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Abstract

Chromosome instability adversely affects animal fertility and reproduction. Analysis of insta-

bility can be a valuable diagnostic tool. Helpful tests for assessment of instabilities include

the sister chromatid exchange assay, identification of fragile sites, the bleomycin assay and

the comet assay. These techniques can be used to assess and compare the chromosome

stability of individual breeds of animals. The aim of the study was to assess chromosome

stability in boars: Duroc, Duroc x Pietrain and Pietrain x Duroc crossbreds, Polish Large

White, and the Neckar, P76 and PIC lines. The study assessed the chromosome stability of

boars. The distribution of instabilities in individual breeds was varied. The average fre-

quency of chromatid exchange was 4.8 ± 1.5, while that of fragile sites was 3.9 ± 1.4. The

mean level of DNA damage (% tail DNA) was 9.4 ± 8.3, while in the bleomycin assay b/c and

%AM were 0.6 ± 0.7 and 44.4 ± 4.1. A higher rate of instability was found in older individuals

than in younger ones. The cytogenetic assays used to identify various forms of chromosome

instability can be used to evaluate boars intended for breeding.

Introduction

Chromosome instability negatively affects animal fertility and reproduction. It can result in

reduced ability or complete inability to form normal gametes, while in the case of successful

fertilization it can lead to the death of embryos or the birth of animals with genetic defects [1–

3]. Its negative impact on reproductive performance may cause economic losses in livestock

farming [4]. Therefore, analysis of chromosome instabilities in farm animals can be a valuable

diagnostic tool enabling early culling from the breeding stock [2,5]. Cytogenetic tests identify-

ing various forms of chromosome instability can be used to evaluate boars intended for breed-

ing. In cross-breeding of pigs, a very important element of breeding work is the paternal

component, which should be distinguished by a good growth rate and high meat content, to

provide pigs with the best possible performance. Tests used to identify instabilities include the

sister chromatid exchange assay (SCE), identification of fragile sites (FS), the bleomycin assay

(BLM), and the comet assay, also known as the single cell gel electrophoresis assay (SCGE).

Sister chromatid exchanges are the result of errors arising during the replication process

due to replication fork arrest in response to single- and double-stranded DNA breaks [6]. Due

to the very short distance between sister chromatids resulting from cohesion, identical
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fragments of DNA strands in the chromosome are exchanged. The occurrence of SCEs is also

linked to malfunctioning damage repair pathways [6,7]. Fragile sites in chromosomes are

regions that are very sensitive to types of damage such as breaks, gaps or constrictions [8,9].

Damage occurs in multiple nucleotide repeats or in AT-rich sequences arranged in the form of

islands. They negatively affect replication dynamics and reduce the effectiveness of connec-

tions between nucleosomes, leading to decondensation of genetic material [10]. FSs are the

result of impaired mechanisms repairing disturbances in the progress of replication forks dur-

ing replication and transcription [11–13]. Another type of instability is chromatid breaks,

which are detected by the bleomycin assay. Bleomycin, a clastogenic compound, is added to an

in vitro lymphocyte culture [14]. This cytostatic agent is tasked with slicing through double-

stranded DNA in cancer cells, leading to their death. Increased generation of chromatid breaks

may indicate the presence of mutated cells in the body. The bleomycin assay is a biomarker of

the degree of sensitivity to mutagens and the risk of cancer. It enables genetic characterization

in terms of chromosomal instability by means of quantitative assessment not only of single

individuals but of entire groups of individuals. The comet assay is another test with high infor-

mative potential. It can be used to examine single cell nuclei immobilized in agarose, applied

to microscope slides, and then subjected to electrophoresis. It identifies chemical or enzymatic

DNA modifications that transform into DNA breaks, as well as the kinetics of repair of this

type of DNA damage. Using all these methods it is possible to assess and compare the chromo-

some stability of individual animal breeds [15,16].

The aim of the study was to assess chromosome stability in boars: Duroc, Duroc x Pietrain

and Pietrain x Duroc crossbreds, Polish Large White, and the Neckar, P76 and PIC lines.

