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Metal-encapsulated organolead halide perovskite
photocathode for solar-driven hydrogen evolution
In water
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Lead-halide perovskites have triggered the latest breakthrough in photovoltaic technology.
Despite the great promise shown by these materials, their instability towards water even in
the presence of low amounts of moisture makes them, a priori, unsuitable for their direct use
as light harvesters in aqueous solution for the production of hydrogen through water splitting.
Here, we present a simple method that enables their use in photoelectrocatalytic hydrogen
evolution while immersed in an aqueous solution. Field's metal, a fusible InBiSn alloy,
is used to efficiently protect the perovskite from water while simultaneously allowing the
photogenerated electrons to reach a Pt hydrogen evolution catalyst. A record photocurrent
density of —9.8mAcm~2 at OV versus RHE with an onset potential as positive as
0.95+0.03V versus RHE is obtained. The photoelectrodes show remarkable stability

retaining more than 80% of their initial photocurrent for ~1h under continuous illumination.
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ociety is facing a number of pressing issues including the

depletion of the Earth’s finite pool of fossil fuel resources,

the steady increase of energy demand, and the predicted
detrimental changes to the Earth’s climate due to CO, emission
from the combustion of carbon-based fuels!. Photovoltaic (PV)
technology is expected to play a major role covering future
electricitgr needs, which accounts for ~18% of the world’s energy
demand®. On the other hand, artificial photosynthesis, which
utilizes sunlight to create solar fuels such as H,, is considered as a
promising method for tackling the fuel demand (67% of world
energy consumption relies on non-renewable fuels) in a post-
fossil era®?.

Hybrid organic-inorganic perovskites are the latest break-
through as light harvesters in solar cells®. Intensive research has
led to a rapid rise in power conversion efficiency (PCE) since
their original publication in 2009 (ref. 5) to values reaching 20%
in 2015 (refs 6,7), making it the fastest-developing technology in
the history of PV. The use of perovskites affords several
advantages: a direct bandgap that is tuneable by changing the
chemical composition of the material®®, ambipolar charge
transport!®, long carrier lifetimes!! and long charge diffusion
lengths in the micrometre range!>~14. Perovskites, such as the
most common lead-iodide based CH3;NH;Pbls;, constitute
excellent candidates for photoelectrochemical H, evolution
since they also have a favourable band alignment for reducing
protons, where, depending on the pH, the position of the
conduction band could provide 100-500 mV of driving force.

Despite the great promise of perovskites, they still show one
major drawback; they are inherently unstable in water. Indeed, it
was found that the lattice structure of CH;NH;PbI; can be easily
broken in the presence of moisture, which is followed by the
decomposition of the material into Pbl, (ref. 15). State-of-the-art
protection techniques in PV cells include moisture-blocking hole
transporters'®17, atomic layer deposition (ALD)!8 or water-free
ALD' and hydrophobic carbon electrodes?®2!.

However, these techniques are either unsuitable for preparing
photocathodes since they were developed for standard n-i-p
systems, or costly and difficult to scale-up. As a result, currently
published work re%arding perovskites for solar fuel production
has involved one?>?3 or two?* external standard perovskite solar
cells wired to suitable catalysts inside the aqueous solution for
water electrolysis. Systems with a perovskite immersed in water to
directly photogenerate H, are unknown.

In this work, we report the successful protection and
integration of a hydrogen evolution catalyst (HEC) with a
perovskite-based photocathode in a single device capable of stable
photoelectrochemical H, generation in water. We prepare
photocathodes using CH;NH;PbI; as light harvester following
the standard inverse (or p-i-n) planar solar cell configuration. In
order to protect the perovskite, we develop a novel and simple
metal encapsulation technique using a fusible InBiSn alloy (Field’s
metal, FM) that protects the light absorber from water while
simultaneously allowing the efficient transfer of photogenerated
electrons to a Pt HEC deposited on its surface.

