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Abstract: The magnitude of the host immune response can be regulated by either stimulatory or
inhibitory immune checkpoint molecules. Receptor-ligand binding between inhibitory molecules
is often exploited by tumours to suppress anti-tumour immune responses. Immune checkpoint
inhibitors that block these inhibitory interactions can relieve T-cells from negative regulation, and
have yielded remarkable activity in the clinic. Despite this success, clinical data reveal that durable
responses are limited to a minority of patients and malignancies, indicating the presence of underlying
resistance mechanisms. Accumulating evidence suggests that tumour hypoxia, a pervasive feature
of many solid cancers, is a critical phenomenon involved in suppressing the anti-tumour immune
response generated by checkpoint inhibitors. In this review, we discuss the mechanisms associated
with hypoxia-mediate immunosuppression and focus on modulating tumour hypoxia as an approach
to improve immunotherapy responsiveness.

Keywords: hypoxia; immune suppression; hypoxia-activated prodrug; tarloxotinib; CP-506; evofos-
famide; HIF; oncolytic virus; checkpoint inhibitor; immunotherapy

1. Introduction

Immune checkpoint inhibitors (ICIs) sit at the forefront of cancer immunotherapy.
They are emerging as the primary treatment option for many advanced stage cancer
patients as a result of their clinical success. Within the last decade, seven ICIs targeting the
immune checkpoint receptors cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed
death protein 1 (PD-1), and the ligand to the checkpoint receptor PD-1 programme death
protein ligand 1 (PD-L1) have been approved by the FDA for the treatment of a variety of
malignancies [1]. While this remarkable progress has revolutionised the field of immuno-
oncology, in reality, only a subset of cancer types currently respond to ICI treatments,
with patients that gain long-term benefits remaining in the minority, reflected by objective
response rates between 10 and 40% [2–6].

In general, immunotherapies are designed to increase the number and functionality of
anti-tumour effector cells. The majority of such treatments target activating antigen-specific
T-cells to selectively eliminate tumours through the recognition of unique or aberrantly
expressed antigens presented as peptides by major histocompatibility complex (MHC)
molecules on the tumour cell surface. ICIs such as anti-CTLA-4, anti-PD-1 and anti-PD-
L1 monoclonal antibodies relieve T-cells from negative regulation governed by immune
checkpoints by blocking the interactions between immune checkpoint receptors and their
respective ligands on tumour cells, infiltrating myeloid cells or T-cells themselves [7].
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The immune cell composition within the tumour microenvironment varies between pa-
tients (and sometimes between individual tumour lesions). Some have a “cold” immune
privileged tumour phenotype, with minimal infiltration of immune cells (e.g., reduced
numbers of effector T cells, natural killer cells and antigen presenting cells) that do not
respond well to ICIs, while others possess a “hot” immune-infiltrated tumour phenotype
that can respond well to ICIs [8,9]. This phenomena is suggestive of underlying resistance
mechanisms that limit further advances of ICIs as monotherapy [10,11].

Tumours with high expression of PD-L1 respond better to ICIs targeting the PD-
1/PD-L1 pathway and are also found to carry more tumour somatic mutations [12,13].
This suggests that the extent of mutagenesis in cancer cells correlates with the degree
of immunogenicity of a given tumour type. A higher frequency of mutations in cellular
DNA creates a greater chance of these cells at generating neoantigens which will be
recognised as foreign and targeted by antigen presenting cells (APCs). Patients bearing
tumours with a high mutational load are more responsive to ICIs due to increased tumour
immunogenicity. For example, neoantigen signature in tumours correlated well with
overall survival in patients undergoing anti-CTLA-4 treatment [12,14]. However, any
increased immunogenicity can be offset by upregulating tumour expression of PD-L1
to evade immune destruction. Therefore, tumours often cannot be eradicated by the
immune response.

Tumour resistance to ICIs can be classified into three broad categories: (i) primary
resistance, in which an anti-tumour immune response cannot be elicited in the patient; (ii)
adaptive immune resistance, in which an active anti-tumour immune response is present
and can recognise cancerous cells but is unable to eliminate them due to immune evasion
mechanisms established within the tumour milieu; and (iii) acquired resistance, in which
the tumour initially responds to immunotherapy but subsequently becomes resistant
and progresses on therapy [10,11,15]. There are numerous intrinsic and extrinsic factors
that contribute to resistance to ICI treatment in patients, such as mutational load within
the tumour and thus availability of tumour-associated antigens, central and peripheral
tolerance mechanisms that limit the T-cell repertoire to tumour antigens, immunologically
ignored tumour antigens, tumour microenvironment-associated factors (e.g., level and
character of immune infiltrate, and immunosuppressive features such as tumour hypoxia),
environmental factors (e.g., diet and microbiota that can alter capacity for immunity),
endocrine and metabolic factors (e.g., stress response, obesity and individual variability
in pharmacokinetics of treatment agents), and demographical factors (e.g., impact of sex
and age on immunity) [10,11,16,17]. It is necessary for the immune response to overcome
these immunosuppressive mechanisms mediated by the tumour and its microenvironment
to elicit robust and durable anti-cancer immunity. In this review, we primarily focus on
how tumour hypoxia, a factor within the tumour microenvironment (TME), suppresses
the anti-tumour immune responses and discuss potential therapeutic strategies that can
overcome tumour hypoxia to improve cancer immunotherapy, particularly ICIs.

2. Monoclonal Antibodies—Immune Checkpoint Inhibitors

Immunotherapy functions by stimulating the host immune system; an effective im-
munotherapy must be capable of generating a robust T-cell response that can overcome
tumour and TME induced immunosuppression. Apart from co-stimulatory molecules,
immune cells also express surface inhibitory receptors that are a part of their intrinsic
regulatory mechanism, sanctioned to act as checkpoints that prevent over-activation of
the immune response [7]. Such over-activation of pro-inflammatory cells with excessive
production of pro-inflammatory cytokines can drive autoimmunity and unwanted damage
to normal tissues. On the other hand, continuous activation of immunosuppressive cells
can lead to the inhibition of T-cell activation and effector T-cell function, which dampens
down the adaptive immune response against pathogens and tumours [7,18]. Not surpris-
ingly, the immunosuppressive TME can cause upregulation of these inhibitory receptors to
attenuate effector T-cell activation and function as a mechanism of tumour evasion [19].
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These inhibitory receptors can be targeted with the use of monoclonal antibodies, so called
ICIs, which alleviate tumour-induced immunosuppression and overcome tumour evasion
by disrupting these inhibitory receptor–ligand interactions, promoting T-cell function and
tumour elimination. The main advantages of ICIs over other immunotherapies is that they
do not rely on tumour specific antigens and no ex vivo manipulations are required. Nu-
merous ICIs have been developed to target inhibitory checkpoint proteins such as CTLA-4,
PD-1, PD-L1, T-cell immunoglobulin mucin (TIM)-3, lymphocyte activation gene (LAG)-3,
T-cell immunoglobulin and ITIM domain (TIGIT) and V-domain Ig suppressor of T cell
activation (VISTA) [20]. Checkpoint proteins such as CTLA-4, PD-1, LAG-3, TIM-3, VISTA
and TIGIT are mostly found on the surface of T-cells, with some also found on dendritic
cells (DCs) and monocyte/macrophages (PD-L1, TIM-3, LAG-3, VISTA) or tumour cells
(PD-L1, TIM-3) [18,21–23].

