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The grand challenge in structure-based drug design is achieving accurate prediction
of binding free energies. Molecular dynamics (MD) simulations enable modeling
of conformational changes critical to the binding process, leading to calculation of
thermodynamic quantities involved in estimation of binding affinities. With recent
advancements in computing capability and predictive accuracy, MD based virtual
screening has progressed from the domain of theoretical attempts to real application
in drug development. Approaches including the Molecular Mechanics Poisson Boltzmann
Surface Area (MM-PBSA), Linear Interaction Energy (LIE), and alchemical methods have
been broadly applied to model molecular recognition for drug discovery and lead
optimization. Here we review the varied methodology of these approaches,
developments enhancing simulation efficiency and reliability, remaining challenges
hindering predictive performance, and applications to problems in the fields of
medicine and biochemistry.
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INTRODUCTION

Modern drug development requires screening over vast regions of chemical space to identify
potential binders against a protein target. This approach is costly in time and material resources
(DiMasi et al., 2016). Even after identification of potential ligands from initial screening assays,
further refinement must be carried out to improve binding properties, ensure that off target effects
are minimized, and optimize pharmacokinetic properties. Evaluation of binding free energies
through virtual screening has shown promise in efficiently narrowing the chemical search space
for candidate compounds and streamlining the process of lead compound optimization. Outside of
the pharmaceutical field, binding affinity predictions find additional uses in protein engineering, and
guide the rational design of mutations altering enzyme substrate/product specificity (Kaushik et al.,
2018; Li Y. et al., 2019; Bhati et al., 2019; Ono et al., 2020; Chen et al., 2021), structural stability
(Aldeghi et al., 2018; Jandova et al., 2018; Pourjafar-Dehkordi et al., 2019; Martin et al., 2020), and
catalytic efficiency (Xue et al., 2019; Wang K. et al., 2020).

Here we discuss recent developments and applications of molecular dynamics to calculate
absolute binding free energies in protein-ligand binding interactions. Through utilization of the
Molecular Mechanics Poisson Boltzmann Surface Area (MM-PBSA) (Cheatham et al., 1998;
Srinivasan et al., 1998; Kollman et al., 2000; Gohlke and Case, 2004; Yang et al., 2011; Miller et al.,
2012; Wang et al., 2016; Wang et al., 2018a), Linear Interaction Energy (LIE) (Aqvist et al., 1994;
Aqvist and Marelius, 2001; Aqvist et al., 2002; Gutierrez-de-Teran and Aqvist, 2012), and absolute
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alchemical methods (Kirkwood, 1935; Zwanzig, 1954;
Kirkwood, 1967; Bennett, 1976; Straatsma and McCammon,
1991; Gilson et al., 1997; Boresch et al., 2003; Shirts, 2012),
researchers are able to evaluate biomolecular interactions that
drive molecular recognition at atomic resolution and derive
accurate predictions for binding free energies. These methods
rigorously account for conformational dynamics and solvent
interactions that are key to protein-ligand interactions and
absent in coarser-grained approaches such as ligand docking.
The value in these methods for advancing drug discovery is
highlighted by their widespread application. Within the last
20 years the number of citations for each method has grown
from a small handful to several thousand, notably the MM-
PBSA method was found in over 2,000 citations in the last year
(Figure 1). These three methods differ in their treatment of
solvent and required simulation data, either involving only
the end point states of bound and unbound species, or
demanding simulation of a complete binding pathway
traversing intermediate states between the end points for
determination of binding free energy. These differences
result in trade-offs between predictive accuracy and
computational cost that must be weighed by the user to
select the best approach for their application. In this review,
discussion of approaches for the calculation of relative binding
free energies is skimmed over as having been recently reviewed
elsewhere (Cournia et al., 2017; Song andMerz, 2020). We focus
on describing the fundamental principles of each method,
recent developments enhancing their usability by improving
accuracy and computational efficiency, and successful
applications in drug discovery projects.

FREE ENERGY CALCULATION
APPROACHES

Molecular Mechanics Poisson Boltzmann
Surface Area
The MM-PBSA method as applied to small molecule binding is
an end-point method estimating the binding free-energy
difference between the protein-ligand complex and the
separate unbound components, the complex, ligand, and
protein alone (Sharp and Honig, 1990; Cheatham et al., 1998;
Srinivasan et al., 1998; Kollman et al., 2000; Gohlke and Case,
2004; Yang et al., 2011; Miller et al., 2012; Genheden and Ryde,
2015; Wang et al., 2016; Wang et al., 2019a) (Figure 2). MM-
PBSA provides a balanced approach characterized by improved
rigor and accuracy over molecular docking, and with reduced
computational demands compared to pathway methods such as
alchemical transformations that require involved experimental
setup to sample intermediate states through the decoupling of
ligand interactions (Rastelli et al., 2010; Hou et al., 2011; Slynko
et al., 2014; Sun et al., 2014). In addition to only requiring end-
point data, a further approximation with MM-PBSA that enables
efficient free-energy calculation is the utilization of implicit
solvation. By coarse-graining solvent as a continuum with
uniform dielectric constant the treatment of solvent
interactions is greatly simplified. However, this may lead to
difficulties modeling highly charged ligands and recent works
have focused on minimizing these errors (Wang et al., 2019a).

Two main approaches are employed to generate the data for
MM-PBSA binding energy predictions with both starting from
molecular dynamics (MD) simulation in explicit solvent: multiple
trajectories with the three components, complex, apo receptor,
and ligand separately, or a single trajectory with the bound
protein-ligand complex that is divided into the three
components afterward (Kollman et al., 2000; Wang et al.,
2016). MD is carried out with explicit solvation to maximize
accuracy of conformational sampling, and frames are post-
processed by removal of solvent and ion molecules. The
converged trajectory is evaluated with each frame as an
individual sample point to generate ensemble averages and
uncertainty values for the energy quantities. The single-
trajectory approach is favored for its straightforward
implementation and cancellation of covalent energy errors as
conformations for the complex and separated receptor and ligand
are based on shared configurations. However, the single-
trajectory method may not be optimal due to its reliance on
the problematic assumption that ligand binding does not involve
large-scale conformational changes (Lee and Olson, 2006; Wang
et al., 2016). The multi-trajectory approach is better suited for
binding events associated with large conformation changes, but is
noted to produce noisier estimates and require longer simulation
time to reach convergence as the complex and individual
components can sample diverged conformations (Swanson
et al., 2004; Yang et al., 2011).

The binding free energy between the ligand (L) and receptor
(R) is defined as:

FIGURE 1 |Citation counts for each method over the past 20 years. The
development and utilization of molecular simulation to guide drug discovery
has grown dramatically in recent years. The MM-PBSA method, which
balances simulation rigor, high speed, and minimal setup complexity to
allow high throughput screening, has seen extensive application reaching over
2,000 citations in 2020. Steep computational costs and challenges in
generalizing protocols to work on broad sets of protein-ligand systems have
limited the usage of absolute alchemical and LIE based approaches.
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ΔGbind � GRL − GR − GL

The difference in free energy between the complex and
individual components can be decomposed into enthalpic
(ΔH) and entropic (-TΔS) terms evaluating changes in
bonding interactions and conformational disorder with
binding. The enthalpic energy term can be approximated as
the gas-phase molecular mechanics energy (ΔEMM) and
solvation free energy (ΔGsolv). The configurational entropy
(−TΔS) can be estimated with the normal mode or quasi-
harmonic analysis (Yang et al., 2011; Kassem et al., 2015), but
is often omitted due to high computational cost and difficulty
obtaining convergence.

ΔGbind � ΔH − TΔS ≈ ΔEMM + ΔGsolv − TΔS

ΔEMM is computed from the molecular mechanics force
field and consists of the covalent energy (ΔEcovalent),
electrostatic energy (ΔEelec), and van der Waals dispersion
and repulsion energy (ΔEvdW). The covalent term includes
changes in bonds (ΔEbond), angles (ΔEangle), and torsion
(ΔEtorsion) energies.

ΔEMM � ΔEcovalent + ΔEelec + ΔEvdW

ΔEcovalent � ΔEbond + ΔEangle + ΔEtorsion

ΔGsolv describes the contribution of polar and non-polar
interactions to the transfer of the ligand from gas phase to
solvent. The polar solvation component (ΔGpolar) specifies the
interaction energy of the solute’s charge distribution in the
continuum solvent and is found by evaluation of the
Poisson-Boltzmann equation (PBE) (Perutz, 1978; Warwicker

and Watson, 1982; Bashford and Karplus, 1990; Davis and
McCammon, 1990; Jeancharles et al., 1991; Gilson, 1995;
Honig and Nicholls, 1995; Edinger et al., 1997; Luo et al.,
1997; Luo et al., 2002; Sharp and Honig, 2002; Lu and Luo,
2003; Tan et al., 2006; Cai et al., 2009; Wang et al., 2009; Ye et al.,
2009; Cai et al., 2010; Wang et al., 2010; Wang and Luo, 2010; Ye
et al., 2010; Cai et al., 2011; Hsieh and Luo, 2011; Botello-Smith
et al., 2012; Wang et al., 2012; Liu et al., 2013; Wang et al., 2013;
Wang et al., 2017). The non-polar solvation term (ΔGnon-polar)
measures the energy from the solute forming a cavity in the
solvent and the van derWaals interactions at the cavity interface
between solute and solvent (Wagoner and Baker, 2006; Tan
et al., 2007), so that the total solvation free energy can be
expressed as:

ΔGsolv � ΔGpolar + ΔGnon−polar

The basis of the PBE is the Poisson equation with dielectric
distribution ε(r), electrostatic potential distribution φ(r), and
fixed atomic charge density ρ(r), where each function is
dependent on the solute atom position vector (r).