Results

Perovskite solar cell. With the ultimate goal of protecting a
perovskite-based photocathode and integrating a HEC, we firstly
prepared perovskite solar cells (see Fig. la for a schematic
representation and Fig. 1c for its energy diagram). We followed a
typical inverted or p-i-n configuration, where the p-type
hole collection layer is processed first on the transparent
conducting glass?®>. We spin-coated a 40nm thick poly(3,
4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)
layer as hole transporting material on fluorine-doped tin oxide
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(FTO)-coated glass, followed by a 300nm thick CH;NH;Pbl,
layer as light harvester and a 40nm thick [6,6]-phenyl-Cg;-
butyric acid methyl ester (PCBM) layer as electron transporting
material (ETM), as confirmed by atomic force microscopy
(Supplementary Fig. 1). A 100nm thick film of Ag was
evaporated to form the top contacts of the perovskite solar cell
component. Ethoxylated polyethylenimine (PEIE) was spin
coated on top of the ETM and under the Ag to adjust its work
function, improving electron transfer from PCBM to Ag2®.

In order to obtain a homogeneous perovskite layer we prepared
the material using lead acetate as precursor?’, which leads to
ultra-smooth and pin-hole-free perovskite films?®. The films were
subsequently solvent-annealed at 100 °C in the presence of N-N-
dimethylformamide (DMF) vapour to induce the growth of larger
crystal domains in the material®®.

Supplementary Fig. 2 shows the scanning electron microscopy
images of the perovskite films under various magnifications.
The films are homogeneous with total coverage and grain sizes of
a few hundred nanometres. The ultraviolet-visible spectrum of
the perovskite film in Supplementary Fig. 3a shows a broad
absorption throughout the visible region. This translates into a
large fraction of solar photons being absorbed’, which makes it a
particularly efficient candidate for solar fuel production. The
bandgap of the prepared films was estimated with a Tauc plot
(Supplementary Fig. 3b) to be azpproximately 1.56eV, in
accordance with literature values®"32, The crystal structure of
the perovskite film was analysed by powder X-ray diffraction
(XRD; see Supplementary Fig. 4). The most prominent diffraction
peaks at Bragg angles of 13.98° and 28.32° correspond to those
from the (110) and (220) crystal planes of the tetragonal
perovskite structure, respectively’>. We also characterized the
perovskite films alone and in conjunction with the transport
layers through steady-state and time-resolved photoluminescence
(PL) experiments as shown in Supplementary Fig. 5a. A PL
emission maximum of the perovskite at 775nm is in line with
literature’, The PL decay of the perovskite is faster in the
presence of either PEDOT:PSS or PCBM, and the fastest for the
complete device (PEDOT:PSS/perovskite/PCBM) as seen in
Supplementary Fig. 5b, indicating an efficient charge transfer
from the perovskite to the electron and hole transporting
materials®.

The perovskite solar cells were measured under simulated
AM1.5G solar light (100 mW cm ~2) and showed an average
short circuit current (), open circuit voltage (V,), fill factor and
PCE of 150+14mAcm~2 1.0+0.09V, 540+6.0% and
7.7 £ 1.5%, respectively. The current-voltage (IV) curve of our
champion device, the external quantum efficiency (EQE) and
integrated J,. for the same cell are shown in Fig. 2. These
results are comparable with literature devices with the same
configuration and precursor>®%7,

The statistical analysis performed on the full set of measure-
ments (Supplementary Fig. 6) can be found in the Supplementary
Discussion. We found only a marginal hysteresis effect on the
cells (Supplementary Fig. 7). The IV characteristics of the cells did
not vary with the scan step size (Supplementary Fig. 8), and the
effect of the mask size on the cell performance was small
(Supplementary Fig. 9). The mismatch factor of around 10%
between the solar simulator and AM1.5G solar spectra can also be
seen in Supplementary Fig. 10.

Protecting perovskites in water. The main drawback of
perovskite materials is their inherent instability in water.
CH;NH;Pbl; readily decomposes into Pbl, with concomitant
dissolution of CH;NH;I when submerged in water!®. A solution
to this problem is the use of an indirect and two-component
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system, where the perovskite PV device is kept outside the
electrolyte solution and is wired to a separate water electrolyzer to
split water into H, and O, (refs 22-24).

