige-
netic and transcriptional program in exhausted T cells in mouse models of chronic LCMV
infection and cancer [60–62] and that is also associated with the exhausted phenotype of
HCV-specific CD8+ T cells [60] and PD1+ T cells in HCC [78]. Moreover, this observation
of an association of TOX with exhausted T cell characteristics in cHCV and HCC highlights
shared principles of CD8+ T cell dysfunction in both liver-associated diseases.

3. CD8+ T Cell Responses in HCC

HCC patients with detectable antigen-specific CD8+ T cell responses during the
natural course or induced by anti-tumoral therapy have an improved overall survival.
Indeed, lymphocyte infiltrates, in particular tumor-infiltrating CD8+ T cells, have been
associated with improved survival and lower relapse rates after liver resection [5,79–83].
However, HCC tumors are frequently only poorly infiltrated by CD8+ T cells or other
immune cells [5].

HCC is characterized by a high molecular complexity and genetic heterogeneity,
leading to the identification of different tumor antigens in HCC tissue (as well as in
other cancers) [84–92]. Tumor antigens were initially identified in other tumor types and
subsequently examined for their expression and immunogenicity in HCC [93]. Tumor
antigens are classified in tumor associated antigens (TAA) and tumor-specific mutant
antigens (neoantigen). Neoantigens are rare and only a few have been so far identified in the
context of HCC [94–96]. In contrast, TAA were detectable in the HLA ligandomes of HCC
patients [94–96]. With respect to TAA, several categories are distinguished based on the
expression pattern, namely tumor testis antigens, overexpressed antigens, differentiation
antigens, oncofetal antigens. Another category of antigens in the context of HCC are viral
antigens [16,92] (Figure 1). Although TAA may be partially subject to self-tolerance, they
are considered as good targets for immunotherapeutic treatment concepts, because they are
mainly expressed in tumor cells and shared between patient groups. Of note, differential
TAA expression in HCC with different underlying etiologies has not been extensively
addressed so far.

TAA-specific CD8+ T cells, which are able to recognize respective tumor antigens
in autologous tumor tissue, have been shown to be associated with tumor control. For
example, the study of Flecken et al. showed that CD8+ T cell responses specific for TAA are
associated with prolonged progression-free survival in HCC patients [84]. The expression of
HLA class I molecules in primary HCC [97] and several groups of TAAs that enable CD8+ T
cells to recognize tumor cells have been identified [15,84,92]. However, the expression rates
of TAA are different. For example, MAGE-A is expressed in up to 80% of HCC patients,
while NY-ESO-1 is expressed in less than 50% of HCC patients [98–100]. Indeed, several
studies showed a significant heterogeneity and no consistent hierarchy between different
TAA-specific CD8+ T cell responses within individual cohorts of HCC patients [84,85,98].
Taken together, the relevant immunodominant epitopes targeted by CD8+ T cells are so far
not well understood in HCC contrary to well defined viral CD8+ T cell epitopes in cHCV
infection [86,101].
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Failure of CD8+ T Cells in HCC

Although TAA-specific CD8+ T cells are associated with a better outcome [84], there is
evidence of a dysfunctional state of these cells [99]. The underlying molecular mechanisms
are, however, largely unknown due to the low frequency of TAA-specific CD8+ T cells in
HCC patients. Thus, most studies are based on in vitro expansion protocols with cytokines
such as IL-2 or IL-12 [16] prior to ELISPOT assays, limiting the analysis of the ex vivo
molecular properties of TAA-specific CD8+ T cells in HCC. By applying peptide/MHCI
tetramer-based enrichment, we characterized circulating TAA-specific CD8+ T cells target-
ing gylpican-3, NY-ESO-1, MAGE-A1, and MAGE-A3 in therapy-naïve HCC patients [102].
The frequencies of TAA-specific CD8+ T cells were comparable in HCC patients and in
healthy donors (HD) or in patients with liver cirrhosis but lower compared to virus-specific
CD8+ T cells present in HCC patients. Significantly more TAA-specific CD8+ T cells from
HCC patients (expressing the respective TAA) displayed an antigen-experienced pheno-
type (% antigen-experienced MAGE-A-specific CD8+ T cells in HCC: Median: 52.9%; IQR:
60.8%) [102]. This observation indicates an at least partially inefficient TAA-specific CD8+ T
cell priming and activation, which may lead to limited expansion and thus to low frequen-
cies that are barely distinguishable from the naïve precursor frequencies. Virus-specific
CD8+ T cells in the very same patients showed an antigen-experienced phenotype, which
contrasts with an actively persisting general cancer-associated mechanism of improper T
cell priming in HCC.