Material and methods

The study was carried out in strict compliance with the recommendations in Directive 63/

2010/EU and the Journal of Laws of the Republic of Poland of 2015 on the protection of ani-

mals used for scientific or educational purposes. The study was approved by the Polish Local

Ethics Committee, Warsaw, Poland (Number: 51/2015) and by the Polish Laboratory Animal

Science Association (Numbers 3235/2015; 4466/2017).

The research material from breeding boars was obtained from a sow insemination station.

Peripheral blood of boars of the Duroc breed (D), Duroc x Pietrain (DxP) and Pietrain x

Duroc (PxD) crossbreds, the Polish Large White breed (PLW), and the Neckar (N), and PIC

lines was used in the study from a total of 70 individuals. Two groups: Sub-one year (group 1)

and post-one year (group 2). All boars were healthy and used for artificial insemination.

Cell culture

Mitotic chromosomes were cultured in vitro for 72 hours at 38.5˚C. Peripheral blood lympho-

cytes were added to Lymphogrow medium (CytoGen). At 69 h of the culture colchicine was

added (25 μg/ ml). At 24 h BrdU (5-bromodeoxyuridine) was added to the cultures intended

for SCE assays (10 μg/ ml); at 65 h BrdU was added to the cultures intended for the FS test

(50 μg/ ml); and at 67 h bleomycin was added to the cultures intended for the bleomycin assay

(30 milliunits/ ml). As a hypotonic solution we used 0.65% KCl (potassium chloride). The cells

were fixed with Carnoy fixative (3:1 methanol-acetic acid).

Sister chromatid exchange assay

The FPG technique [17] was used to detect sister chromatid exchanges in the following steps:

digestion with 0.01% RNase for 1 h, incubation in a solution of 0.5×SSC (0.75 M sodium chlo-

ride with 0.075 sodium citrate; pH7.0) with Hoechst 33258 solution (stock solution: 0.5 mg
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Hoechst/ 1 ml ethanol) for1 h, UV irradiation twice for 30 min (UV Dose—8.64 mJ/cm2

x2 = 17.28 mJ/cm2, UV lamp 15W Philips), overnight incubation at 4˚C, incubation for 2 h at

58˚C, and 4% Giemsa staining for 1 h. Stained sister chromatid exchanges were counted in 20

metaphases from each individual.

Fragile sites assay

Microscope slides were stained according to Perry and Wolff [18] in the following steps: incu-

bation in Hoechst 33258 solution (1 mg Hoechst/ 100 ml 2×SSC) for 1 h, UV irradiation for 1

h (UV Dose—17.28 mJ/cm2), incubation in 2xSSC for 1 h, and 4% Giemsa staining for 1 h.

Twenty metaphases were examined from each individual. Chromatid breaks, chromatid gaps

and chromosome breaks were identified.

Bleomycin assay

Microscope slides with mitotic chromosomes were prepared from an in vitro culture of lym-

phocytes with the addition of bleomycin, and then stained with 4% Giemsa stain for 1 h. Fifty

metaphases from each individual were examined. Chromatid breaks were identified by calcu-

lating the number of breaks per cell (b/c) and the percentage of damaged metaphases (%AM).

The assessment was based on the criterion proposed by Hsu et al. [19]: b/c> 1 and b/c = 1.0 –

increased latent chromosomal instability, b/c = 0.8–1.0 –chromosomal instability, b/c< 0.8 –

chromosomal stability; and by Tzancheva and Komitowski [20]: b/c> 1 and AM% > 45 –

increased latent chromosomal instability.

Comet assay

The SCGE assay (single cell gel electrophoresis) was performed on microscope slides [21].