An alternative and more direct solution would be the use of the
perovskite PV unit in a single component system, where light
absorption is coupled to HEC without external wiring and
intermittent generation of electricity. This challenging goal
requires immersion of the perovskite in water and can only be
accomplished with a suitable layer to protect the perovskite and
conduce the photogenerated electrons to the HEC at the
electrode-solution interface. Furthermore, the material must be
processable at temperatures below 100 °C, which is the thermal
stability limit for CH;NH;PbI; (ref. 15). This eliminates the
previously reported protection techniques except ALD, but this
approach is complex, costly and has not been proven successful
protecting perovskites. The only reports on submerged
perovskites use a protective layer of evaporated Ni that oxidizes
Na,S as a hole scavenger (this device loses 80% of its initial
photocurrent after 15min of operation®®) or a pinhole-free
mixture of PMMA/CNT/P3HT covered with Ni used for water
oxidation®”.

We therefore focused our attention on a novel protection
methodology and designed a metal-based encapsulation
technique to use perovskite solar cells as the basis for
photocathodes. We identified FM as an encapsulating candidate
as it is a non-toxic eutectic alloy of bismuth (32.5%), indium
(51%) and tin (16.5%) that melts at 62 °C.

A layer of FM was deposited on top of the Ag-covered
sections of the photocathode with the dual aim of protecting
the perovskite from water while efficiently shuttling the
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Figure 1 | Material and electronic configuration of the perovskite-based solar cells and photocathodes. (a) Schematic representation of the

structure of the perovskite solar cell. An inverted p-i-n configuration was used, with the general FTO/PEDOT:PSS/perovskite/PCBM/PEIE:Ag structure.
(b) Scheme of the solar cell adapted as a photocathode for solar H, production. The structure remains the same, but an extra metal-encapsulating layer
of FM and Pt as a HEC are added on top of the Ag layer. (¢) Energy diagram of both devices; for conversion between NHE and RHE reference electrodes,
use ERHE = ENHE +0.059 x pH

E /V versus NHE (pH 8.5)

PCBM

photogenerated electrons to the surface, where the hydrogen
production reaction takes place. Figure 1b shows a schematic
representation of the photocathode, and a detailed description of
the preparation procedure can be found in the ‘Methods’ section.
Briefly, a solid piece of FM was placed on the Ag-covered area of
the photocathode, and placed on a hot plate. The device was
subsequently heated to 70 °C until all FM had melted. In this case,
the purpose of evaporating Ag was twofold. First, it provided a
good interface with PCBM, thus improving electron injection
into the overlying FM layer. Second, the high wettability of Ag by
the FM under N, (as compared with the low wettability of all the
other layers) allowed the precise confinement of FM to the
desired area, thus facilitating preparation and avoiding short-
circuits in the system. The device was allowed to cool down to
room temperature and the edges were sealed with ultraviolet-
curing resin (NOA 63).

The water resistance of the metal-encapsulated photocathode
was first confirmed by placing it in an aqueous buffer solution
(0.1 M borate, pH 8.5) for several hours and an unprotected
photocathode (that is, without the Ag and FM layers) was also
studied for comparison. While the unprotected photocathode
was completely degraded within 1 min, the protected photo-
cathode only began to show faint signs of degradation after 6h
submerged in the absence of light and electrochemical bias
(Supplementary Fig. 11).

Electrocatalytic H, production on FM. Supplementary Fig. 12
shows the cyclic voltammogram of pure FM in an aqueous
solution (0.1M borate, pH 8.5) in a two-compartment
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Figure 2 | Perovskite solar cell performance. (a) Light (blue line and
symbols) and dark (grey line and symbols) IV curves of our champion
device under irradiation from a solar simulator and adjusted to AM 1.5G
illumination (100 MW cm ~ 2, active area: 12mm?, 0.05V step and 50 ms
dwell time, measured from reverse to forward bias). (b) EQE (blue line and
symbols) and integrated J.. (grey line and symbols) of the same device.