2.1. Approved Checkpoint Inhibitors

Ipilimumab (Yervoy™) is a monoclonal antibody that targets the CTLA-4 inhibitory
receptor. It was the first checkpoint inhibitor to be approved by the FDA in 2011 for
the treatment of patients with unresectable or advanced stage metastatic melanoma [24].
CTLA-4 is an essential negative regulatory component of the adaptive immune system as it
maintains immunologic homeostasis by inhibiting the proliferation and activation of T-cells
to suppress detrimental tissue injury due to T-cell over-activation. CTLA-4 modulates
the immune response through regulating T-cell priming and T-cell activation at the early
stages of an adaptive immune response by competing with CD28 for binding with the
co-stimulatory molecules CD80 and CD86 on DCs to suppress T-cell activity [7,18,25]. The
binding affinity of CTLA-4 is stronger than that of CD28 to CD80/86, thereby ensuring com-
petitive inhibition of T-cell activation and proliferation by CTLA-4. CTLA-4 engagement
can also induce apoptosis of activated T-cells [25]. Currently, ipilimumab is being evalu-
ated in clinical trials for efficacy in other solid and hematologic cancers, including prostate
cancer, non-small cell lung cancer (NSCLC), pancreatic cancer, ovarian cancer, glioblastoma
and gastric cancer. Potential combination strategies are also being explored [18,26].

Since the FDA approval of ipilimumab, six more ICIs targeting the PD-1/PD-L1
inhibitory pathway have been approved for clinical use (Table S1). Nivolumab (Opdivo™),
pembrolizumab (Keytruda™) and cemiplimab (Libtayo™) are inhibitors that target the
checkpoint receptor PD-1. Anti-PD1 treatments are considered to be more favourable than
anti-CTLA-4 treatments in certain tumour types due to their better safety and tolerability
profiles, as well as having potential biomarkers for patient stratification and predictions for
clinical outcome [6,13]. PD-1 is an inhibitory molecule that regulates the immune response
after the T-cells have become activated and migrated to the peripheral tissues. Expression
is upregulated on activated T-cells and provides negative feedback to attenuate local T-cell
responses in order to minimise collateral tissue damage and prevent autoimmunity by
binding with its two known ligands PD-L1 or PD-L2 [27].

PD-L1 is the predominant ligand for PD-1 and is highly expressed on many solid and
haematological tumours including ovarian [28], breast [29], cervical [30], melanoma [31],
colon [32], glioblastoma [33] and NSCLC [34] as well as DCs and macrophages [35]. Inter-
action between PD-1 and PD-L1 reduces cytokine production, T-cell function and prolif-
eration, and induces T-cell apoptosis, essentially creating a negative feedback loop that
dampens anti-tumour immunity. PD-L1 can also bind to CD80 which prevents its binding
with CD28 on T-cells, essentially blocking CD80-mediated T-cell activation [13,18]. Tu-
mours can evade the immune response by upregulating their PD-L1 expression to inhibit
the function of tumour antigen-specific CD8+ T-cells. The TME can also lead to the up-
regulation of PD-1 on T-cells themselves, which further impairs the anti-tumour immune
response [36]. The engagement of PD-1 with PD-L1 renders tumour cells refractory to
apoptosis signals delivered by Fas ligation [37]. PD-L1 expression is often related to poor
patient prognosis. Nevertheless, patients with higher tumour PD-L1 expression may benefit
more from anti-PD-1 treatment. In clinical study, NSCLC patients whose tumoural PD-L1
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expression exceeded 50% had a higher response rate to anti-PD-1, prolonged progression
free survival and overall survival than those with low PD-L1 expressing tumours [13,38].

As the expression of PD-L1 is often upregulated in the TME, anti-PD-L1 antibodies
that block PD-L1 have been developed as an additional strategy to target the PD-1/PD-L1
inhibitory pathway (Table S1). The FDA-approved anti-PD-L1 monoclonal antibodies are
atezolizumab (Tecentriq™), avelumab (Bavencio™) and durvalumab (Imfinizi™), which
prevent the interaction between PD-1 and PD-L1, and inhibit the interaction between PD-L1
and CD80 which is not targeted with anti-PD-1 antibodies [7]. Anti-PD-L1-based regimens
may be more beneficial than anti-PD-1 in some disease settings. For example, studies have
shown that anti-PD-L1 antibodies are associated with significantly lower rates of immune
adverse events such as pneumonitis compared to anti-PD-1 in NSCLC patients across
clinical trials. It is hypothesised that the reduced toxicity is due to the selective activity
against PD-1/PD-L1 signalling as PD-1/PD-L2 signalling is also attenuated by anti-PD-1,
which increases treatment-induced autoimmunity [39,40]. The anti-PD-L1 inhibitors also
exhibit higher blocking efficiency than anti-PD-1 antibodies, with much lower half maximal
effective concentrations for PD-1 signalling inhibition, meaning that a lower dose of anti-
PD-L1 antibody is sufficient to induce a robust response [41].

2.2. Combination Strategies

There are currently over 2000 active ICI clinical trials (Clinicaltrials.gov, accessed
31 March 2021) with many studies designed to investigate different combination strategies
involving multiple ICIs or with other treatment modalities, in hope of improving patient
response rate and identifying curative combinations of agents (examples of which are
illustrated in Table 1). However, despite multiple clinical trials being undertaken and
evidence of improved activity with combination therapy, the proportion of responding
patients still remains in the minority. This signifies the presence of resistance mechanisms
in the TME which limit the development of long-term immunity against tumour antigens.
Consequently, a deeper understanding of the underlying mechanisms responsible for
resistance is required, including the prevalence of pathophysiological hypoxia (oxygen
deprivation).

Table 1. Examples of combination immunotherapy strategies currently recruiting for clinical trial.

Combination Strategy Examples Phase Clinical Trial Identifier

Chemotherapy
Pembrolizumab + usual chemotherapy for NSCLC III NCT04267848

Atezolizumab + combination chemotherapy III NCT02912559
Nivolumab + carboplatin and paclitaxel III NCT04444921

Radiotherapy
Pembrolizumab + stereotactic body radiation therapy III NCT03867175

Atezolizumab + radiation therapy II/III NCT04402788
Sintilimab + stereotactic body radiation therapy II/III NCT04167293

Multiple ICI agents Pembrolizumab + Ipilimumab II NCT03873818
Tiragolumab + Atezolizumab I NCT02794571

Molecular targets
Nivolumab + Lenvatinib II NCT03841201

Atezolizumab + Vemurafenib and/or Cobimetinib II NCT04722575
Pembrolizumab + Idelalisib I/II NCT03257722

Immunostimulatory agents
Nivolumab + CMP-001 (TLR-9 agonist) II NCT04401995

Nivolumab (+ Ipilimumab) + OTSGC-A24 (peptide vaccine) I NCT03784040
Tislelizumab + BGB-A445 (anti-OX40 agonist) I NCT04215978

Replicating biological vectors Nivolumab + Talimogene laherparepvec
Pembrolizumab + Clostridium novyi III NCT04330430NCT03435952

Clinicaltrials.gov
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3. Tumour Hypoxia and Hypoxia-Mediated Immunosuppression
3.1. Tumour Hypoxia

Tumour hypoxia, defined as a state in which the oxygen levels are less than 1% O2
(10,000 ppm O2; 10 µM O2), is a pervasive feature of human tumours. It arises due to the
abnormal structure of the tumour vasculature, leading to a mismatch between oxygen
delivery and consumption [42,43]. Unlike normal tissues, the tumour vasculature lacks an
organised network and is hyper-permeable, dilated and convoluted with areas of occlusions
leading to poor or fluctuating blood perfusion. The rapid rate of cellular proliferation
results in tumour cells also arising at an increased distance from functional blood vessels,
with tumours larger than 2 mm experiencing limited oxygen and nutrient supply as well
as acidosis due to inadequate waste exchange [44,45]. Cells located near the diffusion limit
of oxygen (approximately 200 µm away from the blood vessels) are therefore quiescent
(not rapidly proliferating) and experience diffusion-limited chronic hypoxia (Figure 1).
In contrast, transient perfusion-limited hypoxia or intermittent hypoxia is caused by
temporary blockage of the tumour vasculature [46]. Hypoxic tumours upregulate their
expression of vascular endothelial growth factor (VEGF) to promote angiogenesis to allow
for the formation of new blood vessels from existing ones to promote tumour growth and
adapt to the microenvironment with limited supply of oxygen and nutrients [42,47].

