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prostate cancer progression.11–13 Several other reports have also revealed 
the effects of beta-adrenergic signaling in prostate cancer.14,15 In this 
minireview, we aim to provide a summary in the role of beta-adrenergic 
signaling pathway and related factors in prostate cancer progression, 
especially the effects on NED and angiogenesis.

PROSTATE CANCER PROGRESSION
The prostate is a multilobular exocrine gland, which together with 
the other major male accessory glands, the seminal vesicles, produces 
most of the seminal fluid volume.16 Normal development and function 
of the prostate are dependent on androgens such as testosterone, 
dehydroepiandrosterone, and dihydrotestosterone.1,17 Prostate tissue 
contains three epithelial cell types, including basal, luminal, and 
neuroendocrine cells.

A clear understanding of the detailed mechanisms of prostate cancer 
progression remains the goal of active research. Proliferation and survival 
of healthy prostate and early PAC are critically dependent on androgen 
stimulation.18 The activated phosphoinositide 3-kinase  (PI3K)-Akt 
signal pathway is required to sustain PAC against apoptosis.19 Moreover, 
several tumor-suppressing genes are depressed, lost, or mutated in early 
PAC, such as phosphatase and tensin homolog (PTEN).20 Early PAC can 
be diagnosed by serum prostate-specific antigen (PSA) measurement, 
nuclear magnetic resonance  (NMR), biopsy, and investigation of 
combinations of multiple tumor markers by tissue staining. Treatment 
for patients with PAC includes surgical removal of prostate, radiation, 
chemotherapy, and androgen deprivation therapy (ADT).21

Nearly all patients gain symptomatic relief and respond to 
hormonal therapy. However, blocking androgen synthesis or inhibiting 

INTRODUCTION
Prostate adenocarcinoma  (PAC) is the most prevalently diagnosed 
malignancy in men in the western world. Progression to 
castration-resistant prostate cancer (CRPC) is the major therapeutic 
challenge.1 Androgen signal is required for regeneration, function, 
and development of normal prostate and prostatic adenocarcinoma.2 
Targeting androgen synthesis or blocking androgen receptor (AR) is a 
widely accepted hormonal treatment that is initially effective. However, 
most tumors acquire resistance to hormonal therapies and subsequently 
develop CRPC.3 An aggressive subset of CRPC, neuroendocrine 
prostate cancer (NEPC), expresses low or absent prostate-specific AR 
signaling, and elevated levels of stem cell and neuroendocrine markers.4 
It is still unclear whether the AR-negative prostatic cancer cells arise 
directly from AR-positive adenocarcinomas or from native AR-low 
neuroendocrine cells. However, the majority of evidence in the literature 
supports the hypothesis that NEPC cells evolve from preexisting PAC 
cells through neuroendocrine differentiation (NED).1,5–7

Beta-adrenergic signaling has been implicated in regulating 
apoptosis, angiogenesis, NED, migration, and metastasis of prostate 
cancer cells. Epidemiologic reports have shown that repressing 
beta-adrenergic receptors  (ADRBs) by specific beta-adrenergic 
antagonists (beta-blockers) is associated with reduced prostate cancer 
mortality.8,9 The dominant pathway downstream of ADRBs is the 
cyclic adenosine monophosphate-protein kinase A-cAMP response 
element-binding protein  (cAMP-PKA-CREB) cascade.10 However, 
downstream targets of CREB activation in NED and in neoangiogenesis 
are largely unknown. Recently, we elucidated new mechanisms of 
angiogenesis and NED-mediated by beta-adrenergic signaling in 
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AR function can rarely eradicate all PAC cells, some of which become 
resistant to ADT after months to years of treatment with a CRPC 
phenotype. As cancer progresses, different castration resistant 
mechanisms emerge, including restored or elevated AR signaling; other 
nuclear receptors, such as glucocorticoid receptor, bypassing AR; and 
complete AR independence.1,22 In restored or elevated AR signaling, 
high-affinity AR pathway antagonists, including enzalutamide and 
abiraterone, retain a transient ability to repress CRPC.23