∇ε(r)∇φ(r) � −4πρ(r)
To account for electrostatic interactions from ionic salt

molecules in the solution, the electrostatic potential (φ(r)) is
solved with the PBE with the additional terms λ(r) representing
the ion-exclusion function set to 0 inside the Stern layer and
molecular interior and 1 outside, and salt-related term f(φ(r)) that
depends on the electrostatic potential, the valence (zi), electron
charge (e), bulk concentration (ci), and temperature (T), with
summation over all ion types (i).

FIGURE 2 | MM-PBSA thermodynamic cycle. The binding free energy in aqueous environment is calculated as the difference between the sum of binding in
vacuum and solvating the complex with solvating the receptor and ligand individually. The information necessary to complete this cycle can be obtained by decomposing
a single trajectory into the ensemble desolvated receptor, ligand, and complex configurations, and computing the solvation free energies for each state with the Poisson-
Boltzmann equation. Normal mode analysis can be performed to determine the contribution of entropy to the binding process.
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∇ ε(r)∇φ(r) + λ(r)f (φ(r)) � −4πρ(r)
f (φ(r)) � 4π∑n

i

zieci exp( − zieφ(r)
kBT

)
The PBE can be linearized for easier numerical computation

under conditions where the ionic strength and electric field are
both weak. The linear PBE equation includes the modified Debye-
Hückel parameter (κ2), solvent dielectric constant (εsolv), and
solution ionic strength (I) where I � z2c.

∇ ε(r)∇φ(r) − εsolvk
2φ(r) � −4πρ(r)

k2 � 8πe2I
εsolvkBT

MM-PBSA is often used in tandem with the closely related
Molecular Mechanics Generalized Born Surface Area (MM-
GBSA) approach as both utilize the same set of inputs for the
prediction of binding free energies with continuum solvation
(Chen et al., 2016;Wang et al., 2019b). The difference between the
methods lies in the calculation of ΔGpolar where the GB model is
based on an analytical expression approximating the PBE. This
leads to large speed improvements, but predictive performance is
generally reduced compared to PBE, though this is system
dependent (Genheden and Ryde, 2015; Chen et al., 2016). The
GB equation is composed of terms describing solute atoms as
spheres with partial charge (q), internal dielectric (ε) and solvent
dielectric (ε0), distance between particles i and j (rij), and the
effective Born radius (α).

ΔGGB � −(1
ε
− 1
ε0
)∑

i,j

qiqj
fGB

fGB �
��������������������
r2ij + αiαj exp( − r2ij

4αiαj
)√

ΔGnon-polar has classically been determined as proportional to
the solute’s solvent accessible surface area (SASA) (Wagoner and
Baker, 2006; Tan et al., 2007) as:

ΔGSA
non−polar � cpSASA + b

The surface tension constant (γ) describing the free energy of
forming a cavity in water and the offset (b) are determined
empirically and set as constants for all solute molecules. These
variables are assigned as γ � 0.00542 kcal/mol-A2 and b �
0.92 kcal/mol in the AMBER package (Case et al., 2005; Miller
et al., 2012; Case et al., 2020). Alternative methods with atom-
specific surface tension constants have also been explored
(Eisenberg and McLachlan, 1986; Ooi et al., 1987).

More updated methods to resolve ΔGnon-polar incorporate the
van der Waals dispersion free-energy as a separate term, treating
the process as two events where a cavity is created and the non-
polar solute is inserted into the cavity (Tan et al., 2007). The
separation of terms additionally allows individual scaling of the
cavity formation and dispersion terms as a function of solute size.
ΔGcavity is calculated with similar linear regression as the classical
ΔGnon-polar equation with SASA replaced with solvent accessible

volume (SAV) and the attractive dispersion energy is computed
through surface-integration. The updated scaling factors are set as
γ � 0.0378 kcal/mol-A3 and b � -0.569 kcal/mol in the AMBER
package (Case et al., 2005; Miller et al., 2012; Case et al., 2020).

ΔGCD
non−polar � ΔGdispersion + ΔGcavity

ΔGcavity � cpSAV + b

Molecular Mechanics Poisson Boltzmann
Surface Area Developments and
Benchmarks
Improvements to the MM-PBSA method include more rigorous
treatment of the dielectric constants and electrostatic polarization
for better predictive accuracy on highly charged ligands, faster PB
solvers, extension to pKa calculation, and novel schemes for
determination of entropy. Scaling of the solute dielectric
constant to tune the screening of electrostatic interactions in
the non-polar protein environment is found to have a critical,
receptor-dependent role on predictive accuracy (Hu and Contini,
2019). Heterogenous dielectric values are applied to implicit
membrane models where the dielectric is discretely varied with
membrane depth (Greene et al., 2019), and with Gaussian
dielectric to smoothly distribute the interface over protein
cavities (Hazra et al., 2019). Integration of a Gaussian based
model for molecular volume and surface area determination with
the Gaussian dielectric distribution removes sharp surfaces
separating the solute and solvent for a surface free approach
to MM-PBSA calculation (Chakravorty et al., 2019). Electronic
polarization effects can be incorporated through the use of
polarizable force fields such as AMOEBA, this is implemented
in the boundary integral PBE solver PyGBe (Cooper, 2019).
Combination of the polarizable Drude oscillator force field
with PBSA lowers RMSE from 2.5 kcal/mol with the standard
CHARMM36 force field to 0.8 kcal/mol in calculation of
solvation free energies for 70 molecules in addition to
reducing errors in alanine scanning (Aleksandrov et al., 2018).
Coupling PBE calculation with Monte Carlo sampling of
protonation states is applied to estimation of protonation free
energies leading to pKa values within 2.05 pKa units RMSE of
experiment using the Drude-PB method and within ∼0.8 pKa
units RMSE using PypKa. (Aleksandrov et al., 2020; Reis et al.,
2020). There are also updates to the PBE solvers through
geometric multigrid on CPU allowing massively parallel
scaling to 100 CPUs and a grid size of 109 (Womack et al.,
2018) and GPU implementation leading to ∼100 times speed up
compared to CPU (Qi and Luo, 2019). Introduction of analytical
interface and surface regulation for the immersed interface
method is proposed to improve stability and convergence and
GPU implementation leads to 20 times speed up (Wei et al.,
2019b). Regularization methods are investigated under the
matched interface and boundary framework for proper
treatment of charge singularities for higher numerical accuracy
(Lee et al., 2021). Finally extensions of the harmonic average
method are proposed for fully taking advantage of the dense data
parallelism to enhance the performance of PBE solvers on GPU
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platforms (Wei et al., 2019a). Ensemble MM-PBSA calculation
through use of multiple independent trajectories and
maintenance of an explicit ligand hydration shell on the
bromodomain-containing protein 4 system, a key regulator of
transcription, showed robust reproducibility (Wright et al., 2019).
Menzer et al. (2018) implement a confining potential on ligand
external degrees of freedom and higher order cumulant
expansion terms for average receptor-ligand interaction
energies for more effective treatment of entropy.

A number of recent benchmarks identify best-practices to
achieve optimal accuracy and directly compare MM-PBSA with
other binding free energy prediction methods to highlight its
advantages and disadvantages in drug discovery. When testing of
MM-PBSA was performed on over 250,000 ligands for the GPCR
superfamily following docking (Yau et al., 2019; Yau et al., 2020),
utilization of a single energy minimized structure is found to be
the most computationally efficient method for virtual screening.
In prediction of binding free energies and correct binding pose
from 55 protein-RNA complexes, MM-PBSA (rp −0.510) shows
slightly lower performance than MM-GBSA (rp −0.557) (Chen F.
et al., 2018). Molecular mechanics 3-dimensional reference
interaction site model (MM-3D-RISM) is shown to have
similar predictive performance as MM-PBSA, but differs in
decomposition of polar and non-polar solvation energies
(Pandey et al., 2018). Mishra and Koca (2018) investigate the
effects of simulation length, VDW radii sets, and combination
with QM Hamiltonian on MM-PBSA predictions of protein-
carbohydrate complexes. The conditions with optimal agreement
to experiment are found to be 10 ns simulation with the mbondi
radii set, and PM6 DFT method with QM resulting in the highest
correlation of 0.96. Entropic effects are further studied by Sun
et al. (2018) through comparison of normal mode analysis
(NMA) and interaction entropy on over 1,500 protein-ligand
systems with varying force fields. The most accurate results are
obtained with the truncated NMA method, but due to high
computational costs the authors recommend the interaction
entropy approach instead, and force field choice made only
minor differences. Enhanced sampling methods including
aMD and GaMD are compared to conventional MD with
MM-PBSA on protein-protein recognition, although the
enhanced sampling methods are beneficial in encouraging
exploration of conformational space, they do not improve
binding affinity predictions on the timescales tested (Wang
et al., 2019b). The effect of including a small number of
explicit water molecules and performing NMA for entropy
calculation is examined for the bromodomain system (Aldeghi
et al., 2017). Using a limited number of solvent molecules (∼20)
and entropy estimate improved MM-PBSA accuracy, although
performance does not surpass absolute alchemical approaches the
results came at significantly lower compute requirements.