Cells 2021, 10, x 5 of 27 
 

 

3. Tumour Hypoxia and Hypoxia-Mediated Immunosuppression 
3.1. Tumour Hypoxia 

Tumour hypoxia, defined as a state in which the oxygen levels are less than 1% O2 
(10,000 ppm O2; 10 μM O2), is a pervasive feature of human tumours. It arises due to the 
abnormal structure of the tumour vasculature, leading to a mismatch between oxygen 
delivery and consumption [42,43]. Unlike normal tissues, the tumour vasculature lacks an 
organised network and is hyper-permeable, dilated and convoluted with areas of occlu-
sions leading to poor or fluctuating blood perfusion. The rapid rate of cellular prolifera-
tion results in tumour cells also arising at an increased distance from functional blood 
vessels, with tumours larger than 2 mm experiencing limited oxygen and nutrient supply 
as well as acidosis due to inadequate waste exchange [44,45]. Cells located near the diffu-
sion limit of oxygen (approximately 200 μm away from the blood vessels) are therefore 
quiescent (not rapidly proliferating) and experience diffusion-limited chronic hypoxia 
(Figure 1). In contrast, transient perfusion-limited hypoxia or intermittent hypoxia is 
caused by temporary blockage of the tumour vasculature [46]. Hypoxic tumours upregu-
late their expression of vascular endothelial growth factor (VEGF) to promote angiogene-
sis to allow for the formation of new blood vessels from existing ones to promote tumour 
growth and adapt to the microenvironment with limited supply of oxygen and nutrients 
[42,47]. 

 
Figure 1. Illustration of chronic and acute tumour hypoxia. Diffusion-limited hypoxia occurs when 
cells are located near the diffusion limit of oxygen. Perfusion-limited hypoxia arises due to tempo-
rary occlusion of tumour vasculature. 

3.2. Biological Response to Tumour Hypoxia 
The hypoxic response is primarily governed by hypoxia-inducible factor (HIF)-1 

transcription factor, which is a heterodimer consisting of a labile HIF-1α subunit and a 
constitutive HIF-1β subunit. The HIF-1α subunit is unstable under oxygenated conditions 
due to its regulation by prolyl hydroxylase-domain protein 1-3 (PHD1-3), which hydrox-
ylates the oxygen-dependent degradation domains (ODD) of HIF-1α using molecular ox-
ygen as a substrate. The hydroxylated prolines 402 and 564 are recognised by the von 
Hippel-Lindau (VHL) complex to target HIF-1α for degradation by the proteasome. Un-

Figure 1. Illustration of chronic and acute tumour hypoxia. Diffusion-limited hypoxia occurs when cells are located near
the diffusion limit of oxygen. Perfusion-limited hypoxia arises due to temporary occlusion of tumour vasculature.

3.2. Biological Response to Tumour Hypoxia

The hypoxic response is primarily governed by hypoxia-inducible factor (HIF)-1
transcription factor, which is a heterodimer consisting of a labile HIF-1α subunit and a con-
stitutive HIF-1β subunit. The HIF-1α subunit is unstable under oxygenated conditions due
to its regulation by prolyl hydroxylase-domain protein 1-3 (PHD1-3), which hydroxylates
the oxygen-dependent degradation domains (ODD) of HIF-1α using molecular oxygen as a
substrate. The hydroxylated prolines 402 and 564 are recognised by the von Hippel-Lindau
(VHL) complex to target HIF-1α for degradation by the proteasome. Under hypoxic condi-
tions, the ODD cannot be hydroxylated by PHDs, which leads to accumulation of HIF-1α
and the formation of the active transcription factor HIF-1. The active HIF-1 heterodimer
binds to hypoxia-responsive elements in the promoter/enhancer regions of HIF-1 regulated
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genes to transcriptionally activate a wide variety of genes involved in cell metabolism,
angiogenesis, glucose metabolism, apoptosis, cell survival, cell proliferation and pH regula-
tion [48–50]. Another HIF family transcription factor, HIF-2α, is also involved in activating
hypoxic responses and is structurally similar to HIF-1α apart from the transactivation
domain. This difference confers target gene specificity of HIF-1α and HIF-2α, leading to
them having both overlapping and unique target genes [51–53]. Unlike HIF-1α, which is
the main regulator of the glycolytic pathway and expressed mainly during the acute phase
of hypoxia response (<24 h), HIF-2α is mostly involved in promoting an undifferentiated
phenotype of pluripotent cells and drives the chronic response of hypoxia (>24 h) [54,55].

The unfolded-protein response (UPR) is also an important adaptation to severe hy-
poxia (reviewed in [56–58]). Prolonged exposure of cells to hypoxia results in endoplasmic
reticulum (ER) stress and disruptions in protein folding and trafficking as the cells attempt
to survive under hypoxia [56]. The accumulation of unfolded or misfolded proteins in the
ER induces higher demand of binding immunoglobin protein (BiP), which initiates the UPR
by dissociating from luminal domains of proteins including protein kinase RNA-like ER
kinase (PERK), inositol-requiring enzyme 1α (IRE1α) and activating transcription factor 6
(ATF6) [57]. Upon dissociation, PERK and IRE1α become activated via multimerization and
autophosphorylation. Activated PERK phosphorylates the eukaryotic initiation factor eIF2,
leading to the translation of activating transcription factor 4 (ATF4). ATF4 then induces
genes involved in oxidative stress resistance, redox homeostasis and amino acid biosyn-
thesis [57,59]. Activated IRE1α degrades mRNAs and performs splicing of X-box binding
protein transcription factor (XBP1) mRNA to generate the transcriptionally active spliced
XBP1 (XBP1s). Both ATF4 and XBP1s then induce transcriptional programs to restore ER
homeostasis [60]. ATF6, on the other hand, is translocated to the Golgi apparatus where
it is processed by proteases to release a cytoplasmic domain ATF6f (p50). The transcrip-
tionally active ATF6f is released to then activate a transcriptional program to restore ER
homeostasis and survival [57,61]. Hypoxia-induced UPR can support the survival of cancer
cells, promote angiogenesis and promote cancer cell resistance to chemotherapy [56,62].

Many tumour types contain high fractions of hypoxia such as those of the brain,
head and neck, lung, breast, prostate, pancreas and cervix [42,43,63]. The relationship
between tumour hypoxia and poor prognosis is firmly established, being associated with
resistance to radiotherapy, chemotherapy and immunotherapy [16,42,64–68]. Hypoxia can
affect many aspects of the tumour biology, such as the promotion of invasiveness and
metastasis [69,70], suppression of apoptosis [71], induction of tumour angiogenesis [72]
and altered tumour cell metabolism [73]. Moreover, it has been recognised that hypoxia
is central to the generation of an immunosuppressive TME, thereby inhibiting the anti-
tumour immune response [16,52,74]. As detailed in this review, tumour hypoxia can drive
the suppression of the function and proliferation of effector T-cells and exacerbate tumour
escape from immune surveillance, with a network of immunosuppressive cells, growth
factors and cytokines being implicated in this process [16].