In about 25% of patients with late-stage prostate cancer, a significant 
proportion of the cancer cells display small cell carcinoma  (SCC) 
phenotype. Cells with this phenotype express neuroendocrine or 
stem cell markers such as synaptophysin and chromogranin A.24,25 
Tumors with this phenotype are called NEPC or CRPC-NE.26 Due to 
high rates of metastasis and resistance to most therapies, the NEPC 
subset is invariably fatal, with most patients dying within 1–3 years 
of diagnosis.27 The incidence of this aggressive variant of CRPC with 
neuroendocrine phenotype was previously underestimated.28 To 
develop a therapeutic solution for CRPC/NEPC, a better understanding 
of the molecular events underlying NEPC progression is urgently 
needed.

OVERVIEW OF BETA-ADRENERGIC SIGNALING PATHWAYS 
IN PROSTATE CANCER
Beta-adrenergic signaling can mediate acute and chronic stress 
responses induced by the sympathetic nervous system (SNS).10 The SNS 
regulates multiple cellular processes contributing to tumorigenesis and 
the tumor microenvironment via ADRB-mediated activation of PKA 
and exchange protein activated by adenylyl cyclase (EPAC).29–31 As cell 
surface sensors of the SNS, ADRBs in tumors and their surrounding 
stromal cells could be activated by stress hormones, catecholamines 
including norepinephrine  (from sympathetic nerve fibers) and 
epinephrine (from circulating blood).32 It has been recently reported 
that SNS is essential for both normal prostate development and prostate 
tumor formation in murine models.15,33

In the human prostate, ADRB2 is enriched in prostatic luminal cells, 
while ADRB2 and ADRB3 are expressed in prostatic stromal cells.34,35 
Interestingly, heterogeneous ADRB2 expression levels were found 
during prostate cancer development. High and low levels of ADRB2 
protein were observed in metastatic prostatic cancer cells. Meanwhile, 
decreased ADRB2 mRNA levels were detected after androgen 
deprivation therapy.30,36,37 A study by Yu et al.36,38 found that ADRB2 
transcription is repressed by enhancer of zeste homolog 2 (EZH2) and 
ERG, both upregulated in prostate tumorigenesis. In addition, ADRB2 
is also a direct target of AR.39

As shown in Figure 1, once triggered by catecholamines, activated 
ADRBs raise the level of intracellular cAMP with Gs alpha guanine 
nucleotide binding protein.40 Then, ADRBs regulate several cell 
processes, mainly through the cAMP mediators PKA and EPAC.31,41 
Growing evidence suggests that the influence of the SNS on prostate 
and prostatic cancer is predominantly mediated by PKA.10,14 Activated 
PKA is capable of further activating tumor-related factors, such as 
cAMP responsive element binding protein  (CREB), and inhibits 
antiproliferative factors including Ras homolog gene family, member 
A  (RhoA) and Rho-associated coiled-coil-containing protein 
kinase  (ROCK).42 Recently, the cAMP/PKA pathway was shown to 
phosphorylate and inhibit the BCL-2-associated death promoter (BAD), 
inducing PAC resistance to apoptosis.43 The PI3K-AKT is another 
downstream pathway of PKA. PI3K-AKT can upregulate vascular 
endothelial growth factor (VEGF) in a hypoxia-inducible factor-1-alpha 
(HIF-1 alpha)-dependent manner, promoting angiogenesis.44 As 

described below, histone deacetylase 2 (HDAC2) and G-protein receptor 
kinase 3  (GRK3) can also be induced by CREB, which promotes 
NED and angiogenesis.11–13 EPAC and PKA may act independently, 
converge synergistically, or oppose each other in regulating a specific 
cellular function.31 EPAC signaling accounts for many cAMP-induced 
effects on cell morphology, motility, and secretion dynamics. However, 
treatment with an EPAC-specific analog did not induce any obvious 
phenotypes on LNCaP.45 On the other hand, continuous presence of 
catecholamines may lead to desensitization of receptor ADRBs through 
arrestin-mediated receptor protein internalization and receptor mRNA 
downregulation.46 Importantly, these cAMP/PKA signaling cascades 
can also be activated by radiation and hormonal therapy, which are 
known to induce NED.47,48