The ease of performing MM-PBSA analysis and balance of
speed and accuracy make it a popular method to use as an initial
filter to rank drug candidates. Estimation of binding affinities
with MM-PBSA for small-molecule protein-protein interaction
inhibitors is automated with the farPPI web server (Wang Z.
et al., 2019) and prediction of changes in protein-DNA binding
affinities upon mutation with the Single Amino acid Mutation

binding free energy change of Protein-DNA Interaction
(SAMPDI) web server (Peng et al., 2018). Furthermore, due
to its reliability MM-PBSA is often used as a baseline
comparison or in combination with alternative methods for
higher performance. Machine learning methods based on
extracting protein-ligand interaction descriptors as features
from MD simulation are compared to MM-PBSA on the
tankyrase system (Berishvili et al., 2019). Machine learning
also accelerates pose prediction methods based on short MD
simulation combined with MM-PBSA through the Best Arm
Identification method to obtain the correct binding pose with
minimal number of runs (Terayama et al., 2018). QM
approaches allow more accurate consideration of nonbonded
electrostatic interactions, but their usage is limited by high
computational costs. This problem is addressed through
fragment-based methods where localized regions of the
protein-ligand system are treated with QM and the more
global effects of solvation, entropy, and conformational
sampling are evaluated through MM-PBSA analysis (Wang
Y. et al., 2018; Okimoto et al., 2018; Okiyama et al., 2018;
Okiyama et al., 2019).

LIE
The Linear Interaction Energy (LIE) approach is another end-
point method that predicts absolute binding free energies based
on the change in free-energy from transferring the ligand from
the solvated receptor-bound state to the aqueous free state
(Aqvist et al., 2002; Gutierrez-de-Teran and Aqvist, 2012)
(Figure 3).

ΔGbind(lig) � ΔGbound
solv (lig) − ΔGfree

solv(lig)
This process considers binding in terms of the van der Waals

(vdW) energy from creating the cavity in the target environment
for the ligand and the electrostatic energy between the molecule
and the environment. With that objective, LIE estimates ΔGbind

by an ensemble approach where two MD simulations are
performed, with the ligand bound in the solvated protein and
ligand free in solution, and the difference in VDW and
electrostatic interactions between the ligand and environment
in each case is measured (Aqvist et al., 1994; Hansson et al., 1998;
Aqvist and Marelius, 2001).

ΔGbind � (ΔGpolar
bound − ΔGpolar

free ) + (ΔGnon−polar
bound − ΔGnon−polar

free )
� ΔΔGpolar

bind + ΔΔGnon−polar
bind

The molecular mechanics force field applied in MD provides
potential energies (U) composed of polar and non-polar
components that can be converted into free-energies. The
linear response approximation where averages of the
electrostatic interaction energies between the ligand and
environment is utilized to determine the polar term. The
second term 〈Uelec

lig−env〉off representing the potential
electrostatic energy from conformations sampled with
interactions between ligand and environment turned off is a
negligible constant, and is generally ignored (Gutierrez-de-Teran
and Aqvist, 2012).
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ΔGelec
solv �

1
2
{〈Uelec

lig−env〉on + 〈Uelec
lig−env〉off} � 1

2
〈Uelec

lig−env〉on

The scaling factor ½ is replaced with the variable β, and the
polar component for LIE free-energy calculation considering
bound and free ligand simulation is:

ΔGpolar
bind � β(〈Uelec

lig−env〉bound − 〈Uelec
lig−env〉free) � βΔ〈Uelec

lig−env〉

Non-polar interactions including hydrophobic packing and
van der Waals interactions are derived from the Lennard-Jones
potential force field term. Due to the observed linear correlation
of solvation free energies for non-polar compounds with solute
size, and similar linear scaling for average van der Waals
interaction energies with solute size, LIE assumes that average
van der Waals energies can be directly employed to capture non-
polar binding contributions with a similarly formed estimate as
the polar component (Aqvist et al., 1994).

ΔGnon−polar
bind � α(〈UvdW

lig−env〉bound − 〈UvdW
lig−env〉free) � αΔ〈UvdW

lig−env〉 + c

The set of three empirical parameters: α to scale the vdW
interaction energies (Wang et al., 1999), β to scale coulombic
interaction energies (Åqvist and Hansson, 1996; Hansson et al.,
1998), and γ as an optional offset constant (Almlof et al., 2004),
are all freely tunable. These parameters are known to be system
dependent and must be calibrated based on available
experimental data (Almlof et al., 2007; van Dijk et al., 2017).
Scaling of the model parameters is assumed to account for factors

known to impact ΔGbind but that are not explicitly declared
including intramolecular energies, entropic confinement,
desolvation effects, etc. The completed LIE estimation is based
on force-field averaged energies and enables calculation of
binding free energies solely through sampling of potential
energies between the ligand and solvent or protein
environments without post-processing

ΔGbind � αΔ〈UvdW
lig−env〉 + βΔ〈Uelec

lig−env〉 + c

LIE Developments and Benchmarks
As the least computationally expensive method, LIE is uniquely
suited for high-throughput screening and recent efforts are
devoted toward the direction of improving predictive accuracy,
even if the calibrated parameters are system dependent. To this
end, multiple alterations to the base LIE protocol are proposed to
more rigorously account for polar and entropic interactions by
including additional terms, combining LIE results with PBSA
(Huang et al., 2020) or alchemical calculations, and utilizing
ensemble docking poses with iterative LIE models. The extended
linear interaction energy method (ELIE) introduced by He et al.
includes the PBSA terms for the polar solvation energy, non-polar
solvation energy, and entropic contribution and individual
scaling factors for each (He et al., 2019). Performance of ELIE
in the Cathepsin S D3R 2017 Grand Challenge is found to show
improved RMSE (1.17 kcal/mol) compared to MM-PBSA
(3.19 kcal/mol) (He et al., 2019). Further benchmarking on 8
drug targets with a series of congeneric ligands to examine the

FIGURE 3 | LIE binding free energy calculation. The binding free energy is computed from force field energy estimates of the differences in van der Waals and
electrostatic energies for the ligand bound to the protein and free in solvent environment. The system dependent LIE parameters α and β are empirically determined and
used to scale the non-polar and coulombic interaction energies to have minimal error with respect to available experimental data. The final term γ acts as an optional
offset parameter to further tune the model. LIE requires no post-processing and can be completed from a single trajectory.
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application of ELIE to drug lead optimization demonstrates that
ELIE (0.94 kcal/mol RMSE) can approach the accuracy of Free
Energy Perturbation (FEP)/Thermodynamic Integration (TI)
(1.08/0.96 kcal/mol RMSE) methods when using receptor-
specific parameters. The authors find that 25 ns MD
simulations show optimal accuracy as it generally decreases
with longer simulation (Hao et al., 2020). The performance of
LIE in host-guest systems is also evaluated on 4 host families
(cucurbiturils, octa acids, β-cyclodextrin) with an array of 49
chemically diverse guests. The base LIE is modified to include
host strain energy, and parameters are found to be transferable
between the different host systems, notably resulting in binding
predictions with RMSE below 1.5 kcal/mol through only a few
nanoseconds of simulation (Montalvo-Acosta et al., 2018). Ngo
et al. estimate HIV-1 protease inhibitor binding affinities with a
modified LIE that includes a polar interaction term obtained from
PBE, training on 22 samples and testing on a set of 11 ligands
demonstrates good performance with 1.25 kcal/mol RMSE and
0.83 Pearson correlation (Ngo et al., 2020a). Proteins with flexible
active sites may bind ligands in multiple orientations, this
requires estimation of binding affinity from multiple poses
weighted by their frequency to account for the contributions
from each potential binding mode. Rifai et al. evaluate binding of
inhibitors to malleable Cytochrome P450s with an iterative
weighing approach where each training compound is sampled
with multiple simulations starting from different binding poses
and LIE parameters are determined from Boltzmann weighing
individual trajectory results (Rifai et al., 2020). Further accuracy is
obtained by combining LIE with alchemical simulations to
consider the ligand solvation free energies. Direct comparison
of LIE with MM-PBSA on the SIRT1 system with a set of 27
inhibitors finds that both methods produce comparable Pearson
correlations of 0.72 for LIE and 0.64 for MM-PBSA indicating
good predictive value in ranking inhibitors, LIE is advantageous
in requiring shorter simulation due to slow convergence of the
MM-PBSA polar term (Rifai et al., 2019). The two-domain LIE
(2D-LIE) approach is introduced to predict the binding free
energy between protein domains and applied to computing
cellulase kinetics (Schaller et al., 2021).

Absolute Alchemical Simulations
End-point free energy prediction methods generally lack the
ability to account for entropic and solvent effects, which play
significant roles in protein-ligand interactions (Mobley and Dill,
2009), except for methods that explicitly compute end-state free
energies such as the Mining Minima method (Head et al., 1997;
Luo et al., 1999; Luo and Gilson, 2000; Mardis et al., 2001; Chen
et al., 2004; Chang et al., 2007; Moghaddam et al., 2011).
Capturing receptor conformation changes driven by ligand
binding, water-mediated hydrogen-bonding, or solvent
exchange that occurs as the ligand crowds the binding pocket
are critical to rigorously estimate the free energy difference
between the ligand bound and unbound states (Mobley et al.,
2007). Pathway simulations tracking the MD trajectory of the
ligand binding or unbinding event enable the computing of these
effects, but come at high computational cost and increased
simulation complexity (Woo and Roux, 2005; Lee and Olson,

2006; Gan and Roux, 2009) (Figure 4). The most direct approach
to account for entropy and solvent effects in binding would be to
simulate the receptor (R) and ligand (L) together and count the
frequency of bound (RL) and unbound (R + L) conformations.