3.3. Hypoxia Promotes Immune Tolerance through Multiple Mechanisms

Tumours can evade immune recognition and destruction by cytotoxic T-cells via nu-
merous mechanisms, including the generation of an immunosuppressive environment and
development of resistance to clearance by immune effector cells [21]. An immunosuppres-
sive environment manifests through the recruitment of immunosuppressive cells such as
regulatory T-cells (Tregs) and myeloid derived suppressor cells (MDSCs), which suppress
the effector function of cytotoxic T-cells through the production of suppressive factors,
including tumour growth factor (TGF)-β, IL-10, VEGF, indoleamine 2, 3-dioxygenase (IDO)
and arginase. These proteins, growth factors and cytokines can also promote tumour
invasiveness, angiogenesis, and proliferation, as well as preventing the full activation and
maturation of APCs. Immature DCs, in the absence of co-stimulatory molecules such as
CD80, CD86 and CD40, promote T-cell tolerance rather than activation [21,75–78]. Similarly,
tumour cells that lack the expression of co-stimulatory molecules can also induce T-cell
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tolerance or anergy when T-cells engage with tumour antigens present on the cell sur-
face [79]. Further, the recruited MDSCs along with tumour associated macrophages (TAMs)
create an inflammatory TME which facilitates tumour formation, progression, angiogenesis
and metastasis by inducing chronic inflammation at tumour sites [21,80]. Tumours also
develop resistance to cytotoxic T-cell killing by creating a defective antigen presentation
pathway through the down-regulation of MHC molecules, transporter associated with
antigen processing protein (TAP), and the tumour antigen itself. Defects in the antigen
presentation machinery consequently lead to impaired tumour clearance and enhanced
tumour progression, as cytotoxic T-cells can no longer recognise tumour antigens and
exert their cytotoxic functions. Such tumour cells lack an immunogenic epitope and are
thus ignored by the immune system, leading to a selective survival advantage [21,81–83].
The immune system itself can also contribute to tumour immune evasion through “immu-
noediting”, in which the immune system selectively eliminates immunogenic tumour cells,
resulting in the survival of immune-resistant cancer cell clones [19,84].

Accumulating evidence indicates that most of these immunosuppressive mechanisms
are orchestrated by tumour hypoxia through a network of immunosuppressive soluble
factors and regulatory cell populations [16,42,43]. Specifically, tumour hypoxia has been
shown to attract immunosuppressive Tregs [85], regulate the maturation and function of
MDSCs [86], entrap and re-educate macrophages toward an immunosuppressive M2-like
phenotype [87], and severely reduce the function of activated T-cells as a consequence of
adenosine accumulation (Figure 2) [88]. Crosstalk between recruited regulatory cell popu-
lations also amplifies the production of immunosuppressive cytokines such as IL-10 and
TGF-β [89]. Significantly, these effects can be reversed directly by hyperoxic breathing in an-
imal models, including the restoration of activated T-cell infiltration and heightened release
of pro-inflammatory cytokines and chemokines [90], indicating therapeutic interventions
that suppress tumour hypoxia may hold considerable promise.
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3.4. Hypoxia Recruits Immunosuppressive Cells to Promote Immune Tolerance

Tregs are derived from naïve CD4+ T-cells under the influence of TGF-β or IL-2
cytokines. Tregs are characterised by the expression of the forkhead box P3 (FOXP3)
transcription factor and cell-surface molecules such as CD25, CTLA-4 and LAG-3 [19,91].
The hypoxia-induced stabilisation of HIF-1 has been shown to upregulate FOXP3, which
promotes the formation of Tregs from CD4+ T-cells [92]. Typically, Tregs impede T-cell
responses and inflammation through the secretion of immunosuppressive cytokines such
as IL-10 (inhibits expression of MHC molecules and co-stimulatory molecules on APCs)
and TGF-β (inhibits T-cell proliferation), or via interaction between CTLA-4 on Tregs and
CD80/86 on APCs (limits T-cell priming) or by sequestering IL-2 from naïve T-cells by
virtue of the high affinity receptor CD25 on Tregs. Although Tregs are essential at maintain-
ing self-tolerance to prevent autoimmunity, their accumulation in the tumour suppresses
the anti-tumour immune response [19,91]. Hypoxia also promotes the recruitment of Tregs
through HIF-1-mediated induction of the C-C motif chemokine ligand (CCL)-28. CCL28
acts as a chemoattractant for Tregs through its binding to C-C motif chemokine receptor
10 (CCR10) on Tregs. The expression of CCL28 has been found to correlate with HIF-1α
expression in ovarian cancer and is associated with poor patient prognosis. Similarly,
hypoxia-induced recruitment of Tregs has been associated with a poor prognosis for pa-
tients with hepatocellular carcinoma (HCC) and basal-like breast cancer [85,93,94]. HIF-2α
is also involved in Treg stability as HIF-2α-knockout Tregs are functionally defective at
suppressing effector T-cell function. Mice with FOXP3 conditional knockout of HIF-2α
also showed resistance to the growth of MC38 colon tumours and metastatic invasion of
B16.F10 melanoma [95].

Hypoxia regulates the function and maturation of MDSCs, a heterogeneous group
of immature immune cells of myeloid origin, consisting of immature macrophages, gran-
ulocytes and DCs. MDSCs are generated from the bone marrow and have the ability
to differentiate into mature myeloid cells in the presence of the appropriate cytokines.
However, their maturation is restrained under hypoxia, resulting in the accumulation
of immature MDSCs in the lymphoid tissues and the tumour, leading to suppression of
appropriate immune responses [74,86]. This is due to HIF-1-induced upregulation of ec-
tonucleoside triphosphate diphosphohydrolase 2 (ENTPD2), which converts extracellular
adenosine triphosphate (ATP) to 5′-adenosine monophosphate (AMP). 5′-AMP prevents
the maturation of MDSCs and promotes their maintenance [96]. Tumour-associated MDSCs
also upregulate the production of nitric oxide (NO) and arginase-1, leading to antigen-
specific Treg proliferation as well as the suppression of antigen-specific and non-specific
T-cell functions. Hypoxia/HIF-1 induces the expression of tumour-derived factors such
as VEGF, GM-CSF and prostaglandins, which further contribute to the accumulation of
MDSCs in the TME. HIF-1-induced upregulation of CCL26 also increases the recruitment
of MDSCs that express the cognate receptor, C-X3-C motif receptor 1 (CX3CR1) [74,86,97].
HIF-1 directly regulates the expression of PD-L1, and under hypoxic conditions, PD-L1 is
upregulated on MDSCs to promote T-cell anergy and tolerance [74,98]. HIF-1 also promotes
the differentiation of MDSCs into immunosuppressive TAMs that further dampen down
the anti-tumour immune response [86,98].