electrochemical cell with a Ag/AgCl reference and Pt mesh
counter electrode. The redox waves present on the FM are
probably due to redox processes assigned to the alloy matrix and
no catalytic current was observed in the absence of a HEC.
Therefore, Pt as a benchmark HEC was introduced by an elec-
troless deposition by immersing the FM into an aqueous solution
of K,PtCl, (5.2mM; E°=0.75V versus SHE*Y) for 1 min. Metals
that form FM can easily be oxidized by Pt*™, resulting in a
homogeneous deposition of metallic Pt on the surface of the FM
without the requirement of light, an applied potential, or a
sacrificial reagent. XRD spectra recorded before and after the
platinization step (Supplementary Fig. 13) show a broad peak at a
Bragg angle of 39.7° consistent with the main diffraction peak of
Pt (111) (JCPDS ICDD card 88-2343). A crystallite size of
~4.5nm was determined for the Pt nanoparticles from the full
width at half maximum (FWHM) of this peak by applying the
Scherrer equation. The ability of the platinized FM to reduce
protons is demonstrated by the catalytic onset potential close to
0V versus RHE in an aqueous borate solution (0.1 M, pH 8.5) in
the cyclic voltammogram shown in Supplementary Fig. 12. The
use of borate buffer close to pH neutral conditions enables the
coupling of a photocathode with a state-of-the art photoanode
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Figure 3 | Perovskite photocathode performance during H,
photogeneration. (a) Typical linear sweep voltammetry of the perovskite-
based photocathode at a scan rate of 5mVs ~ . The arrow denotes the scan
direction. (b) Chronoamperometric trace recorded at an applied potential of
0V versus RHE. An aqueous buffer solution (0.1M borate, pH 8.5),
chopped solar light irradiation (AM 1.5G, 100 mWcm 2, 2> 400 nm)
and an inert (N,) atmosphere at room temperature were used in both
experiments.

material such as BiVO, (ref. 41), which dissolves under extreme
pH values*2. Operation at low pH would not be feasible due to
the oxidation of the constituent metals in the FM, whereas
operation under basic conditions also displays good activity and
expands the general applicability of the FM protection approach
(Supplementary Fig. 14).

Solar H, production with protected perovskite photocathode.
The photocathodes were studied in a three-electrode configura-
tion with both the perovskite working and an Ag/AgCl reference
electrode separated from the Pt mesh counter electrode by a
Nafion membrane. Figure 3a shows a typical linear sweep
voltammogram (LSV) in aqueous electrolyte solution (0.1 M
borate, pH 8.5) during chopped simulated solar light irradiation
(AM 15G filter, 100mWcm 2, 1>400nm) recorded at
5mVs~ ! The average photocurrent density obtained at 0V
versus RHE was — 6.9 + 1.8 mA cm ~ 2, with a record device at
—9.8mA cm ~ 2. A video of an actual device under operation at
0V versus RHE can be seen in Supplementary Movie 1. The
average onset potential obtained was 0.95%0.03 V versus RHE.
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Since no direct liquid-semiconductor junction is formed, the
onset potential is related to the cell photovoltage, or V.. Indeed,
both values are strikingly similar, suggesting only small losses at
the Ag/FM junction. The very positive onset potential makes this
photocathode highly attractive for future tandem water splitting
devices.

Linear sweep voltammograms (LSVs) performed without a
A<400nm cut-off filter (Supplementary Fig. 15a) show that, as
expected from the ultraviolet-visible spectrum, most of the photo-
catalytic response proceeds from the light absorbed by the perovskite
in the visible region of the solar spectrum. The scan direction
influences the photocurrent slightly (Supplementary Fig. 15b), which
is consistent with the small hysteresis observed in the solar cells.

The photocathodes were stable under operation conditions for
more than 1.5h in all cases, retaining more than 80% of the initial
photocurrent as studied by light-chopped chronoamperometry
(Fig. 3b). The slow rise in photocurrent upon irradiation observed
in the chronoamperometry traces is also known in perovskite
solar cells. It was proposed that irradiation of lead-iodide
perovskite triggers the migration of iodide, which in turn leads
to a decrease in the density of trap states*®, and a slow increase in
PL over time. This phenomenon might also be responsible
for the slow increase in photocurrent in our experiments.
Gas samples were taken from the cathodic headspace at the
end of each chronoamperometric experiment and analysed
by gas chromatography. The Faradaic efficiency (FE) of the
photocathodes was found to be 95.1 +2.2 %, confirming that the
photocurrent observed corresponded to H, generation. These are
striking results considering the well-known instability of lead-
halide perovskites in water?”. An additional advantage of our
metal encapsulation technique is that the layers of FM could be
easily detached from the degraded photocathodes, polished, and
reused several times.