R + L#RL

The ratio of bound to unbound states is an equilibrium
constant (Keq) that can be input into the Gibbs free energy
equation where the Boltzmann constant (kb) and temperature
(T) are multiplied with the natural log of Keq to calculate the
binding free energy (ΔGbind).

Keq � [RL]
[R][L]

ΔGbind � −kbT lnKeq

In practice, it is not possible to estimate the equilibrium
constant as the binding and unbinding events rarely occur
within the timescales accessible with current simulation
methods, leading to insufficient sampling. To bypass this
sampling limitation, alchemical approaches modeling the
gradual decoupling of electrostatic and van der Waals
interactions between the ligand and receptor have been
utilized to simulate the transition between ligand bound and
unbound states without the need to physically capture the process
(Zwanzig, 1954). The basis of this calculation is the
thermodynamic cycle describing in one leg the removal of
ligand from the complex, and in a parallel leg the removal of
the ligand from solvent (Boresch et al., 2003). The end states with
receptor alone and solvent alone interconvert with zero free
energy difference as the ligand is absent from both systems,
leaving the last transition between ligand in solvent to ligand
bound to receptor solvable with knowledge of the free energy
costs in transferring the ligand out of the receptor and out of
solvent. This is typically performed through the Zwanzig
equation also known as Exponential Averaging (EXP) or Free
Energy Perturbation (FEP).

ΔGAB � −kbT ln 〈 − 1
kbT

(UB − UA)〉
A

EXP calculates the difference in potential of the end states
using the ensemble of one simulated end state; however, this
method is susceptible to bias in the free energies estimated due to
poor phase space overlap of the end states (Lu et al., 2003).

Since free energy is a state function, its difference between
states in the closed thermodynamic cycle is independent of the
pathway taken, this includes non-physical intermediates that
cannot be observed experimentally. The sampling of non-
physical intermediate states is described by the parameter λ
spanning from 0 where no perturbation has occurred to 1
where the ligand is fully decoupled from the environment and
gives rise to the name alchemical. A drawback of the approach is
the need for many intermediate states to guarantee accuracy of
the simulation. The potential energies are computed for each
intermediate state, and the free energy differences are calculated
through thermodynamic integration by evaluating the integral of
the ensemble averaged derivatives of potential energy with respect
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to λ (Kirkwood, 1935; Kirkwood, 1967; Shirts and Pande, 2005;
Bruckner and Boresch, 2011b; a;de Ruiter et al., 2013).

U(λ) � λU0 + (1 − λ)U1

ΔG � ∫1

0
<dUλ

dλ
>λdλ

Standard alchemical transformations are carried out in two
stages, first with scaling ligand atom partial charges to model
decoupling of electrostatics, and next with the van der Waals
interactions (Shirts, 2012; Klimovich et al., 2015). These two
transformations are performed separately to avoid singularity
artifacts that arise from atomic overlap created by strong
attractive electrostatic interactions drawing atoms lacking
steric bulk over others (Beutler et al., 1994; Klimovich et al.,
2015). It is also necessary to utilize an alternative “softcore”
Lennard-Jones potential coupled to the λ window during the
van der Waals scaling. Linear scaling with the standard Lennard-
Jones potential leads to numerical instabilities at λ endpoints due
to the severe repulsive forces calculated on overlapping atoms and
contributes to poor phase space overlap with neighboring
windows (Steinbrecher et al., 2007; Steinbrecher et al., 2011).
An example “softcore” potential is illustrated as a function of the
λ window and configuration (x), and contains the tunable
parameters α, m, n, and standard terms for the distance where
the pair-wise potential is 0 (σ) and the distance separating the

atoms (r) (Hornak and Simmerling, 2004; Steinbrecher et al.,
2011; Giese and York, 2018).

U(λ, x) � 4ελn[(α(1 − λ)m + (r
σ
)6)−2

− (α(1 − λ)m + (r
σ
)6)−1]

Further considerations involving the direction of the
alchemical transformation, the utilization of restraints, the
treatment of charge neutralization, λ window scheduling,
procedure to select data samples that are both uncorrelated
and equilibrated, and method to calculate free energy
differences between the intermediate states must be made to
ensure simulation stability and minimize variance in final free
energy determination with the alchemical perturbation. The
above factors all play some roles in the accuracy of the
simulated free energies but are often not easy to decide a
priori. Sampling of the physiologically relevant binding pose is
essential to obtaining accurate values, initializing the alchemical
transformation from an experimentally determined complex and
modeling ligand decoupling generally maintains the ligand in the
most applicable configurations (Klimovich et al., 2015).
Theoretically there should be no difference beginning from the
opposite end point state with an empty active site and having the

FIGURE 4 | Absolute alchemical simulation thermodynamic cycle. Two trajectories are completed to model the unbinding process. The simulations start from the
complex of protein-ligand bound and end with receptor and unbound ligand (top track), and from ligand alone in solvent to ligand removed (bottom track). The ligand is
transformed through a series of unphysical states to decouple electrostatic and van der Waals interactions with the surrounding environment to reach the final state
where it no longer interacts with the initial system. The binding free energy prediction is the sum of the coulombic and non-polar energies involved in the
transformation eliminating protein-ligand interactions. A restraint is typically included to prevent the ligand from exiting the active site while the binding interactions
keeping the protein and ligand together are scaled off in order to aid convergence, this is corrected for with an additional transformation progressively turning on the
restraints for the complex track and an analytical correction for the ligand track.
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ligand grown in; however, this may require longer simulation
time as the ligand can easily get trapped in local minima away
from the true binding pose and sample irrelevant states. The
ligand may leave the binding pocket as the interactions with the
receptor are scaled, hindering convergence (Mobley et al., 2006).

This is prevented by attaching restraints, which are later
corrected for with an additional penalty term, to hold the
ligand in the binding pocket. Two types of restraint schemes
are common, the first involves imposing a single virtual bond
between the ligand and receptor which is analytically corrected
for by the formula

ΔGrestraint � −kbT ln[8π2V0K1/2
r

(2πkbT)1/2]
where V0 is the standard state volume and Kr the force constant
(Roux et al., 1996; Gilson et al., 1997; Mann and Hermans, 2000;
Harger et al., 2017). An alternative restraining approach, the
6DOF method introduced by Boresch et al. (Boresch et al., 2003),
enforces stricter adherence to a defined pose through one
distance, two angular, and three dihedral restraints.
Restraining the ligand to a single orientation expedites
convergence, but may frustrate sampling of appropriate
conformations not directly captured in the crystal structure,
leading to overestimation of binding affinities (King et al.,
2021). The 6DOF restraint correction is calculated with the
following equation

ΔG6DOF
restraint � −kbT ln ⎡⎢⎢⎢⎢⎢⎣8π2V0(KrKθAKθBKϕAKϕBKϕC) 1

2

r2a,A,0 sin θA,0 sin θB,0(2πkbT)3
⎤⎥⎥⎥⎥⎥⎦

where ra,A,0 is the restrained distance, θA,0 and θB,0 are the two
restrained angles, and K’s are the force constants (Boresch et al.,
2003).

The transformation of charged ligands demands corrections to
maintain neutrality in the simulation box as the ligand partial
charges are scaled (Lin et al., 2014). Due to the usage of periodic
boundary conditions, excess charges are propagated through all
cells and cause errors in charge distribution (Hunenberger and
McCammon, 1999; Anwar and Heyes, 2005; Hub et al., 2014).
This issue can be managed by performing the partial charge
scaling simultaneously on a specified counter-ion (Dixit and
Chipot, 2001; Wallace and Shen, 2012; Chen W. et al., 2018),
or through the correction scheme introduced by Rocklin et al.
(Rocklin et al., 2013) based on an additional PB calculation to
account for periodic finite-size effects.

The number and length of λwindows governs the variability of
the free energy calculation (Shirts and Pande, 2005; Pham and
Shirts, 2011). Increased sampling reduces the variance, but may
not be worthwhile due to the added simulation costs. Rather than
equally spacing the λ windows, a better strategy would be to more
densely sample regions where transitions are non-linear near the
end points of the van derWaals scaling stage and reduce sampling
in more linear regions such as the electrostatic scaling. Datapoints
from the beginning of each λ window are not yet equilibrated and
sequential datapoints are autocorrelated, contamination with
these energy values will distort the final free energy prediction

(Chodera, 2016). Straightforward solutions to these problems
would be to discard all data from the first half of the λ window
and to only process energy values with large intervals (King et al.,
2021). More sophisticated methods that aim to conserve as many
datapoints as possible include the usage of automated
equilibration detection based on reverse cumulative averaging
(Yang et al., 2004) and subsampling of energies based on the
calculated statistical inefficiency (Chodera, 2016), this can be
performed with the pymbar (Shirts and Chodera, 2008) package
written by the Chodera group. Lastly, thermodynamic integration
is known to produce results with high variability due to the
numerical integration over highly non-linear functions. The
Bennett Acceptance Ratio (Bennett, 1976) (BAR) approach
minimizes variance in the calculation of free energy by
accounting for energies in neighboring states (Lu et al., 2003).
The BAR calculation self-consistently solves for the free energy
(C) that satisfies the relations where i and j are consecutive states
and U is the potential energy from a selected state.