Macrophages are derived from myeloid progenitor cells via a monocyte precursor.
Following their infiltration into solid tumours, tumour-derived cytokines such as IL-4 and
IL-10 can polarise these macrophages into a so-called M2-like phenotype (F4/80+ CD206+

CD11c-), giving rise to TAMs that are immunosuppressive (compared to its immunostimu-
latory M1-like phenotype counterpart (F4/80+ CD206- CD11c+)). M1-like macrophages are
generally activated by IFN-γ and lipopolysaccharide (LPS), and produce high levels of IL-
12 to promote the anti-tumour immune response. The abundance of M2-like macrophages
in the hypoxic TME facilitates tumour progression through the production of high levels of
IL-10, and by promoting angiogenesis, invasion and metastasis [99–102]. This maladaptive
polarization of macrophages is intrinsically connected with the hypoxia/HIF sensors and
the UPR [103]. Tumour hypoxia recruits M2-like macrophages via the HIF-1-regulated
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secretion of chemoattractant VEGF and endothelins, leading to their enhanced migra-
tion into the less vascularised regions of the tumour. Hypoxia-induced tumour-secreted
Semaphorin 3A also contributes to M2-like macrophage recruitment to the hypoxic TME by
binding to Neuropilin-1 expressed on macrophages [104]. HIF-2α is also involved in TAM
accumulation in the TME and is stabilized in hypoxic macrophages. TAMs with high levels
of HIF-2α correlate with increased tumour grade, and a high number of HIF-2α-expressing
TAMs is associated with poor prognosis and tumour recurrence [105,106]. Further, in
both murine HCC and colitis-associated cancer models, mice with HIF-2α-deficient TAMs
showed reduced tumour infiltration of TAMs [107]. TAMs resident in the hypoxic areas
of the tumour upregulate their expression of matrix metalloproteinase-7 protein, which
cleaves Fas ligand from neighbouring cells rendering tumours less responsive to lysis
by T-cells and natural killer (NK) cells [74,108]. TAMs express inducible nitric oxide syn-
thase (iNOS) which produces NO and arginase-I, both of which suppress T-cell signal
transduction and T-cell function and deplete the supply of L-arginine important for T-cell
proliferation and survival. The production of iNOS and arginase-I is increased under
hypoxia as their expression is mediated by HIF-1 at the transcriptional level, resulting in
enhanced suppression of the anti-tumour immune response [109,110]. Not surprisingly,
elevated numbers of TAMs are often associated with poor prognosis [104].

3.5. Hypoxia Interferes with and Suppresses Effector T-Cell, DC and NK Cell Function

Effector T-cell activity is disfavoured within the hypoxic tumour regions since HIF-1
acts as a negative regulator of effector T-cell activation and function. For example, hypoxia
has been shown to reduce the expression of T-cell activation markers CD69 and CD40L [111]
and studies have implicated HIF-1 in this process, as gene knockout of HIF-1 in T-cells
is sufficient to restore their proliferative phenotype and secretion of pro-inflammatory
cytokines, e.g., IFN-γ [104,112]. In vitro assays have shown that T-cells cultured under
1–5% oxygen had a significant reduction in T-cell proliferative activity compared to T-
cells cultured in more oxygenated conditions (21% oxygen). T-cells cultured in a lower
oxygen environment also exhibited decreased IL-2 and IFN-γ production [111]. However,
the precise oxygen concentration dependence of these effects is not well defined. The
mechanisms by which HIF-1 suppresses the function of effector T-cells are complex, but
include the upregulation of co-inhibitory receptors (e.g., CTLA-4 and LAG-3) [104,113],
the differentiation of CD4+ T-cells into Tregs and the indirect effect of altered tumour cell
metabolism [85,92]. As discussed earlier, hypoxia/HIF-1 transforms CD4+ T-cells into
Tregs in a TGF-β-dependent manner [85,92]. The recruitment of Tregs into tumour sites
suppresses the effector function of CD8+ T-cells. While a high effector T-cell/Treg ratio
is favourable for the initiation of anti-tumour immune responses, the limited infiltration
of CD4+ and CD8+ T-cells in hypoxic areas of the tumour leads to localised reductions in
effector T-cell/Treg ratios and thus regional immunosuppression [16,67]. HIF-2α can also
suppress T-cell function by upregulating PD-L1 expression on tumour cells. In patients
with clear cell renal carcinoma, the expression of PD-L1 showed positive correlation with
HIF-2α expression [114].

Changes in tumour cell metabolism also affect the function of effector T-cells within
the hypoxic TME. Tumour cells often adapt to a hypoxic microenvironment by switch-
ing from oxidative phosphorylation to glycolysis, through HIF-1-mediated induction of
various glycolytic enzymes to further elevate this process for ATP generation [115]. The
elevated glycolytic activity in solid tumours leads to increased competition for nutrients
between tumour and immune cells, as well as the increased production of glycolytic
metabolites such as lactate, protons and carbonic acid, which promotes acidosis of the
hypoxic TME [116–118]. The accumulation of lactic acid suppresses the proliferation and
cytokine production activities of cytotoxic T-cells as well as inhibiting their cytolytic activ-
ity [119,120]. Further, the acidic TME impairs the secretion of proinflammatory cytokines
by T-cells (e.g., IL-2, TNFs and IFN-γ) and upregulates CTLA-4 expression, rendering
tumour infiltrating T-cells more susceptible to negative regulatory signals [121]. Thus,
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hypoxia-driven tumour acidosis promotes tumour progression and is a barrier to T-cell
function in the TME.

The accumulation of extracellular adenosine is an important mechanism by which
hypoxia can suppress T-cell activity. Dead and dying cells in the TME release ATP, which
can be metabolised by ectonucleotidases CD73 and CD39 on the surface of immune cells.
Critically, both ectonucleotidases are HIF-1 regulated, and their expression and activity
is upregulated in hypoxic tumours, which leads to the increased production of cyclic
adenosine monophosphate (cAMP) and adenosine, thereby enhancing immune suppres-
sion [104,122,123]. ATPs are first recognised and converted into AMPs by CD39, which
are then converted by surface CD73 molecules into adenosines [104]. The cellular uptake
of nucleosides is mediated by the human equilibrative nucleoside transporter 1 (ENT1),
whose expression is reduced under hypoxic conditions, resulting in the accumulation of
extracellular adenosine [124]. Adenosines can then bind to their receptors (A2AR and
A2BR) on the immune cells to promote the production of intracellular cAMP, a factor
that negatively regulates effector T-cell function and proliferation via diverse mechanisms.
For example, cAMP can interfere with T-cell trafficking through the desensitisation of
chemokine receptors and impairing the secretion of pro-inflammatory cytokines [67,125].

Effector T-cell infiltration into the tumour is hindered through the upregulation of
VEGF to promote dysregulated angiogenesis, and via the downregulation of integrins
(αLβ2) on vascular endothelium by upregulating IL-10 production [53,126]. Consequently,
the abnormal, disorganised tumour neovasculature lacks the appropriate proteins for
adhesion, attraction and extravasation of T-cells, leading to dysregulated trafficking of
T-cells into the tumour bed. Furthermore, the enrichment of IL-10, VEGF and prostaglandin
E2 under hypoxic conditions induces Fas-ligand expression on the tumour vasculature to
promote T-cells apoptosis, ultimately leading to reduced T-cell accumulation within the
TME [16]. Hypoxia via HIF-1 also reshapes the extracellular matrix by increasing collagen
deposition and inducing stromal fibrosis, which also impede the accessibility of T-cells [53].

DC functions are also negatively influenced by hypoxia. Here, the expression of
maturation and co-stimulatory molecules on DCs (e.g., CD40, CD80 and CD86) is down-
regulated, which negatively influences the activation of naïve T-cells [127]. The maturation
and function of DCs are further affected by the hypoxia-induced upregulation of VEGF
and IL-10 in the TME. VEGF inhibits the maturation of DCs, while IL-10 prevents the dif-
ferentiation of monocytes into DCs and downregulates CCR7 expression, which alters the
homing of DCs to the lymph nodes. Concurrently, hypoxia can upregulate the expression
of PD-L1 on DCs to suppress T-cell function [16,74,104].