In general, as discussed above, persistent antigen recognition leads to a gradual
exhaustion of CD8+ T cells in chronic viral infections and cancer [103,104]. Surprisingly,
and in contrast to HCV-specific CD8+ T cells in cHCV patients, antigen-experienced MAGE-
A-specific CD8+ T cells do not show a terminally exhausted phenotype (Eomeshi, PD-1hi,
TCF-1lo, CD127lo) in therapy-naïve HCC patients [102], potentially reflecting different
quantities and qualities of antigen recognition. In addition, only moderate expression of
multiple inhibitory receptors—also characteristic marker molecules of T cell exhaustion—
has been shown on TAA-specific CD8+ T cells targeting several TAAs in different cohorts of
HCC patients with different underlying etiologies [98,101,105,106]. A higher expression of
these inhibitory receptors was observed on TAA-specific CD8+ T cells isolated from HCC
tissue compared to T cells from tumor-free liver tissue or blood, especially a significantly
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higher PD-1 expression was detectable on tumor-infiltrating lymphocytes compared to
PBMC [98,101,105,106]. Blocking antibodies targeting these inhibitory receptors (PD-1,
TIM3, and LAG3) restored T cell function and combinations of antibodies had additive
effects [101]. This observation suggests that the even moderate expression of inhibitory
receptors on TAA-specific CD8+ T cells dampens the T cell response in HCC. However,
further investigations are required to clarify the molecular signatures and with this the
exhausted state of TAA-specific CD8+ T cells also in relation to the underlying etiology.
Interestingly, CD8+ T cell subsets with molecular signatures of T cell exhaustion (including
PD-1 expression) were identified by single cell RNA sequencing of bulk T cells isolated
from peripheral blood and HCCs [7]. Although the targeted antigens (including TAAs,
neoantigens, and viral antigens) of these exhausted CD8+ T cells remain elusive this finding
provides a mechanistic explanation of the durable objective response to PD-1 checkpoint
blockade therapy of at least some patients with advanced HCC [32,107]. Further studies are
now required to define the tumor antigens targeted by these exhausted CD8+ T cells and
subsequently to more precisely analyze their specific molecular profiles in order to optimize
checkpoint therapies and other immunotherapeutic approaches like vaccination strategies.
Of note, CD8+ T cell responses are markedly affected by the tumor microenvironment
(TME). This notion is best exemplified by (i) a study of Di Blasi et al. showing that the
presence of certain TIL clusters (e.g., ICOS+ TIGIT+ CD4+ TILs) can serve as a prognostic
indicator for the response to checkpoint blockade therapy [108]; and by (ii) the improved
progression-free survival of HCC patients treated with Atezolizumab (blocking PD-1
checkpoint pathway) in combination with the VEGF-blocking antibody Bevacizumab
(blocking VEGF) that has recently been approved as first line therapy in HCC [34]. Thus,
a deep understanding of the overall immune contexture including tumor-resident and
tumor-specific immune cells is crucial to answer the following important questions also in
relation to the design of new or improved immunotherapeutic approaches: Which immune
cells primarily respond to immunotherapy?; Which of the responding immune cells are
beneficial, which are deleterious in the anti-tumor response? Or which immune cells
support the anti-tumor CD8+ T cell response? Why are only some tumors accessible for
immunotherapy?; and which T cell subsets mediate anti-tumoral activity in patients who
respond to checkpoint blockade therapy?

4. Concluding Remarks

Clearly, CD8+ T cells are major effector cells in anti-viral and anti-tumoral immunity in
cHCV infection and HCC and CD8+ T cell impairment is common in both liver-associated
diseases. The approval of DAA therapy not only revolutionized patient care but also pro-
vides a unique chance to study CD8+ T cell impairment by T cell exhaustion in a clinically
relevant setting. By taking this opportunity, recent studies [51,60,75,109,110] underlined the
relevant role of ongoing antigen recognition in driving HCV-specific CD8+ T cell exhaustion
and offered novel insights into phenotypic and functional heterogeneity, metabolic dys-
regulation and fate of exhausted CD8+ T cells during and after cHCV infection. Although
there is some data available regarding CD8+ T cell exhaustion in HCC [7,101] much less
is understood concerning mechanistic details due to the absence of knowledge about the
targeted antigens. However, general principles of CD8+ T cell exhaustion/dysfunction
seem to be conserved between virus-specific and tumor-specific CD8+ T cells [103] which
is best reflected by the common master regulator TOX [60–62,78]. Definition of central
factors driving T cell exhaustion/dysfunction that are targetable by immunotherapeutic
approaches may therefore be translatable from chronic viral infections to cancer and vice
versa. However, there are also considerable differences in chronic viral infections and
cancer that potentially impact the CD8+ T cell response: e.g., origin of antigen (exogenous
versus endogenous) associated with antigen quantity and presentation, the differential
expression of cytokines and other immune mediators (pro-inflammatory versus immuno-
suppressive), and the composition of the other immune cells (CD4+ T cell help, CD4+

regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages).
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Thus, future studies are required to define shared and diverging determinants and molecu-
lar characteristics of CD8+ T cell dysfunction in chronic viral infection and cancer. For this,
cHCV infection and HCC represent important translational settings since both affect the
liver and may also occur in combination helping to dissect virus- and tumor-associated
effects on CD8+ T cell dysfunction. This knowledge will provide rationales for establishing
predictive biomarkers, e.g., responding/beneficial immune cells and CD8+ T cell subsets,
and the design of novel or improved immunotherapeutic approaches, like combinatorial
treatments lowering inhibitory signals from the microenvironment and recruiting/boosting
the most functional CD8+ T cell response (Figure 2). Both are especially urgently needed
for HCC treatment.
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