Our perovskite-based photocathodes are superior to other
hydrogen evolution materials when considering the obtained
current density and onset potential. While p-Si can deliver higher
photocurrents, it must be noted that research on that material as
photocathode has a much longer history** than that of
perovskites. The reported perovskite-based photocathode shows
comparable photocurrent densities to benchmark E—GaIan
photoelectrodes?®, and Cu,O-based photocathodes?®*”. In all
those cases, the materials were protected with expensive and
time-consuming ALD techniques, while the method developed in
this work is much simpler and more scalable. The major
advantage of our perovskite photocathode is the much more
anodic onset potential. Indeed, the perovskite photocathode
presented here showed onset potentials of around 1V versus
RHE, which is ~500mV more positive that of the afore-
mentioned photocathodes**. This makes our device very
attractive for application in a tandem photoelectrochemical cell
for overall solar water splitting. The non-transparency of the FM
layer would not impede this application, since the photocathode
would be, in such a case, the back electrode of the tandem system
and the metallic coating could even be beneficial to reflect the
light back to the perovskite.

In the present study, the exact time to full degradation varied
depending on the photocurrent density given by the photo-
cathode (Supplementary Fig. 16). In all cases, a sudden
deactivation occurred when the degradation front (which was
visible from the back of the electrode) reached the area of the
perovskite over the FTO. The degradation was faster than
in the dark and without applied bias (Supplementary Fig. 11).
Furthermore, operation under continuous illumination
(Supplementary Fig. 17) shows that indeed the total charge
passed through the device seems to be a key element of the
degradation. Thus, two hypotheses seem likely to explain the

degradation. First, silver may be corroding when in contact with
the halide ions forming silver halides in humid environ-
ments*®4°. Second, the application of even a weak electrical
field has recently been found to result in a rapid (hours)
degradation of the material to Pbl, in the presence of moisture’.
In both cases, the presence of water has been described as
necessary in the literature, and is indeed confirmed in our case,
since degradation always starts from the edges of the perovskite,
but never in the centre of the film. An extended
chronoamperometry experiment with platinized FM is shown
in Supplementary Fig. 18. The FM/Pt electrode can perform
electrocatalytic proton reduction at — 0.1V versus RHE (same
buffer as the photoelectrochemical experiments) without
catastrophic degradation, ruling out the stability of the FM/Pt
being the limiting factor.

Nevertheless, we are confident that using more efficient
perovskites and optimizing the top charge collection layer could
further improve both the activity and stability of the photo-
cathodes presented. Furthermore, our approach is very simple to
apply, making it versatile enough for its application on a variety
of unstable or photocorrodible materials.

Finally, we used monochromatic light to measure the
photocurrent produced at different wavelengths (FWHM of
15nm) as shown in Fig. 4. The EQE of the system at 0V versus
RHE matches the ultraviolet-visible spectrum of the perovskite
closely (which is overlaid in the same graphic), suggesting that the
perovskite can efficiently generate hydrogen when coupled with a
suitable HEC throughout the entire visible region of the solar
spectrum.

In conclusion, a simple and scalable technique to simulta-
neously protect a perovskite PV component and couple it directly
with a HEC in a single device to stably generate hydrogen in
aqueous media has been presented. We employed a 7.7 £ 1.5%
PCE p-i-n configuration solar cell and developed a simple method
to protect the perovskite from water in order to employ them as
photocathodes for the hydrogen evolution reaction. A layer of FM
was used as a protecting and conducting layer, capable of
shielding the perovskite from water and allowing the transport of
the photogenerated electrons to the top of the device, where
they could reach the HEC and produce hydrogen. The average
photocurrent density obtained at OV versus RHE was
—6.9+1.8mAcm 2, with a record device at —9.8 mA cm ~ 2
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Figure 4 | Effect of light wavelength on H, generation with perovskite
photocathodes. Overlay of the absorption (ultraviolet-visible) spectrum
(grey line) of the perovskite film and the EQE (blue line and symbols)
obtained with the perovskite photocathode in an aqueous buffer solution
(0.1M borate, pH 8.5) with monochromatic light (15nm FWHM band-pass
filters) and inert (N,) atmosphere at room temperature and OV versus
RHE. The error bars denote the standard deviation of three different
repetitive measurements in two different samples.
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and onset potentials as positive as 0.95 + 0.03 V versus RHE. This
performance is superior to current benchmark systems, making
these devices extremely interesting for application in overall
tandem water splitting devices. The photocathodes retained 80%
of their initial photocurrent for more than 1.5h in aqueous
solution under chopped light, and approximately 1 h under
continuous illumination. This metal-encapsulation technique is
simple and potentially also applicable to other types of unstable
or photocorrodible materials.