NK cell functions are also affected under hypoxic conditions. NK cells are cytotoxic
lymphocytes belonging to the innate immune system that can directly lyse target tumour
cells via the secretion of perforin and granzymes or via Fas/Fas-ligand-induced apop-
tosis [128]. Hypoxia/HIF can upregulate the expression of metalloproteinase ADAM10,
which is responsible for the shedding of the ligand MHC-I polypeptide-related sequence
A (MICA) from the surface of tumour cells. Surface MICA is a ligand for the activating
receptor natural killer group 2 member D (NKG2D) on NK cells; however, soluble MICA
can downregulate the expression of NKG2D on NK cells, which contributes to tumour
immune evasion [129]. The expression of other activating receptors such as NKp30, NKp44
and NKp46 involved in target-recognition and killing is also down-regulated under hy-
poxic conditions [130]. Acidosis also increases the number of MDSCs in the tumour to
inhibit the cytotoxicity of NK cells and facilitates tumour cell invasion, and is associated
with poor patient prognosis [131,132]. Finally, hypoxia appears to also impair NKT cell
activity through the HIF-2α-induced downregulation of Fas ligand expression and the
upregulation of A2A receptors [133].

Collectively, preclinical data overwhelmingly indicate that tumour hypoxia plays a ma-
jor role in regulating the function of immune cells and promoting an immunosuppressive
tumour microenvironment. Clinical studies also support the association between hypoxia
and immunosuppression. For example, in a cohort of 938 HNSCC patients, tumours
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enriched for hypoxia-responsive genes such as HIF1A, VEGF and carbonic anhydrase IX
(CAIX) genes were strongly associated with the lack of CD8+ T-cell infiltrate and immune
related gene signatures [134]. In a series of breast cancer surgical specimens, HIF-1 activ-
ity predicted the expression of immunosuppressive molecules including VEGF-A, IL-10
and TGF-β, and correlated with Treg infiltration [135]. The expression of HIF-1 was also
positively correlated with Tregs and TGF-β has been observed in gastric cancer patient
samples [136]. Further, the HIF-1-induced upregulation of VEGF has been found to directly
impede T-cell activation in the ascites of ovarian cancer patients [137], leading to immune
tolerance [138]. The upregulation of several gene expression clusters associated with tu-
mour hypoxia was found in biopsy specimens of melanoma patients resistant to anti-PD-1
treatment [139]. It is notable that castration-resistant prostate cancer, colorectal cancer, and
pancreatic cancer, all of which are frequently observed to be hypoxic, are typically resistant
to ICI treatments [16].

4. Therapeutic Approaches That Can Modulate Tumour Hypoxia to Improve
Immunotherapy Response
4.1. Tumour Reoxygenation as a Proof-of-Principle

Theoretically, the most direct strategy to improve T-cell function and alleviate im-
mune suppression is to reverse tumour hypoxia by reoxygenation [15]. Studies have
demonstrated the therapeutic benefit of both direct and indirect tumour reoxygenation. A
preclinical study using syngeneic tumour models of murine melanoma B16 and murine sar-
coma MCA205 showed that respiratory hyperoxia (60% O2) could decrease intratumoural
hypoxia, leading to the enhanced tumour infiltration of effector T-cells, the expression of
proinflammatory cytokines, and reduced Treg suppressive activity [67,90]. Furthermore,
relief from hypoxia in tumour-bearing mice housed under hyperoxia conditions led to
improved tumouricidal characteristics in polymorphonuclear neutrophils, with enhanced
tumour control and significantly reduced tumour burden in an autochthonous mouse
model of uterine cancer [140]. In a study of B16 melanoma and MC38 colon carcinoma
tumour-bearing mice, the inhibition of oxygen consumption by the systemic administration
of metformin led to heightened intratumoural T-cell function and drastically improved the
anti-tumour activity of anti-PD-1 that was otherwise ineffective. B16-bearing mice treated
with the combination of metformin and anti-PD-1 showed complete tumour regressions.
This efficacy was attributed to metformin’s activity at inhibiting mitochondrial complex 1,
resulting in reduced tumour cell oxidative metabolism that alleviated tumour hypoxia [141].
The anti-malarial drug atovaquone reduces oxygen consumption rates in numerous cancer
cell lines by inhibiting oxidative phosphorylation at complex III of the mitochondrial elec-
tron transport chain. Administration directly alleviates hypoxia in preclinical xenograft
models [142], and clinical translation of these findings in NSCLC patients demonstrated
increased tumour oxygenation that was associated with the inhibition of hypoxic gene
expression [143]. These data demonstrate that the elimination of hypoxia is feasible and
has the potential to improve the effectiveness of various immunotherapy strategies.

4.2. Hypoxia-Activated Prodrugs

In principle, relief from hypoxia-induced immunosuppression can also be achieved
using hypoxia-activated prodrugs (HAPs). HAPs are agents designed to be selectively
activated under hypoxic conditions to target and kill hypoxic tumour cells that are tradi-
tionally resistant to conventional therapies. HAPs are administered in an inactive form
and are biologically inert in well oxygenated tissues but are capable of undergoing en-
zymatic reduction under hypoxic conditions to generate biologically active compounds
(Figure 3) [144]. The first step of HAP activation is typically mediated by one-electron
oxidoreductases which convert the inactive HAP to a prodrug radical anion that acts as
a direct oxygen sensor. In normoxic tissues, the prodrug radical intermediate is rapidly
back-oxidised to its original uncharged state by molecular oxygen. This futile redox cycle
ensures that the prodrug remains inactive in adequately oxygenated tissues, whereas under
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oxygen-limiting conditions, the prodrug radical intermediate can either directly fragment
or be spontaneously reduced to form an active metabolite or “effector” compound [144,145].
Consequently, appropriately designed HAPs have an improved therapeutic index com-
pared with conventional therapy as the severe (pathological) hypoxia required for prodrug
activation is not present in normal tissues. One corollary is that HAPs can generally be
administered in comparatively larger doses, with the selective activation in the target
hypoxic cells leading to a greater dose intensity of the released biologically active agents in
the tumour [146].
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Figure 3. General mechanism of activation of a hypoxia-activated prodrug. Hypoxia-activated prodrugs are inactive under
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To date, a limited series of bespoke HAPs have been evaluated in clinical trials,
including porfiromycin, banoxantrone, tirapazamine, evofosfamide, PR-104 and tarloxo-
tinib [145,147,148]. Of these, evofosfamide and tarloxotinib are currently in active clinical
development, while CP-506, an analogue of PR-104, is scheduled to enter safety trials
in 2021.

4.2.1. Evofosfamide

Evofosfamide (TH-302) is a 2-nitroimidazole triggered HAP of a DNA-crosslinking
phosphoramidate mustard, which demonstrated considerable hypoxia-selective cytotoxic-
ity in vitro across a range of human cancer cell lines and in vivo anti-tumour efficacy in
multiple tumour xenograft models [149–151]. The most clinically advanced HAP thus far,
evofosfamide reached Phase 3 trials in combination with gemcitabine for advanced pan-
creatic adenocarcinoma, before narrowly missing its primary endpoint of improvement in
overall survival [152], perhaps due to a lack of appropriate patient selection [153]. The lack
of T-cell infiltration in the hypoxic zones of tumours led to the hypothesis that these zones
may contribute to immunotherapy resistance, and that hypoxia ablation by evofosfamide
could improve the therapeutic efficacy of ICIs [154].