BETA-ADRENERGIC REGULATION OF PROSTATE 
NEUROENDOCRINE DIFFERENTIATION
In the normal prostate, mature neuroendocrine cells are devoid of 
proliferative activity and interspersed among the epithelial basal and 
luminal cells. They maintain homeostasis of the surrounding epithelial 
cell populations by secreting neuropeptides and cell growth factors.49 
During prostate cancer development, neuroendocrine cells continue 
producing cell-proliferation related factors to affect the surrounding 
PAC cells.50

De novo neuroendocrine prostate tumors are rarely diagnosed.51 
Without treatment-induced transdifferentiation, rare AR-absent 

Figure 1: Beta-adrenergic signaling pathway in prostatic cancer. When 
beta-adrenergic receptors on prostate cancer cells are activated by epinephrine 
or norepinephrine, cellular cAMP level is increased. cAMP level in prostate 
cancer cells is also elevated by cancer treatments, such as radiation and 
hormonal therapies. cAMP activates PKA and EPAC. PKA can either directly 
stimulate or act through PAK4 to increase CREB activity. Activated PKA/CREB 
axis contributes to several biological processes relevant for cancer progression, 
such as (1) promoting angiogenesis through induction of VEGF, and repression 
of TSP1 and PAI2 through inducing HDAC2 and GRK3; (2) promoting NED, 
at least in part through direct induction of ENO2 as well as GRK3 that in 
turn elevates neuroendocrine markers in prostate cancer cells; (3) inhibiting 
apoptosis through CREB-induction of BCL2, and PKA-mediated phosphorylation 
of BAD (inhibiting) and AKT (activating); (4) together with EPAC, regulating 
cytoskeletal rearrangement and cellular migration through regulating ROCK 
activity via RhoA and PAK4. cAMP: cyclic adenosine monophosphate; PKA: 
protein kinase A; CREB: cAMP response element-binding; VEGF: vascular 
endothelial growth factor; NED: neuroendocrine differentiation; TSP1: 
thrombospondin 1; PAI2: plasminogen activator inhibitor-2; HDAC2: histone 
deacetylase 2; GRK3: G-protein receptor kinase 3; BCL-2: B-cell lymphoma-2; 
BAD: BCL-2-associated death promoter.
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neuroendocrine prostate cells are found to mix with PAC cells 
de novo.24,25,52 On ADT, the cAMP/PKA pathway is activated.42 There are 
also significant increases in the numbers and the sizes of cell clusters that 
are positive for neuroendocrine markers, which are called NEPC cells.

Unlike normal NE cells in the benign prostate, NEPC cells are 
proliferative, metastatic, and express prostate epithelial-specific 
markers.52,53 Comparisons of the molecular profiles of CRPC with and 
without NE phenotypes reveal similar genetic alteration profiles in 
these two subtypes.26 Loss or mutation of retinoblastoma (RB), PTEN, 
and tumor protein P53, as well as amplification or activation of N-MYC 
and aurora kinase A  (AURKA), occur predominantly in NEPC.54 
Moreover, prostate cancer-specific TMPRSS2‑ERG (transmembrane 
protease serine 2 and ETS related gene fusion) gene fusion is detectable 
in nearly half of NEPC cases. A  similar percentage is observed for 
PAC. This result supports the hypothesis that NEPC cells are derived 
from PAC cells.55