Lymphocytes were isolated with Histopaque-1077. Slides coated with a layer of 0.5% NMP

(normal melting point) agarose gel were spotted with lymphocytes mixed with 0.5% LMP (low

melting point) agarose gel and then embedded in LMP agarose. Samples prepared in this man-

ner were subjected to alkaline lysis (2.5 M NaCl, 100 mM Na2EDTA, 0.4 M Tris-HCl, 1%

sodium N-lauroyl sarcosinate, 10% Triton X-100, 1% DMSO, pH = 10) to release DNA from

the cell and remove proteins for 1 h at 4˚C. Then freshly prepared and chilled electrophoresis

buffer (10 N NaOH, 200 mM EDTA) was poured on the slides, which were then subjected to

relaxation for 20 min, followed by electrophoresis (25 V, 300 mA, 20 min, without access to

light), neutralization with Tris-HCl, and staining with ethidium bromide. DNA integrity was

determined on the basis of the percentage content of DNA in the head (Head DNA [%]) and

tail (Tail DNA [%]) of the comet. Fifty cells were analysed for each animal.

An OLYMPUS BX50 microscope was used for microscopic analysis. MultiScan image anal-

ysis software from Computer Scanning Systems was used to analyse chromosome damage

identified in the form of sister chromatid exchanges and fragile sites. CASP 1.2.2 software was

used to analyse degraded DNA of boar lymphocytes identified by the comet assay. Changes

observed in cells were classified according to Gedik’s scale: N–no DNA damage or less than

5% damage in the comet tail; L–low level of damage (5%-25%); M–intermediate damage

(25%-40%); H–high level of damage (40%-95%) and T–over 95% DNA damage [22].

Statistical analysis

The results were subjected to statistical analysis using STATISTICA 12.5 MR1 PL software.

The results were presented as means and standard deviation in breed and age groups. The

influence of breed and age on the incidence of chromosomal instabilities identified by the
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SCE, FS, BLM, and SCGE assays was determined by two-way analysis of variance using the fol-

lowing model:

yijl ¼ mþ ai þ bj þ abij þ eijl

where:–value of characteristic (mean number of instabilities identified by the SCE, FS, BLM,

and SCGE assays); m–mean for population; ai−effect of ith level of factor A (breed); bj−effect of

jth level of factor B (age); abij−effect of interaction between factors A and B; eijl−sampling

error.

The Tukey test (P < 0.05) was used to assess the significance of differences between means

for a given type of instability within factors (breed and age).

Results

Cytogenetic assays were used to evaluate chromosome stability in the lymphocytes of boars:

Duroc, Duroc x Pietrain and Pietrain x Duroc, Polish Large White, Neckar, P76 and PIC (Fig 1).

The mean frequency of SCEs per cell in the individuals was 4.8 ± 1.5. The most SCEs were

observed in Duroc boars and the fewest in P76 (Fig 2A). The mean frequency of FS/cell in

boars was 3.9 ± 1.4. The highest rate of this type of damage was noted in PxD and PIC boars,

and the lowest in P76 (Fig 2B). In the bleomycin assay, the mean b/c value was 0.6 ± 0.7 in the

boar breeds and the %AM was 44.4 ± 4.1. The highest incidence of this type of damage was

found in the PIC line and the lowest in the DxP crossbreds (Fig 2C and 2D). The assessment of

the degree of DNA fragmentation in lymphocytes by the comet assay involved calculation of

the percentage of DNA content in the comet tail, which averaged 9.4 ± 8.3in the boars ana-

lysed. The most damage was observed in the PIC line and the least in PLW (Fig 2E). When the

scale proposed by Gedik et al. [22] was used to assess instability in the comet test, the N level of

damage was found in 24% of the boars, L in 72% and H in 4%. Detailed analysis of the breeds

revealed the least fragmented DNA in P76 and PLW, and the most in PIC (Fig 2F). Statistically

significant differences were found between some breeds in the case of each assay (Fig 2A–2E).

To sum up the assessment of instability, P76 boars were determined to have the most stable

genome among the breeds analysed, as they had the lowest level of damage to genetic material

in the cytogenetic analyses.