Our work demonstrates that the high potential that perovskites
have shown in the solar cell field can indeed be translated into
artificial photosynthesis research. These findings will conse-
quently also spur further attempts to bridge the optoelectronics
and solar fuels communities, to find joint applications towards
the ultimate goal of harnessing the power of the sun.

Methods

Methylammonium iodide synthesis. Hydroiodic acid (24.6 ml, 57% in H,O,
Sigma) was added dropwise to 27.86 ml of methylamine (33% in absolute ethanol,
Sigma) under N, atmosphere with stirring at 0 °C for 2 h. The solvent was evaporated
with a rotary evaporator at 50 °C and the obtained powder was dissolved in ethanol
and precipitated by the addition of diethyl ether. The powder was washed twice with
diethyl ether and dried in a vacuum oven at 60 °C overnight.

Solar cell fabrication. FTO 14 x 14 mm glass (TEC 7, ~7Qsq ™1,
Sigma-Aldrich) was used as a conducting substrate for the solar cells. Overall,
4mm of FTO were etched of the glass substrate using Zn and 2M HCL.
Subsequently, the slides were washed with water, sonicated in isopropanol for

20 min, followed by sonication in acetone for 20 min, treated for 20 min with
Ultraviolet/Ozone cleaning (Bioforce Nanosciences) and dried in air. Subsequently,
PEDOT:PSS (AI 4083, Clevios) filtered through a 0.2 pm PES filter was spin-coated
at 4,000 r.p.m. for 60 s and then heated at 120 °C for 20 min in air. The FTO-glass
slides coated with PEDOT:PSS were then transferred into an anhydrous N,-filled
glovebox. The perovskite active layer was prepared following a modification of the
protocols reported elsewhere?>!. The perovskite film was prepared from a DMF
(99.9%, Sigma) solution containing methylammonium iodide (3.3 M) and
Pb(CH;CO5), (1.1 M, 99.999%, Sigma). The resulting solution was coated onto the
FTO/PEDOT:PSS at 5,000 r.p.m. for 30s. The substrates were kept at 30 °C for
about 10 min, after which they were heated to 100 °C (6 °C min ~!) in the glovebox,
and a petri dish was placed upside down over them (10 pl of DMF were placed
under the edge of the petri dish). The substrates were subsequently annealed for
45 min under the thus created DMF atmosphere and then left to cool to room
temperature. The ETM consisted of PCs;BM (99.5%, Solenne) layer spin coated
from a 35mgml ~! in chlorobenzene solution at 3,000 r.p.m. for 45s. A 0.2 wt% of
PEIE (80% in H,O, Sigma) in isopropanol was spin coated at 3,000 r.p.m. for 30s.
Finally, a 100 nm thick layer of Ag was deposited on top of the ETM by thermal
evaporation.

Photocathode fabrication. The photocathodes were fabricated following the same
procedure as described for the solar cells, only that the FTO, CH;NH;PbI; and Ag
patterns were designed to maximize the protection of the perovskite as shown on
Fig. 1. Briefly, the FTO was etched from the surface of the glass slides to leave only a
centred rectangular feature. PEDOT:PSS, CH;NH;Pbl;, PCBM and PEIE were
deposited on the slides following the same procedure described for the solar cells,
but a 1cm area of the glass was left uncoated (where FTO will subsequently be
contacted). A 100 nm Ag layer was evaporated on top of the deposited materials
leaving a few mm of them uncovered to avoid a direct contact between the FTO and
Ag. A piece of FM corresponding to 1.5 ggycm ~ 25, was placed on the Ag-covered
part of the photocathodes and heated to 70 °C inside of the glovebox. Once the FM
melted completely, wetting only the parts of the device covered with Ag, the device
was left to cool on the hot plate. No correlation was found between FM thickness and
performance, but a minimum amount of 1.5 ggycm ™~ 2 ‘ag Was used in order for the
former to properly wet the entire Ag surface and avoid strains during preparation
that could lead to device shorting. The edges of the photocathodes were protected
with ultraviolet-curing resin (NOA 63, Norland) and the active area was ~0.4 cm?.
The surface of the FM was polished, cleaned with acetone and isopropanol before
submerging the device in a 5.2 mM aqueous solution of K,PtCl, (98%, Sigma) for
1 min. The photocathode was rinsed with water and dried in air. After using the
photocathode, the resin was removed and the FM layer was detached using a scalpel.
The top and bottom of the FM layer were polished to remove Pt and Ag residues, and
reused on another fresh photocathode.