ΔG � ln
Σjf (Ui − Uj + C)
Σjf (Uj − Ui + C) + C

ΔG � C

f (x) � 1
1 + ex

However, this method can face the same issues as EXP/FEP if
there is no overlap between neighboring states. This has been
extended to the Multistate Bennett Acceptance Ratio (Shirts and
Chodera, 2008) (MBAR) method addressing the critical issues in
BAR and produces the lowest variance of all free energy
estimators by using energy differences from all λ windows
(Paliwal and Shirts, 2011).

Absolute Alchemical Simulations Developments and
Benchmarks
A major impediment to the usage of alchemical simulations is
their complicated setup and data processing for ligand
decharging and vdW removal stages. Updates to the popular
molecular dynamics packages NAMD (Chen H. et al., 2020) and
AMBER (Lee et al., 2020a; He et al., 2020) enable GPU
accelerated calculation of the dUλ

dλ term necessary for
thermodynamic integration or energy cross terms for
sampling conformations at different lambda values for
MBAR computation. To support high-throughput alchemical
screening and improved reproducibility, a number of software
packages automate the experimental setup in preparing the
simulation files with appropriately decoupled ligand
topologies and output the final binding free energy
prediction after processing the trajectories. These include the
VMD plugin BFEE (Fu et al., 2018), the python tool BAT.py
(Heinzelmann and Gilson, 2021) for AMBER, the CHARMM-
GUI Free Energy Calculator (Kim et al., 2020), the web platform
Biomolecular Reaction and Interaction Dynamics Global
Environment (Senapathi et al., 2020) (BRIDGE) for
GROMACS, and Flare (Kuhn et al., 2020).

Improvements in simulation efficiency have allowed faster
sampling of protein-ligand binding conformations and
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exploration of longer timescales to more comprehensively
capture the significant perturbations that occur from ligand
decoupling in absolute alchemical simulations. Giese et al.
(Giese and York, 2018) utilize the simple but effective
parameter interpolated thermodynamic integration (PI-TI)
scheme where intermediate lambda states are defined by
scaling the ligand molecular mechanic parameters, this allows
taking full advantage of the standard GPU accelerated MD
integrators and existing Hamiltonian replica exchange
methods (HREMD) without the need to implement any
alchemical specific code. Validation of this study examined
pKa predictions on a double strand RNA system resulting in
an error within 1.2 pKa units. Monte Carlo methods based on
making unphysical, Boltzmann weighed rotamer and torsion
moves lead to greater conformational sampling and crossing
of energy barriers that would necessitate substantial simulation
time in MD. Pure MC (Cabeza de Vaca et al., 2018; Qian et al.,
2019) and the hybrid MC/MDmethod Binding modes of Ligands
Using Enhanced Sampling (BLUES) involving random ligand
rotations, relaxation with MD, and final acceptance or rejection
through nonequilibrium Monte Carlo are demonstrated to have
greater binding mode sampling efficiency than standard MD.
Hamiltonian replicas parallelize sampling backbone torsions of
T4 lysozyme (Jiang et al., 2018) and solvent exchange in the
cytochrome P450 binding site (Jiang, 2019) to speed convergence
within 1 ns in the latter study. In cases where no reliable
experimental structure with ligand bound is available, the
generalized replica exchange with solute tempering (gREST) +
FEP (Oshima et al., 2020) approach where protein-ligand
interactions are weakened through simulation at high
temperature to force refinement of ligand binding orientation
or Alchemical Grid Dock (Minh, 2020) method can be performed
to obtain high quality binding poses. Alternative lambda
schedules aimed at reducing the number of intermediate
windows to simulate without sacrificing low variance are
introduced by Konig et al. (Konig et al., 2020) with enveloping
distribution sampling and addition of a restraint energy
distribution function in the screening of SARS-CoV-2 protease
inhibitors (Li et al., 2020). Entropic bottlenecks caused by order/
disorder transitions that inhibit convergence can be avoided by
biasing the simulation with the integrated logistic function away
from the transition regions (Pal and Gallicchio, 2019).
Metadynamics methods utilizing a history dependent bias
potential to drive sampling of unexplored conformations are
used for the theophylline-RNA complex to get within
0.02 kcal/mol of experiment (Tanida and Matsuura, 2020). The
Gaussian algorithm enhanced FEP (GA-FEP) method is used to
guide the design of Phosphodiesterase-10 inhibitors and
overcomes poor sampling by fitting the observed energies to a
multivariate Gaussian distribution to extrapolate better
converged energy values for downstream BAR calculation (Li
Z. et al., 2019). Dual resolution models where the active site
portions of the protein are modeled with full atom representation
and other regions as coarse grained showed significant speedup
with only minor loss in accuracy compared to the all-atom model
for the lysozyme system binding with di-N-acetylchitotriose
(Fiorentini et al., 2020). Sakae et al. (Sakae et al., 2020)

demonstrate a modified alchemical approach starting with
unrestrained ligand for broader sampling of binding poses and
bypass the need to exhaustively enumerate all potential binding
modes. The DeepBAR method applies generative modeling to
construct sample conformations of the cucurbit[7]uril host-guest
system for the BAR analysis without the need for intermediate
state sampling to achieve higher computational efficiency (Ding
and Zhang, 2021).

Advances in finite size and charge treatment schemes have
improved accuracy in computing decharging energies, and new
formulations for the evaluation of “soft-core” atoms lead to
greater numerical stability and reduced variability in vdW
removal. The poor representation of electronic polarization in
molecular simulation makes binding affinity prediction for
charged and titratable molecules challenging. Standard MD
simulation is unable to model dielectric screening effects that
alter the strength of ligand partial charges as it transitions
between the polar solvent environment to the non-polar
protein active site (King et al., 2021). We demonstrate that
scaling the dielectric constant with the MBAR/PBSA
continuum solvent model provides a convenient method to
reproduce the effects of charge polarization without requiring
any modification to the MD integrator. RMSE for the predicted
binding affinities of inhibitors for urokinase plasminogen
activator is reduced from 3.2 kcal/mol with standard
alchemical simulation to 0.89 kcal/mol with MBAR/PBSA
(King et al., 2021). The AMOEBA polarizable force field that
incorporates electronic polarization through induced dipoles,
atomic dipoles, and quadrupole terms is applied to the lead
optimization of the MELK inhibitor IN17 (Harger et al.,
2019). In the SAMPL7 TrimerTrip host-guest blind challenge,
utilization of the AMOEBA force field shows excellent results
with 7/8 samples having errors within 2 kcal/mol (Laury et al.,
2018; Shi et al., 2020; Amezcua et al., 2021). The commonly used
approach to maintain charge neutrality through co-alchemical
ions is shown not to fully eliminate charge artifacts in periodic
simulation boxes due to localized differences in electrostatic
potentials and solvent densities for the distant ion and bound
ligand (Ohlknecht et al., 2020b). Continuum-electrostatics
calculations (Ohlknecht et al., 2020a) and the “Warp-Drive”
(Ekimoto et al., 2018) method of simultaneously perturbing
the protein-ligand complex and a distant unbound ligand are
proposed to more accurately correct for finite-size effects.
Difficulty in modeling the extraction of charged ligands from
deeply buried binding sites with potential of mean force (PMF)
methods is addressed with the AlchemPMF protocol where steric
obstructions along the physical pathway are alchemically
removed, resulting in improved binding free energy estimates
on HIV-1 integrase and telomeric DNA G-quadruplex (Cruz
et al., 2020). Li et al. (Li and Nam, 2020) develop the Gaussian
repulsive soft-core potential to produce a linear hybrid
Hamiltonian with respect to lambda to allow improved
simulation efficiency over the standard separation-shifted
potential that generates non-linear Hamiltonians. Extension of
smooth-step soft-core potentials that are composed of
monotonically increasing polynomial functions that have the
desirable end-point values enable one-step alchemical
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transformations by overcoming the issues of end-point
catastrophe, particle collapse, and large gradient jumps (Lee
et al., 2020b).

Benchmarks of alchemical simulations demonstrate their
utility and high accuracies. The SAMPL6 and SAMPL7
challenges (Rizzi et al., 2020) feature several entries examining
alchemical approaches for CB[8] and tetra-methylated octa-acids
host-guest systems with comparison to umbrella sampling (Han
et al., 2018; Nishikawa et al., 2018), TrimerTrip host-guest system
with comparison of AM1-BCC and RESP charge schemes (Huai
et al., 2020), and evaluation of GAFF and CGenFF force fields
(Khalak et al., 2020). Novel applications of alchemical simulation
include the estimation of binding affinity change upon protein
mutation through the ensemble thermodynamic integration with
enhanced sampling (TIES) approach on the fibroblast growth
factor receptor 3 (FGFR3), notably simulations without enhanced
sampling are unable to capture conformational changes driven by
protein mutation in the binding site (Bhati et al., 2019). PMF
methods based on utilizing restraints to physically pull the ligand
out of the binding site are directly compared to absolute
alchemical approaches on the HIV-1 integrase system by Deng
et al. (Deng et al., 2018), the final results show similar
performance with absolute errors in the range of 1.6–4.3 kcal/
mol for alchemical and 1.5–3.4 kcal/mol for PMF. The authors
add that the alchemical approach supports simpler setup as they
do not need to geometrically define the pathway for the ligand to
exit the binding site. Loeffler at al. (Loeffler et al., 2018) validate
alchemical simulation results from different software packages in
the calculation of hydration free energies and determine that the
tested packages (AMBER, CHARMM, GROMACS, and SOMD)
produce consistent free energies. The scale of alchemical
simulations is growing dramatically by harnessing cloud
computing (Zasada et al., 2020). The report of massive-scale
simulation of 301 HIV-1 integrase inhibitors on the IBM World
Community Grid (Xia et al., 2019) highlights how the availability
of distributed computing is enabling high-throughput FEP
screening.