Analysis of the incidence of damage to genetic material in young and old boars showed a

higher rate of damage in older boars than young ones in the tests: SCEs/cell: 5.3 ± 1.4,

4.2 ± 1.3; FS/cell: 4.3 ± 1.4, 3.5 ± 1.2; SCGE: Tail DNA% 14.1 ± 9.6, 4.8 ± 1.3; BLM: %AM

47.2 ± 4.3, 41.6 ± 4.5. This was observed in groups 1 and 2 for each breed (Fig 2A, 2B, 2D and

2E). The differences were statistically significant. Age was found to significantly affect the level

of damage observed. The second parameter (b/c) used in the BLM test proved insufficiently

sensitive for assessment of the effect of age on the incidence of instabilities (0.6 ± 0.7,

0.5 ± 0.6). The differences observed between the two age groups were statistically non-signifi-

cant (Fig 2C). No interactions between the factors (breed and age) were shown. The highest

incidence of damage in the second age group was found in PIC boars using the comet assay.

The high level of fragmented DNA may be indicative of the high sensitivity of this test, which

detects a variety of forms of DNA damage generated in cells. The damage identified in the

form of a comet tail is the result of inefficient repair systems. Furthermore, most of these boars

were more than 24 months old, which confirms that the comet assay is a very good biomarker

for assessing the effect of age on genome stability.

PLOS ONE Assessment of chromosome stability in boars

PLOS ONE | https://doi.org/10.1371/journal.pone.0231928 April 30, 2020 4 / 11

https://doi.org/10.1371/journal.pone.0231928


Discussion

DNA integrity in the gametes of breeders is an indicator of their fertility. Many animals used

for insemination may have an incidental problem with fertilization despite the fact that their

semen has been tested with regard to morphology. Cytogenetic techniques can be useful in

assessing animals in terms of chromatin stability in their cells. Such testing would enable more

rigorous selection and elimination of animals with reduced chromosome stability from use for

breeding, due to its negative effect on reproduction.

Cytogenetic assays are used to analyse genome integrity in many livestock species [15,23–

28]. There has been little interest in research on the identification of SCEs and FS in pigs. Most

studies have concerned the genotoxic effect of environmental conditions on the stability of the

pig genome or assessment of spontaneous chromosome damage in pigs. There are no reports

regarding the effect of instability on the breeding and performance value of these animals.

Fig 1. A metaphase plate of boar chromosomes with identified a) SCE assay, b) FS assay, c) BLM assay, d) SCGE assay. Damage marked with arrows.

https://doi.org/10.1371/journal.pone.0231928.g001
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Research conducted by Wójcik et al. [29], Peretti et al. [30] and Albarella et al. [31] on various

livestock species confirms that these tests are useful for identifying instability in various animal

diseases. These chromosome instabilities result from errors in the replication process and the

malfunction of mechanisms repairing these errors, as well as from malfunctioning checkpoints

designed to detect damage. SCEs have been identified in pigs of the breeds Casertana, Cala-

brian, and Large White; Calabrian x Large White crossbreds; and Nero Siciliano [32–34]. FS

have been investigated in Landrace, Calabrian and Large White pigs as well as Calabrian x

Large White crossbreds [33,35,36]. The frequency of SCEs/cell was reported to be 6.3 [32] and

7.1 [34] in the Casertana breed, 7.3 in Calabrian, 4.5 in Large White, 6.2 in Calabrian x Large

White crossbreds [33] and 6.9 in Nero Siciliano [34]. The frequency of FS/cell in Landrace pigs

Fig 2. Number of instabilities identified in each breed of boar depending on age: a) SCE, b) FS, c) BLM b/c, d) BLM %AM, e) SCGE, f) DNA damage

according to Gedik’s scale. (A) abcde mean values with different superscript letters are statistically different (P< 0.05) between breeds. (B)ab mean values

with different superscript letters are statistically different (P< 0.05) between age groups 1 and 2.

https://doi.org/10.1371/journal.pone.0231928.g002
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ranged from 1.5 [35] to 2.9 [36], while in Calabrian it was 6.2, in Large White 4.9, and in Cala-

brian x Large White crossbreds 4.5 [33]. Our research found 4.8 SCEs/cell and 3.9 FS. The fre-

quency of SCEs in PLW boars in our study was 4.0. Ciotola et al. [33] reported similar results

(4.5). The crossbreds and hybrids analysed in our study have not been tested for genome insta-

bility by other researchers. Fewer studies on livestock animals have used the SCGE assay. The

comet assay is a test with high potential. It detects various forms of DNA damage, their mecha-

nisms of generating genotoxic agents and mechanisms of erroneous DNA repair. The univer-

sality of this test has been exploited by Wójcik et al. [15] to assess genomic stability in sheep.