Using a syngeneic murine TRAMP-C2 prostate model, it was demonstrated that the
improved blood vessel density observed following evofosfamide administration correlated
with a reduction in hypoxic fraction and a simultaneous increase in tumour infiltration
of CD3+ T-cells [154]. When subsequently combined with anti-PD-1 and anti-CTLA-4,
proliferation of the MDSCs that are prevalent in hypoxic regions was also significantly
attenuated. Together, this improved T-cell proliferation and the cytotoxic potential of
CD8+ T-cells in the tumour, and allowed evofosfamide, in combination with CTLA-4/PD-1
blockade, to cure most animals bearing TRAMP-C2 tumours (82% overall survival) [154].
Evofosfamide also sensitized spontaneously arising prostate tumours (TRAMP transgenic
mice) to combination ICI therapy via a similar mechanism: increased CD8+ T-cell prolifera-
tion and a significant drop in MDSC proliferation [154]. Synergy between evofosfamide
and ICI has been observed in other tumour models, including HNSCC, where combination
evofosfamide and anti-CTLA-4 significantly improved survival compared to anti-CTLA-4
alone [155]. Overall, these pre-clinical studies demonstrated proof-of-principle for the
combination of HAPs and ICIs, and gave rise to a Phase I clinical trial evaluating the
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safety and tolerability of evofosfamide in combination with ipilimumab in advanced solid
tumours (pancreatic, melanoma, HNSCC and prostate cancer; NCT03098160) [156]. In
immunotherapy-refractory patients (n = 21), the combination therapy produced an overall
response rate of 17% and a disease control rate of 83% across four dose levels. Responding
patients had evidence of peripheral T-cell expansion, with increased T-cell and antigen-
presenting DC infiltration into hypoxic regions of the tumour. In general, responders also
had reduced proliferation of immunosuppressive TAMs [156]. Promisingly, in late 2020,
the biotechnology company ImmunoGenesis announced that a Phase 2 study supported
by these data will investigate evofosfamide in combination with both anti-CTLA-4 and
anti-PD-1 in patients with castration-resistant prostate cancer, pancreatic ductal adenocarci-
noma, and HPV-negative HNSCC [157].

4.2.2. Tarloxotinib

Tarloxotinib is a molecularly targeted HAP developed from the prototype tyrosine
kinase inhibitor prodrug SN29966 [158,159]. Tarloxotinib demonstrates strict oxygen sensi-
tivity, with cellular metabolism completely inhibited by solution oxygen concentrations
above 1 µM (0.1% O2 in gas phase). Under hypoxic conditions, tarloxotinib undergoes con-
trolled fragmentation, leading to the release of a potent, irreversible, pan-human epidermal
growth factor receptor (pan-HER) inhibitor (tarloxotinib-TKI) [160]. The released inhibitor,
tarloxotinib-TKI, can form a covalent bond with the conserved cysteine residue within the
ATP binding pocket of epidermal growth factor receptor (EGFR) (Cys797), HER2 (Cys805),
and HER4 (Cys803) kinases to inhibit their downstream signalling via ERK and AKT, which
ultimately leads to the inhibition of cell proliferation and survival. As tarloxotinib releases
a pan-HER irreversible inhibitor, the expression of HER1-4 in tumour cells is required for
target-specific cytotoxicity. For example, the administration of tarloxotinib in mice bearing
the EGFR-mutant positive NSCLC tumour PC9 is observed to eliminate tumour hypoxia,
as detected by pimonidazole (hypoxyprobe) binding three days later (Figure 4).
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Preclinical studies have shown the superior anti-tumour activity of tarloxotinib com-
pared to various clinical-stage EGFR-TKIs. Notably, tumour regressions were more pro-
found and durable compared to afatinib (irreversible EGFR inhibitor) and cetuximab
(anti-EGFR monoclonal antibody) in murine xenograft models of epidermoid carcinoma
(A431) and HNSCC (FaDu) [161]. Through studies using human cancer cell line derived
xenografts, the remarkable anti-tumour activity of tarloxotinib was also established in
NSCLC and squamous cell carcinoma of the skin, and head and neck with nanomolar
potency against both the wild-type and mutant EGFR [161,162]. These favourable prop-
erties have encouraged the clinical evaluation of tarloxotinib in exon 20 insertion (Exon
20ins) EGFR mutant-positive and HER2-activating mutation NSCLC (NCT03805841) with
evidence of clinical activity and low rates of EGFR-related toxicities [160,163].

Tarloxotinib has been demonstrated to enhance the efficacy of ICI. In vivo studies
showed that treatment with tarloxotinib reduced the hypoxic fractions within syngeneic
murine tumours and delayed tumour growth when combined with ICIs [164]. Investiga-
tion of the immune cell populations in different tissues demonstrated favourable changes
in the percentage and number of different T-cell subsets and suppressor cells, leading
to improvements in tumour CD8+ T-cell/MDSC and CD8+ T-cell/Treg ratios after the
administration of tarloxotinib. Further studies showed increased antigen-release to the
lymph nodes, increased T-cell function in the tumour and changes in cytokine produc-
tion profiles after tarloxotinib administration [164,165]. Overall, tarloxotinib presents a
promising HAP candidate with marked hypoxia-selectivity and anti-tumour activity to
combine with immunotherapies. The use of a molecularly targeted payload (rather than a
genotoxic DNA-damaging species) may avoid undesirable myelosuppressive effects that
theoretically could limit the efficacy of cytotoxic HAP with ICI.

4.2.3. CP-506

CP-506 is a second generation analogue of PR-104 that is resistant to aerobic activation
by aldo-keto reductase 1C3 [166,167]. CP-506 is a nitrogen mustard containing prodrug
that is inactive under normoxic conditions [168]. Its oxygen dependency is attributed
to the presence of the nitro group on the aromatic ring, which acts as a strong electron-
withdrawing group that attracts electron density away from the non-bonding electrons of
the nitrogen mustard, thus suppressing the nitrogen mustard’s ability to cross link with
DNA [169,170]. Inside the hypoxic zones of the tumour, CP-506 can become metabolised
by one-electron oxidoreductases to form a prodrug radical anion, which then undergoes
further reduction to yield the active cytotoxins CP-506H (hydroxylamine) and CP-506M
(amine). These active metabolites form DNA crosslinks by interacting with negatively
charged guanine bases on DNA, leading to replication fork arrest and, ultimately, hypoxic
tumour cell death [169,170]. This cytotoxicity is further amplified in cancer cells with
mutations in genes involved in DNA repair pathways [167,171].

CP-506 demonstrates strict oxygen sensitivity, with cellular metabolism completely
inhibited by solution oxygen concentrations above 1 µM (0.1% O2 in gas phase). Hypoxia-
selective cytotoxicity ratios up to 200-fold were observed in 2D and 3D cell culture models,
and CP-506 inhibits the growth of a variety of tumour xenograft models. The observed
therapeutic effect was selective for hypoxic cells and causally related to tumour oxygenation.
For example, the administration of CP-506 in mice bearing the triple negative breast
cancer tumour model MDA-MB-468 is observed to eliminate tumour hypoxia detected by
pimonidazole and EF5 binding 24 h later (Figure 5).

Recent evidence suggests the potential for synergy with ICI, where tumours treated
with CP-506 and combination immunotherapy of L19-IL2 and anti-PD-L1 delayed the
growth of tumours and prolonged median survival. In these animals, increased intratu-
moural immune cell infiltration was also observed [172].
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DAPI). Image was provided by Dr Maria Abbattista with permission.