APPLICATIONS TO DRUG DISCOVERY

Usage of free energy calculations is propelling pharmaceutical
research. Work performed on a broad range of disease topics
including understanding the mechanism for drug actions,
optimizing binding affinities against target molecules, and
identification of potential inhibitors from libraries demonstrate
the importance of these tools. We survey practical applications of
modern free energy calculations with attention on works with
exemplary accuracy or data contribution, and further detail usage
of free energy calculations on a range of biomedical targets.
Recent work coupling simulation prediction with experimental
validation is of exceptional interest. These studies provide a direct
benchmark on the utilization of free energy methods rather than
post-hoc analysis that may not generalize well to real-world
problems. Secondly, efforts to complete screening campaigns
and validation of free energy predictions contribute valuable
datasets that can guide the development of future methods

such as machine learning models that are prominently
dependent on access to ample and diverse data.

Achieving chemical accuracy of below 1 kcal/mol error is still
not typical with free energy calculations. Studies utilizing the end
state methods MM-PBSA or LIE generally show high errors, a
consequence of coarse graining solvent, electrostatic, and
entropic interactions. Alternative metrics of Pearson
correlation, measuring the linear association between
simulation and experimental binding free energies, or
Spearman correlation, where the ranked relationship between
predicted and experimentally measured values are analyzed, are
better suited to compare the performance of end state methods as
they capture the ability of the models to select a small number of
candidate drug compounds with the highest potential. For
example in evaluating ligand binding to the purinergic platelet
receptor P2Y12R, MM-PBSA shows absolute RMSE values over
6 kcal/mol from experimental measurements, but is still able to
capture the correct trend in ligand binding affinities with Pearson
correlation of 0.79 (Greene et al., 2016). In another work MM-
PBSA shows RMSE for the Thrombin system at 4.26 kcal/mol,
but highly accurate Pearson correlation of 0.86 (Wang et al.,
2016). Several studies utilizing alchemical methods progress
toward the threshold of chemical accuracy, and lay the
groundwork for best practices to follow in future works.
Aldeghi et al. achieve 1.54 kcal/mol RMSE with absolute
binding free energy calculation on the bromodomain-
containing protein 4 system through usage of Hamiltonian-
exchange dynamics on top of standard sampling protocols
(Aldeghi et al., 2017). Low MUE of 0.83 kcal/mol is achieved
by Kuhn et al. in the prediction of relative affinities by carrying
out the alchemical transformation in both directions with
independent simulations to eliminate the effects of hysteresis
(Kuhn et al., 2020). In studies where relative binding affinities are
converted to absolute binding free energies, calibration of model
predictions can be performed through scaling the average of the
predicted binding free energies to equal the average of the
experimental binding free energies (Wang et al., 2015; de
Oliveira et al., 2019).

SARS-CoV-2
The emergence of the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) has caused a global health crisis
with over 2 million deaths worldwide, compelling rapid drug
development for potential therapeutics. Several major protein
targets have been identified for inhibition of SARS-CoV-2
function and surveyed through molecular simulation for
predicted binding affinity with repurposed and novel drugs,
these include the RNA dependent RNA polymerase (Procacci
et al., 2020; Wakchaure et al., 2020) (RdRp) that replicates the
RNA genome, the main protease (Macchiagodena et al., 2020b;
Ngo et al., 2020b; Chowdhury et al., 2020; Gupta et al., 2020;
Gupta and Zhou, 2020; Jukic et al., 2020; Li et al., 2020;
Milenković et al., 2020; Tejera et al., 2020; Aghaee et al., 2021;
Bhardwaj et al., 2021) (3CL Mpro) that mediates replication
and transcription, the spike protein (Patil et al., 2021)
involved in initiating infection by penetrating the host cell,
S-adenosyl-methionine dependent methyltransferase (Sk et al.,
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2020) (nsp16) that adds the 5′-cap to mRNA essential for
stability, envelope protein (Dey et al., 2020) that is involved in
virion assembly and budding, Papain-like protease that functions
in viral replication and immune response evasion (Bosken et al.,
2020), and the host serine protease TMPRSS2 (Singh et al., 2020)
that primes the spike protein. Alanine scanning is combined with
MM-PBSA to identify the hot-spot binding residues GLU166 and
GLN189 on Mpro as critical sites for inhibitors to target (Aghaee
et al., 2021). Since only partial structures of the spike protein
bound to the receptor protein angiotensin converting enzyme 2
(ACE2) exist, homology modeling is performed to structurally
evaluate interactions mediating the spike protein ACE2 complex.
MM-PBSA alanine scanning at the interface is utilized to
determine the set of residues vital to the tight binding
interaction. 5 residues disordered in the crystal structure,
VAL445, THR478, GLY485, PHE490, and SER494, are
identified to be crucial for ACE2 specificity (Sakkiah et al.,
2020). By analyzing the binding poses obtained during MD
simulation with hydroxychloroquine, Procacci et al. propose
an inhibitor with improved potency for Mpro by restructuring
polar contacts on the ligand for greater hydrophobic packing
surface area (Procacci et al., 2020). El Hassab et al. perform
fragment based drug design and link together generated
fragments binding to RdRp (El Hassab et al., 2020). Potential
vaccine candidates derived from B-cell and T-cell epitopes from
the spike protein have their binding stability assessed through
MD simulation (Das and Chakraborty, 2020).

The push for the rapid development of potential therapeutics
for SARS-CoV-2 leaves many of these studies as exploratory in
nature, predicting free energies of binding or ranking potential
ligands without corresponding experimental data. These studies
can be used in the future to benchmark these free energy
techniques when the experimental data becomes available.
However, we do want to highlight studies that have
experimental data to compare with. One particular study
evaluates the repurposing of FDA-approved drug molecules as
MPro protease inhibitors using a workflow that combines docking,
100 ns molecular dynamics using a conventional force field, 5 ns
molecular dynamics using a neural network derived pseudo-
quantum mechanical/molecular mechanical force field (ANI),
and finally MM-PBSA to refine the field of 1,615 molecules down
to 9 molecules. Ten molecules out of 62 that were obtained after
initial docking have experimental data for inhibition activity
ranging in active (3), moderately active (3), and inactive (4).
Out of the final set of nine selected molecules, two molecules are
in the active range, one is moderately active, and no inactive
molecules were selected. The study is cognizant of potential
missed active molecules during the docking step and the loss
of three active/moderately molecules during subsequent steps,
but does not further evaluate the details for the loss of those
molecules (Gupta and Zhou, 2020). An additional study looks at
potential inhibitors for 3CL protease using Hamiltonian replica
exchange and non-equilibrium alchemical simulations. The
binding free energy of 21 potential inhibitors is calculated with
four molecules having experimental data to compare to, three of
the molecules having error within 2 kcal/mol and one with 5 kcal/
mol (Macchiagodena et al., 2020b).

Cancer
Anti-cancer therapeutics are a significant target for molecular
simulation. Studies have evaluated potential small molecule or
peptide inhibitors and interrogated the binding interactions of
known drug-protein interactions. Novel data representation is
applied to the investigation of tankyrase inhibitors targeting the
Wnt pathway using a workflow that combines docking and
machine learning scoring to filter through a library of 1.7
million potential inhibitors down to 174 molecules,
Downstream QSAR screening using ADMET and physico-
chemical features further reduces the number to 17 molecules.
A subset of selected molecules is chosen to simulate using
molecular dynamics calculating binding free energy using
MM-PBSA and FEP with MBAR, which show reasonable
agreement to experimental assays for two tested molecules
(Berishvili et al., 2020). Another study of note is the
calculation of binding free energy for inhibitors of the p53-
MDMX/MDM2 interactions. The use of FEP with BAR results
in mean absolute error (MAE) of 0.816 kcal/mol and root mean
squared error (RMSE) of 1.064 kcal/mol for a set of five inhibitors
targeting p53-MDMX interaction; however, for MDM2 and a set
of 14 molecules the resulting MAE is 3.08 kcal/mol. Furthermore,
the simulation of apo MDM2 structure to improve sampling of
conformational states is used to generate a free energy landscape
and free energy correction that improves the MAE to 1.95 kcal/
mol and RMSE to 2.83 kcal/mol (Singh and Li, 2020). Additional
studies overview the dissociation mechanism of GDP from Cdc42
which modulates cell migration and polarity (Kang et al., 2019).
The AMOEBA polarizable force field is used to predict covalent
and non-covalent inhibitors of fructose-bisphosphate aldolase A
(Qi et al., 2019). The following works are reported to identify
promising drug candidates, such as assessing the delivery of the
antitumor agent paclitaxel via cell penetrating peptides (Wei
et al., 2021), methotrexate analogs against drug resistant
human dihydrofolate reductase (Rana et al., 2020), inhibitors
for Adenosine A3 receptor (Lagarias et al., 2019), and peptide
inhibitors against epidermal growth factor receptor (Tavakoli and
Ganjalikhany, 2019) identify promising drug candidates.
Simulation of lactate dehydrogenase A found overexpressed in
the tumor environment (Jafary et al., 2019), kinesin spindle
protein inhibition with (+)-morelloflavone (Ogunwa et al.,
2019), chemosensitizing caryophyllene sesquiterpenes with
doxorubicin on P-glycoprotein (Di Sotto et al., 2020), and
inhibitor binding to the transcription silencing G-quadruplex
element of the oncogene c-MYC (Chen B. et al., 2020)
demonstrate the broad range of cancer targets. Other works of
interest find altered inhibitor binding interactions with mutant
anaplastic lymphoma kinase involved in lung cancer (Xiao et al.,
2019), activated Cdc42-associated kinase 1 inhibitors
(Granadino-Roldan et al., 2019), small molecules binding to
the MUSHASHI family of RNA binding proteins (Minuesa
et al., 2019), and negative regulation of STXBP4 on the Hippo
pathway (Vargas et al., 2020).