Optical experiments. IV characteristics were measured in the dark and simulated
solar irradiation (Oriel 92250A) using a Keithley 2636A source-measure unit.
The current from the solar cell was compared with the current of a NIST-traceable
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calibrated photodiode (Thorlabs SM05-CAL). Both the device and the calibration
cell were measured against a reference diode (SM05) to account for changes in light
intensity between the measurements.

Photoelectrochemical H, evolution. Photoelectrochemical measurements were
carried out on an electrochemical workstation (IVIUMSTAT) under inert
atmosphere and at room temperature. A conventional three-electrode configura-
tion was used with the perovskite, Pt mesh and Ag/AgCl/KCl(s, as working,
counter and reference electrode, respectively, in an aqueous electrolyte solution
(0.1 M borate, pH 8.5). In order to study the electrochemistry of FM, we contacted
a flat piece of FM to a stainless steel rod with the use of Cu tape. After insulating
the Cu/FM contact area, the exposed FM was polished, cleaned and plated with Pt
through electroless deposition. In photoelectrochemical H, evolution experiments,
the working electrode was illuminated from the back with a 100 mW cm ~ 2 solar
light simulator (Newport Oriel, 150 W) equipped with an AM 1.5 G filter and an IR
water filter. All electrochemical potentials are reported against the reversible
hydrogen electrode (RHE) by using the equation E (V versus RHE) =E (V versus
Ag/AgCl) +0.059 pH+ 0.197 (ref. 52). Hydrogen detection was carried out by
gas chromatography by taking a 50 ul sample from the headspace of the
photoelectrochemical cell at the end of chronoamperometry. Gas chromatography
was carried out on an Agilent 7890A gas chromatograph using a HP-5 column
(0.32 mm diameter) at 45 °C and N, carrier gas with a flow rate of ~3 mlmin~
and a thermal conductivity detector. Methane (2% CH, in N,) was used as internal
standard after calibration with different mixtures of known CH4/H, compositions.
The FE was determined by comparing the amount of hydrogen detected with the
charge passed through the working electrode according to the equation:

1

H,(mol) - 2F(C mol ™)
Charge passed through WE(C)

FE (%) = -100 (1)

Wavelength-dep t photon to current conversion. The photocathodes
were irradiated by a solar light simulator (LOT LSN 254) equipped with a
monochromator (LOT MSH 300) that was used to focus a single wavelength
(accurate to a FWHM of 15 nm). Chronoamperometry was performed at 0V
versus RHE (PalmSens Emstat potentiostat), while the wavelength was changed
from 400 to 800 nm, with 25nm steps. The light intensity was measured on a
power meter (ILT 1400, International Light Technologies), and the observed
photocurrent was normalized by the measured intensity at each wavelength.

d

Characterization techniques. XRD patterns of the samples were collected using a
Panalytical Empyrean X-ray diffractometer using Cu Ko radiation. Measurements
were taken in a 0-20 configuration, from 10° to 90° with a step size of 0.008.

Scanning electron microscopy pictures were taken with a XL30 FEG microscope.
Ultraviolet-visible spectra were recorded using a Varian Cary 50 Bio Ultraviolet-

Visible spectrometer at a scanning rate of 300 nm min ~ 1.

Data availability. The raw data that support the findings of this study are available
from the University of Cambridge data repository, http://dx.doi.org/10.17863/
CAM.670
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