The authors analysed four different breeds of sheep, observing differences in the number of

instabilities in cells. Despite high species conservatism, scientists using SCE, FS and SCGE

assays have observed discrepancies in the frequency of the damage. This is due in part to the

variety of breeds analysed within the species, as this factor has a significant impact on the inci-

dence of instabilities [15,16,32,37]. This influence was observed in our work as well. Differ-

ences in the frequency of damage generated by bleomycin were also found between breeds in

the fourth assay used. The BLM technique, like the assays described above, is a tool for detect-

ing latent chromosomal instability caused by mutagenic factors. It can be used as a biomarker

of exposure to clastogenic factors. Bleomycin intercalates into DNA, causing single- and dou-

ble-strand breaks, thereby arresting cell division and DNA synthesis. Its properties have been

exploited to treat some cancers [38–40]. Luna et al. [41] used the BLM assay to identify chro-

mosomal damage in fertile and sub-fertile female cows. According to the authors, these insta-

bilities contribute to reduced fertility, and the results suggest that this assay is useful in

assessments of fertility in animals. The level of damage in sub-fertile cows was higher than in

cows with no fertility problems (0.22 and 0.08, respectively). According to the authors, repro-

ductive problems may result from early embryo mortality or genetically unbalanced spermato-

zoa. Danielak-Czech and Słota [36] and Danielak-Czech et al. [42] also link increased

chromosomal instability to problems with fertility and reproductive capacity in livestock.

Wnuk et al. [43] used the BLM assay to assess chromosomal stability in horses in relation to

their age. They observed an increase in the frequency of damage in older individuals compared

to young horses. Age is the factor that affects the level of damage generated; the older the ani-

mal, the more damage we observe [15,32,44,45]. This dependency was also noted in the pres-

ent study for each assay used. According to Schoket [46] and Srám et al. [47], this

phenomenon may be explained by the longer exposure of genetic material to the negative

effects of mutagens in older individuals. An interesting relationship was observed in our study

in the case of PIC and D boars. In these animals, the level of instability identified using the

comet assay was significantly higher in group 2 individuals than in other boars of this group.

This indicates the high sensitivity of the comet assay and its potential for use as a biomarker to

assess the impact of age on genome stability. Czubaszek et al. [48] examined chromatin stabil-

ity in boar sperm and also found a higher level of DNA damage (0.61%) in older boars used at

sow insemination stations than in young animals. Hypo- and hypermethylation also increase

the amount of damage. The level of DNA methylation increases with age, which promotes the

generation of instabilities. The comet assay has been used as an extremely sensitive cytogenetic

biomarker, detecting various forms of DNA damage in people with cancer or diseases resulting

from impaired DNA repair mechanisms [22,49,50]. It has also been used to assess the geno-

toxic effects of various environmental factors [51,52,53]. Fraser and Strzeżek [54] used this test

to assess semen quality in boars. In most studies, researchers have used one parameter to assess

the frequency of bleomycin-induced chromatid breaks. In our research, we used two different

characteristics of chromosome damage, calculating %AM and b/c. Like Tzancheva and Komi-

towski [20], we found that these two parameters provided a more accurate characterization of

the animals. Where b/c values for individual breeds and ages were similar, the %AM was
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varied. The BLM assay is a useful test that not only monitors chromatid damage resulting from

high sensitivity to mutagenic factors, but is also a biomarker of the capacity for DNA repair in

the genome. The assay is suitable for monitoring genomic instabilities arising due to endoge-

nous and environmental factors, such as inadequately balanced feed lacking minerals and vita-

mins involved in DNA repair, which increases sensitivity to mutagens.