Neurodegenerative Diseases
Many studies have been performed on neurodegenerative
disorders, with major focus on understanding Alzheimer’s
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disease. Thai et al. demonstrate how MM-PBSA can rapidly
facilitate drug development by first predicting strong
multipotent binding of CID 9998128 with Aβ42 peptide, Aβ42
fibrils, and β-secretase, then performing in vitro assays
confirming that the compound inhibits Aβ fibril formation
(Thai et al., 2018). Other works include the development of
positron emission tomography/single photon emission
computed tomography probes targeting Aβ for imaging
(Kawai et al., 2018), rational design of anti-Aβ antibodies
(Greene et al., 2018), small molecule inhibitors targeting Aβ
fibrils (Ngo et al., 2019; Gupta and Dasmahapatra, 2020),
β-sheet breaker peptides to interfere with amyloid fibril
assembly (Shuaib et al., 2019), and structural modeling of
aspartyl protease γ-secretase in complex with Aβ peptides
(Hitzenberger and Zacharias, 2019). Further study of
neurodegenerative disease involves fragment docking of
reversible covalent inhibitors on calpain, a calcium dependent
cysteine protease, whose overexpression has been correlated with
neurodegenerative disorders (Zhang H. et al., 2019). The study
uses FEP/λ-REMD as well as Site-Identification by Ligand
Saturation to enhance the FEP calculations for a set of ten
α-ketoamides. This results in an overall Pearson correlation of
0.85 compared to experiment; however, the correlation changes
when categorizing these into covalent (0.84) and non-covalent
(0.41) states, suggesting that only the covalent state is useful for
inhibition (Zhang H. et al., 2019). Additional studies explore the
identification and design of inhibitors against Caspase 8 involved
in neural cell death (Ahmad et al., 2019) and evaluate novel 1,4-
diazepane containing ligands as σ-receptor ligands with
antioxidant and neuroprotective properties (Zampieri et al.,
2020).

Antibacterials and Antivirals
Innovation in the field of antibacterial discovery is driven by
greater computing power allowing screening of larger
compound libraries and more accurate assessment of binding
affinities. This is necessary to overcome the challenges in the
rise of infectious bacterial strains resistant to long-established
antibiotics. MM-PBSA and bioassays are combined to guide
discovery of antimicrobial compounds derived from petroleum
ether extracts of Peperomia blanda on methylthioadenosine
phosphorylase, highlighting an effective pipeline for isolating
novel compounds and identifying potential targets (Al-Madhagi
et al., 2019). Recent studies examine the effects of mutations on
ligand binding to guanine riboswitches found to be potential
antibacterial targets (Chen et al., 2019), the discovery of ligands
targeting the virulence factor thermolysin from Bacillus
thermoproteolyticus (Lamazares et al., 2021), selective inhibition
of bacterial RNA polymerase via the nucleoside analog
pseudouridimycin (Rabbad et al., 2019), berberine as an
inhibitor of the multidrug efflux system MexXY-OprM found in
aminoglycoside resistant Pseudomonas (Laudadio et al., 2019),
inhibition of Pseudomonas aeruginosa quorum signaling and
biofilm formation by targeting anthranilate-CoA ligase (Shaker
et al., 2020), and inspection of cruzain inhibitor binding modes to
develop more potent treatments for Chagas disease caused by
Trypanosoma cruzi (Martins et al., 2018). The lung disease

tuberculosis, caused by the bacteria Mycobacterium tuberculosis,
is targeted with indolizines to inhibit enoyl[acyl-carrier] protein
reductase (Venugopala et al., 2019), virtually screened for
inhibitors against the polyphosphate kinase Rv2984 that carries
out the essential reaction producing inorganic polyphosphate
(Shahbaaz et al., 2019), and simulated with induced fit docking
of outer membrane protein A (OmpATb) to discover inhibitors
blocking pore-forming activity.

Development of effective antiviral drugs is necessary to
combat pandemic viruses and emerging pathogenic agents.
Antiviral therapies typically inhibit the machinery specifically
involved in viral replication, but this selectivity is difficult to
achieve as viruses hijack the host cell proteins for replication and
drugs inhibiting these processes will also damage the host cells. A
second obstacle is that the high rate of viral replication leads to
rapid development in drug resistance. Structural evaluation of
residues critical to forming ligand binding interactions such as
hydrogen bonds and hydrophobic packing has provided insight
to guide the design of inhibitors against HIV, influenza, Ebola,
Dengue, and HPV. HIV infection leads to destruction of CD4+

T cells and development of Acquired Immunodeficiency
Syndrome. There are currently no available treatments to cure
HIV, but therapeutics can control HIV progression. Binding
affinity predictions are applied to elucidate the binding mode
of inhibitors targeting HIV-1 protease and understand mutant
protease resistance mechanisms (Li et al., 2018; Wang R.-G. et al.,
2020; Wang and Zheng, 2020). In particular, the work of Li et al.
looks at ten inhibitors for the HIV-1 protease and compares MM-
PB/GBSA methods for calculation of free energy using
conventional and polarizable force fields as well as the scaling
of the interior dielectric constant. The optimization of the
dielectric constants results in an RMSE of 1.43 kcal/mol in
MM-PBSA with correlation coefficient of 0.87 and an RMSE
of 6.62 kcal/mol in MM-GBSA with a correlation of 0.78 (Li et al.,
2018). Further work has targeted HIV-1 reverse transcriptase
through large scale virtual screening to yield 4 compounds for
experimental validation (Zhang et al., 2016). Influenza viral
infection causes respiratory illnesses commonly called the flu
that can lead to death. Work on antivirals to treat influenza
includes utilizing amantadine probes to block influenza M2
proton channels to prevent virus replication (Tzitzoglaki et al.,
2020), analyzing the effects of the hemagglutinin mutations on
binding affinity to human receptors (Zhou et al., 2018), screening
inhibitors for the PB2 protein of influenza RNA polymerase to
inhibit generation of RNA primers essential for replication (Pham
et al., 2020), optimizing neuraminidase inhibitors as lead
compounds (Yu et al., 2019), and characterizing potential
influenza polymerase inhibitors (Pérez-Sánchez et al., 2021).
Ebola causes hemorrhagic fever and molecular interactions
between the monoclonal antibody ADI-15946 and the Ebola
GPcl receptor is studied (Hou and Zhang, 2020). Dengue is a
tropical illness transmitted by mosquitoes, it is targeted with
thioguanine small molecule inhibitors for the NS2B/NS3 protease
(Hariono et al., 2019) and antiviral peptides binding to the
envelope protein domain III (Isa et al., 2019). Therapies
treating human papillomavirus targeting the E6 oncoprotein
complex are also evaluated (Ricci-Lopez et al., 2019).
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Integral Membrane Proteins
The application of molecular dynamics in the prediction of
binding affinities has expanded to include more challenging
systems than typical proteins in aqueous environment.
Successful simulation of integral membrane proteins usually
includes the interactions of the protein with the surrounding
lipid bilayer to model the non-polar setting. A major difficulty
with the addition of the lipid molecules is their slow relaxation
timescales impairing convergence. Corey et al. validate the
application of free energy calculations with protein-lipid
interactions and address the sampling issue by utilizing the
coarse-grained Martini v2 force field (Corey et al., 2019).
G-protein coupled receptors (GPCRs) are an important drug
target due to their roles in recognizing extracellular signals and
converting them into intracellular responses. Profiling of
inhibitors against subsets of GPCRs including cannabinoid
receptors (Jung et al., 2018; Ji et al., 2020; Yang et al., 2020),
biphenyl scaffolds targeting free fatty acid receptors (FFAR1/
FFAR4) involved in diabetes (Zhang X. et al., 2019), and CXCR4
(Shen et al., 2019) yield potential candidates for future
experiment and insight into the interactions forming the
binding interface. A study of the complement component
fragment 5a receptor (C5aR) system explores the binding of
two protein ligand inhibitors (Sahoo et al., 2018). Particular
interest in this system arises from the simultaneous binding at
multiple binding sites for a single ligand. These binding
interactions are explored using MM-PBSA to elucidate
important residues at differing sites. The residues predicted to
have central impact are consistent with experimental mutational
analysis (Sahoo et al., 2018). Additionally, GPCR dimerization is
also studied with the TGR5 system through PMF computations
using umbrella sampling and MM-PBSA. Computational results
corroborate experimental FRET experiments in revealing residue
hot spots at the 1/8 interface for dimerization inhibitors to target
(Waschenbach et al., 2020). The mechanism of opioid pain
suppression is examined through simulation of fentanyl with
the Gluoeobacter violaceus ligand-gated ion channel. The study
indicates that the fentanyl-binding induced conformational
changes inhibit conduction through the channel (Faulkner
et al., 2019).