4.3. Targeting of the HIF-1 Pathway

Direct inhibition of the HIF-1 pathway provides supporting evidence that removal
of the hypoxia-induced immunosuppressive phenotype in the tumour microenvironment
could improve the immune cell profile in the tumour, potentially boosting immunotherapy
response. Knockdown of HIF-1α in murine hepatocellular carcinomas (Hep3B, HepG2
and SK-Hep-1 cell lines) led to reduced HIF-1-mediated upregulation of CCL28 expression,
which can potentially lead to reduced Treg recruitment and Treg-induced tumour angio-
genesis [93]. Furthermore, a study has shown that the administration of a HIF-1 inhibitor
PX-478 reduced HIF-1-regulated expression of FOXP3 and VEGF. The co-administration
of PX-478 with a DC-based vaccine resulted in the heightened effector function of CD8+

T-cells, increased T-cell proliferation and secretion of pro-inflammatory cytokine IFN-γ,
in addition to reducing the function of Tregs to impede the growth of 4T1 murine breast
cancer [173]. The Phase I evaluation of PX-478 was completed in 2010, but no further
clinical development has been reported.

The novel HIF-2 allosteric inhibitor belzutifan (MK-6482, PT2977) [174] is currently
being evaluated in a Phase 3 trial in advanced renal cell carcinoma (NCT04195750) and VHL-
associated RCC (Phase 2; NCT03401788). A dose-escalation/expansion trial in advanced
solid tumours is now underway (Phase 1/2; NCT02974738). One study is evaluating
belzutifan in combination with cabozantinib (NCT03634540). In addition, the HIF-2 α

inhibitor PT2385 has undergone evaluation in GBM (NCT03216499) [175]. The question of
whether HIF-2 inhibitors can be advantageously combined with immunotherapies remains
to be determined.

Additional evidence for this hypothesis is illustrated by the targeting of the HIF-1-
induced cell surface pH regulatory enzyme, carbonic anhydrase IX (CAIX). CAIX con-
tributes to the acidification of the TME by hydrating carbon dioxide to produce protons,
and its expression is associated with poor prognosis [176]. A study has shown that the
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ureido-sulfonamide CAIX inhibitor SLC-0111 in combination with anti-PD-1 and anti-
CTLA4 increased the effector function of T-cells (granzyme B production), inhibited tumour
growth, and reduced metastasis in the B16.F10 and 4T1 syngeneic tumour models [177].
Moreover, the A2AR antagonist SCH58261 that targets hypoxia-driven adenosine binding
to A2AR also showed promising activity in vivo in a spontaneous HNSCC model. The ad-
ministration of SCH58261 significantly delayed tumour growth by reducing the frequency
of Tregs and enhancing the effector function of CD8+ T-cells (increased IFN-γ) [178].

4.4. Hypoxia Targeted Biologicals

Replicating biological vectors such as viruses or bacteria have been shown to selec-
tively infect, replicate in, and lyse hypoxic tumour tissue, providing an alternative means
to eliminate tumour hypoxia. Infection of the tumour microenvironment can often provide
an immunostimulatory effect, with the potential for anti-tumour immune responses and
synergy with current cancer immunotherapy strategies.

An oncolytic virus preferentially infects and lyses cancer cells, resulting in the spread
of progeny virus particles to adjacent tumour cells where the oncolytic process is re-
peated [179]. Tropism for tumours can occur naturally (e.g., Seneca Valley virus) [180],
or can be engineered through a variety of genetic modifications, including the use of
tumour-specific promoters [181], modifications to viral capsid proteins to redirect virus
binding [182], and dependence on signalling pathways that are constitutively activated in
tumour cells [183]. Oncolytic viruses from a number of DNA and RNA families have been
reported, and a small number have reached Phase III clinical testing, including Reolysin and
OncoVEX GM-CSF [184]. Recent advances in the field of cancer immunotherapy have stim-
ulated renewed interest in oncolytic virotherapy, with 62 clinical trials involving oncolytic
viruses active or currently recruiting on Clinicaltrials.gov (accessed 31 March 2021).

Whilst hypoxia typically inhibits adenoviral replication [185], other types of oncolytic
virus are innately more adapted to tumour hypoxia. The replication of oncolytic herpes
simplex virus (HSV) is enhanced in hypoxic conditions, suggesting a natural tropism for
cells with reduced oxygen tension [186]. In addition, replication of vesicular stomatitis
virus (VSV) appears to be unaffected in hypoxic tumour areas [187]. Alternatively, oncolytic
viruses can be genetically modified to enhance hypoxia selectivity. Hypoxia-responsive
elements such as HIF-1α driven promoters can be incorporated into the viral genome to
regulate the expression of essential genes for viral replication, thereby improving viral
tropism for the hypoxic microenvironment [188]. However, the virus still remains de-
pendent on the host cell translational machinery for protein synthesis, and this can be
suppressed in response to hypoxic stress. Alternative approaches include “arming” viruses
with oxygen-sensitive enzyme-prodrug systems to allow conditional targeted elimination
of hypoxic regions [189,190].

Many genera of bacteria have been shown to specifically and preferentially target solid
tumours and cause tumour cell lysis. Tumour selectivity is usually achieved by utilising
the existing characteristics of the tumour microenvironment, such as necrosis and hypoxia,
with these areas providing a haven for anaerobic and facultative anaerobic bacteria to
germinate [191,192]. A genetically attenuated strain of the facultative anaerobe Salmonella
typhimurium (VNP20009) is thought to target tumours due to its preference for hypoxia in
tumour cores, in contrast to the more oxygenated outer regions [193]. Facultative anaerobes
are able to survive in both oxygenated and hypoxic conditions, suggesting that targeted
colonisation of both large solid tumours and small metastatic deposits is possible.

Clostridium novyi-NT spores germinate in necrotic regions of tumours and have re-
sulted in objective responses in induced tumours in mouse models and naturally devel-
oping neoplasia in companion dogs. When injected intratumourally, C. novyi-NT resulted
in increased phagocytosis and NK cell-like function after treatment, while intravenous
injection increased LPS-induced TNF-α production, lipoteichoic acid (LTA)-induced IL-
10 production and NK cell-like function post-treatment [194]. C. novyi-NT is currently
undergoing Phase I evaluation with pembrolizumab (NCT03435952).

Clinicaltrials.gov
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5. Concluding Remarks

Immune checkpoint inhibitors are undoubtedly a promising treatment for cancer, but
their efficacy is often impeded by complex sets of tumour-intrinsic and -extrinsic resistance
factors which constrain their broader therapeutic potential. The concept that tumour
hypoxia within the TME is one of the major drivers for immunosuppression is becoming
well established. Several studies have modulated tumour hypoxia and hypoxia-driven
pathways to improve immunotherapy responsiveness with promising results. The hypoxia-
targeted therapeutic strategies discussed in this review provide additional therapeutic
opportunities to combine with clinical stage ICIs to increase the number of responders
amongst cancer patients and improve patient outcome. More preclinical studies are needed
to ensure that novel therapies that overcome hypoxia-mediated immunosuppression do
so without detrimental effects on the immune system. For example, the strict oxygen-
dependence of HAP activation (termed the k-curve) is an important feature given the
presence of mild physiological hypoxia in various lymphoid organs [111,195,196]. The
sequence and timing of the combinations will also need to be optimised. A prognostic
molecular classifier based on both hypoxia status and immune response genes has been
developed and validated in HNSCC [197], which may be useful to guide future clinical
trial design and patient selection for therapeutic approaches incorporating both hypoxia
targeting strategies and immunotherapy treatment modalities for clinical translation to
improve patient prognosis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells10051006/s1, Table S1: Examples of checkpoint inhibitors approved by the FDA for
clinical use as a monotherapy.
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