Conclusion

Instabilities have a destructive effect on the functioning of cellular mechanisms. These latent

defects in the genome accelerate ageing, reduce the fertilization rate and fecundity, and can be

passed on to offspring. Cytogenetic techniques detect damage occurring in the cell cycle,

including at some sites in mitotic chromosomes, such as nucleosomes. Even when sperm con-

centration, morphology and motility are adequate, additional cytogenetic tests of somatic cells

would be useful, because chromatin structure changes during sperm formation. Histones are

replaced with protamines, but some sperm may contain histone residues due to impaired

sperm chromatin protamination. Such spermatozoa are characterized by reduced chromatin

stability. Our assessment of chromatin stability in boar lymphocytes showed that additional

characterization of the genome integrity of individual boar breeds is clearly justified. Identifi-

cation of instabilities in somatic cells, apart from use for evaluation of spermatozoa at sow

insemination stations, would additionally enable assessment of the reproductive performance

of animals. This is of particular importance for the breeder, in terms of breeding results and

economic outcomes. Instabilities can contribute to abnormalities in the karyotype of the gam-

ete and subsequently the embryo, which may result in abortion or the birth of animals with

genetic defects. In our study, the level of instability in the boars was low compared to other ani-

mal species, which indicates a highly stable genome in pigs and resistance to genotoxic and

mutagenic factors. With age, the level of damage to genetic material increases. Therefore,

young animals with a low level of chromosome instability and sperm with very good morpho-

logical parameters should be used for breeding.
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29. Wójcik E, Andraszek K, Ciszewska M, Smalec E. Sister chromatid exchange as an index of chromo-

some instability in chondrodystrophic chickens (Gallus domesticus). Poult Sci. 2013; 92: 84–89. https://

doi.org/10.3382/ps.2012-02564 PMID: 23243233

30. Peretti V, Ciotola F, Albarella S, Restucci B, Meomartino L, Ferretti L, et al. Increased SCE levels in

Mediterranean Italian buffaloes affected by limb malformation (transversal hemimelia). Cytogenet

Genome Res. 2008; 120: 183–187. https://doi.org/10.1159/000118761 PMID: 18467846

31. Albarella S, Ciotola F, Dario C, Iannuzzi L, Barbieri V, Peretti V. Chromosome instability in Mediterra-

nean Italian buffaloes affected by limb malformation (transversal hemimelia). Mutagenesis 2009; 24:

471–474. https://doi.org/10.1093/mutage/gep030 PMID: 19640928

32. Peretti V, Ciotola F, Dario C, Albarella S, Di Meo GP, Perucatti A. et al. Sister chromatid exchange

(SCE) for the first time in Casertana pig breed. Hereditas 2006; 143: 113–116. https://doi.org/10.1111/j.

2006.0018-0661.01937.x PMID: 17362343

33. Ciotola F, Albarella S, Scopino G, Carpino S, Monaco F, Peretti V. Cross breeding effect on genome

stability in pig (Sus scrofa scrofa). Folia Biol (Krakow) 2014; 62: 23–28. https://doi.org/10.3409/fb62_1.

23

34. Genualdo V, Perucatti A, Marletta D, Castiglioni B, Bordonaro S, Iannaccone M. et al. Cytogenetic

investigation in two endangered pig breeds raised in Southern-Italy: Clinical and environmental aspects.

Livest Sci. 2018; 216: 36–43. https://doi.org/10.1016/j.livsci.2018.07.005

35. Rønne M. Localization of fragile sites in the karyotype of Sus scrofa domestica: present status. Heredi-

tas1995; 122:153–162.https://doi.org/10.1111/j.1601-5223.1995.00153.x PMID: 7558883

36. Danielak-Czech B, Słota E. Mutagen-induced chromosome instability in farm animals. J Anim Feed Sci.

2004; 13: 257–267. https://doi.org/10.22358/jafs/67410/2004

37. Iannuzzi L, Di Meo GP, Perucatti A, Ferrara L, Gustavsson I. Sister chromatid exchange in chromo-

somes of cattle from three different breeds reared under similar conditions. Hereditas 1991; 114: 201–

205. https://doi.org/10.1111/j.1601-5223.1991.tb00325.x PMID: 1960099
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