Nucleic Acids
Nucleic acids carry genetic data and regulate cell processes.
Study of binding affinity predictions with DNA or RNA
generally requires use of different force fields than those used
for protein systems, but otherwise involves the same logic and
data processing. Deng (Deng, 2019) compares the double
decoupling and PMF approaches in the consideration of
small molecule inhibitors in complex with G-quadruplex
DNA, and finds that both approaches have errors within
2 kcal/mol of the experimentally determined binding free
energies. Further work with DNA includes investigation of
alkaloid binding to human telomeric G-quadruplex (Deng
et al., 2019), umbrella sampling of catabolite activator protein
to identify DNA binding induced conformation changes
(Prabhakant et al., 2020), binding of the antiviral netropsin
in the DNA minor groove (Zhang et al., 2018), examination of

Z-DNA stability with modified cytosine bases (Vongsutilers
et al., 2020), and binding recognition and allosteric
mechanism of tryptophan-responsive regulatory protein-
DNA (Mariadasse et al., 2020). Simulation of RNA features
the prediction of riboswitch binding affinities (Hu et al., 2020)
and in silico screening of aptamers targeting hepatitis B surface
antigen (Sabri et al., 2019).

Peptides
Peptides are short chains of amino acids that can function as
therapeutic drugs, biosensors, and catalysts. Peptide sequences
are often optimized to achieve a desired conformation capable of
binding and inhibiting target proteins similarly to small molecule
inhibitors, with the advantage that peptides can bind larger
surface areas for greater specificity than small molecules.
Simulation and in silico design of peptides has been performed
to generate cyclic lead compounds against the hormone resistin
through the alchemical method to optimize selectivity (Chi and
Vargas, 2020), construct peptide inhibitors derived from the
LEDGF/P75 protein against HIV1 integrase receptor (Kilburg
and Gallicchio, 2018), investigate differences in free energy
profiles of cell penetrating peptides on DOPC model lipid
bilayers to characterize penetration efficiency (Her Choong
and Keat Yap, 2020), and identify determinants for peptide
binding to the PSM9 PDZ domain found in synaptic junctions
(Harish et al., 2019).

Metal Ions
Metal ions are coordinated by metalloproteins to catalyze
reactions that are challenging to achieve with conventional
organic chemical methods. They are important in oxygen
transfer, redox reactions, and free radical capture. Additional
roles for metal ions involve their ability to stabilize highly charged
interactions such as those with the DNA phosphate backbone.
Accurate representation of metal ions in molecular simulation is
limited by the complications of polarization effects that are not
captured in conventional force fields, suboptimal treatment of
metal ion ligation to amino acid residues through restraints, and
lack of well-tested force field parameters in comparison to those
available for organic molecules. Even with these difficulties, study
of metal ion binding with molecular simulation is constantly
advancing. Jing et al. (Jing et al., 2018) utilize a polarizable force
field to demonstrate that selective binding of Ca2+ and Mg2+

arises from many-body polarization effects. Improved
parameterization of Zn2+ ions coordinating to Asp/Glu
(Macchiagodena et al., 2020a) and His/Cys (Macchiagodena
et al., 2019) enables more reliable simulation of zinc binding
proteins, binding free energies of Mg2+ coordination with
nucleoside di- and tri-phosphates such as ADP and ATP are
studied with polarizable force fields (Walker et al., 2020), and an
optimized 12-6-4 potential incorporating charge-induced dipole
interactions allows accurate binding free energy calculation of
Co2+ and Ni2+ to the enzyme glyoxalase I (Song et al., 2020). The
impact of zinc ions on O6-methylguanine DNA methyl
transferase DNA binding activity (Gharouni et al., 2021) and
effects of sodium or calcium ions on calprotectin dimerization
(Gheibi et al., 2019) is investigated.
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Biomedical Studies
A host of other biomedical applications outside the major
categories discussed above have also been published in recent
years. Cataract formation occurs through human γD-Crystallin
aggregation and application of MD shows that the steroid
lanosterol binds to hydrophobic surface regions near the
C-terminal region to protect against dimerization (Kang et al.,
2018). Inhibitors are identified to target the JAMM
deubiquitinylases Rpn11 and CSN5 that remove covalently
attached ubiquitins from proteins to regulate homeostasis
(Kumar et al., 2018). Free energy calculation is used to study
adenosine deaminase abnormal function as reported in
rheumatoid arthritis (Tian et al., 2018), the ricin catalytic
subunit found in the chemical weapon ricin (Botelho et al.,
2020), the tyrosine phosphatase PTP-CPS4B involved in
Streptococcus pneumonia metabolic signaling (Zaman et al.,
2021), and clusters formed by uric acid and melamine that
contribute to renal dysfunction (Chattaraj and Paul, 2020).
Escherichia coli pathogenesis has been discovered to be driven
by colonization factor I fimbriae binding to the Lewis A glycan
epitope found in the small intestine (Mottram et al., 2018). The
recognition mechanism for highly charged inorganic phosphate by
phosphate binding protein has been studied with the polarizable
forcefield AMOEBA to resolve the protonation state of the bound
phosphate (Qi et al., 2018). Diabetes is a metabolic disease
characterized by the inability to regulate blood sugar levels.
Therapeutics have been explored through liver fructose 1,6-
bisphosphate inhibitors to control gluconeogenesis-mediated
overproduction of glucose (Proenca et al., 2020) and dipeptidyl
peptidase 4 inhibitors to block degradation of incretins that
stimulate decrease of blood glucose (Rahman et al., 2020). Half-
life extension of insulin determir by complex formation with
human serum albumin has been examined as a platform for
drug delivery (Ryberg et al., 2020). Further studies assess the
role of conformational changes in AcrB transporter contributing
to multidrug resistance (Matsunaga et al., 2018), transport of
cholesterol by the Aster-A protein (Moesgaard et al., 2020), and
reduction of chronic inflammation by treatment with the peptide
KCF18 binding to TNF-α and interleukin-6 (Jiang et al., 2019).
Investigation into other areas includes adaptive immune response
through toll-like receptor activity when bound to diprovocim (Su
et al., 2019) and stability when complexed with lipopolysaccharide
or neoseptin3 (Tafazzol and Duan, 2019), cooperative binding of
heat shock protein 70 with piperine (Zazeri et al., 2020), agonists
and antagonist binding to androgen receptor triggering different
conformational changes (Azhagiya Singam et al., 2019), and the
binding pathway of benzamidine to mutant trypsin protease
through enhanced ligand sampling (Shao and Zhu, 2019).

Non-Pharmaceutical Applications
Research in the fields of biotechnology and plant biology is also
aided by molecular simulations. Studies of interaction
mechanisms between the germination stimulant karrikins
binding to their receptor KAI2 (Zhang et al., 2020) and
4-hydroxyphenulpyruvate dioxygenase inhibitors functioning

as herbicides is reported (Fu et al., 2019). Manufacture of
commercially valuable polyketides, secondary metabolites
synthesized by multi-domain polyketide synthase complexes,
has been investigated via comparison of thioesterase binding
affinity to cyclized products to understand product release
mechanisms of the antifungals amphotericin and nystatin
(Wang et al., 2021). Binding free energy analysis is also used
to elucidate the molecular basis of ketoreductase chain length and
regiospecificity (Serapian and van der Kamp, 2019; Zhao et al.,
2020). Potential insecticides targeting the ecdysone receptor to
disrupt growth are identified (Horoiwa et al., 2019).

CONCLUSION

Prediction of binding free energies via molecular simulation is
playing a key role in accelerating drug development efforts by
reducing the time and experimental effort required to establish
functional pharmaceuticals. The growing number of successful
applications highlights the utility of these computational
methods. MM-PB/GBSA is recommended for initial stages
of virtual screening where ranking of large number of
candidates is performed due to its balance of improved
reliability over molecular docking and speed. LIE can be
alternatively used when the number of candidates is
extremely high and simulation speed is prioritized as it
bypasses the post-processing steps required for MM-PB/
GBSA at the cost of some accuracy. In later stages of drug
optimization where fewer simulations are necessary due to a
narrowed range of candidates, alchemical methods are
suggested due to their greater rigor in considering
interactions with explicit solvent and conformational
entropy. Challenges in reaching adequate conformational
sampling, overly simplistic treatment of electronic
polarization, and deficiencies in force field parameterization
still must be addressed. Active research in these areas is
ongoing, knowledge of the rapid development of current
approaches and their elevated performance compared to
studies completed only a few years ago inspires confidence
that the grand challenge of accurate binding free energy
prediction is achievable in the near future.
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