As a tumor suppressor, P53 mutations inactivate the Interleukin 
8-CXC chemokine receptor 2-P53 (IL-8-CXCR2-P53) cascade, which 
may lead to NEPC development.56 RB loss-mediated RB-E2F1-MAD2 
pathway inactivation may enhance apoptosis resistance of NEPC 
cells.57 The N-MYC and AURKA regulate the entry in mitosis, 
thereby affecting the PAC cell cycle in NED.58 Overexpressed N-MYC 
cooperates with EZH2 in NEPC,59 while EZH2 has been reported 
to affect AR, PI3K-AKT pathway, EMT, and NED.60–62 Growing 
evidence reveals many other functional genes are dysregulated in 
NED, including macrophage migration inhibitory factor (MIF), serine/
threonine-protein kinase 1  (PLK1), focal adhesion kinase  (FAK), 
SIAHE3 ubiquitin protein ligase 2 (Siah2), zinc finger protein Snail, 
forkhead box protein A2  (FoxA2), yes-associated protein 1  (YAP), 
and proto-oncogene tyrosine-protein kinase Src.14,54,56 Several triggers 
have been shown to promote NED in both AR-dependent and 
AR-independent cells in vitro. Among these triggers are cAMP/PKA 
signal activator, forskolin, IL-6, epidermal growth factor (EGF), and AR 
antagonists. However, removal of these factors could lead to reversion 
of cells to an epithelial carcinoma cell phenotype.42,63

Notably, cAMP alone can induce NED in several common prostate 
cancer lines including LNCaP, PC-3, and PC-3M.14 Overexpressing 
activated PKA can also drive NED of LNCaP cells. Conversely, 
inhibiting PKA-induced CREB phosphorylation at serine 133 will 
inhibit NED.64,65 As a result, the ADRB2-cAMP-PKA cascade is 
recognized as the key pathway in NED. However, only chronic 
PKA stimulation over prolonged periods of time may induce NED. 
Short-term induction with low-level PKA may activate AR and increase 
PAC cell proliferation in vitro.42,66,67 Neurite outgrowth is evidenced in 
cAMP-induced NED of LNCaP cells. As a target of the cAMP-PKA 
pathway, RhoA inactivation is reported to induce neurite outgrowth 
through ROCK-mediated cytoskeletal rearrangement.14,68

CREB phosphorylation is induced by PKA, PKB, P21-activated 
kinase 4 (PAK4, which is also directly induced by PKA), p90 ribosomal 
S6 kinase (P90RSK), and mitogen-activated protein kinase (MAPK).69 
CREB promotes the expression of Cyclin A1, Cyclin D1, VEGF, type IV 
collagenase matrix metalloproteinase-2  (MMP-2), cell adhesion 
molecule MUC18/MCAM, BCL2, and enolase 2  (ENO2).69,70 Its 
activation plays a critical role in NED of prostate cancer cells. However, 
the downstream pathways and targets of CREB in NEPC cells are still 
largely unclear. Through unbiased shRNA and cDNA screens, we 
previously discovered that beta-adrenergic receptor kinase 2 (ADRBK2 
or GRK3) promotes PAC progression. Furthermore, overexpressing 
GRK3 induces NE markers in PAC LNCaP cells, while silencing GRK3, 
represses NED, and proliferation of NEPC cells.12

In the investigation of GRK3 regulation in prostate cancer 
progression, we found GRK3 expression is higher in NEPC than in 
PAC. Furthermore, GRK3 expression positively correlates with CREB 
expression and activation in human prostate cancer.13 We further 
demonstrated that GRK3 is a direct target of CREB and is induced 
by PKA-CREB signaling activation. This represents a paradigm shift 
in the understanding of CREB-GRK3 signaling. GRK3 induction 
by CREB activation was previously observed in retinoblastoma and 
neuroblastoma cells. In this context, GRK3 induction by CREB 
inactivation was considered to be negative feedback regulation for 
GRK3 to desensitize ADRBs. This was considered as a mechanism 
to control CREB signaling upon activation of ADRBs.70 We showed 
that silencing GRK3 inhibits the NED induction by CREB activation. 
This result suggests that GRK3 is a critical mediator downstream 
of cAMP-PKA-CREB in inducing neuroendocrine phenotypes of 
PAC cells.13 We further found that GRK3 expression is positively 
correlated with CREB expression in 1000 human cancer cell lines 
(CCLE dataset).71 Therefore, it can be speculated that the CREB/GRK3 
axis may be active in wide range of cancer cells and biological contexts.

BETA-ADRENERGIC SIGNALING IN PROSTATIC CANCER 
ANGIOGENESIS
In normal physiological conditions in adults, angiogenesis is turned 
on only transiently. However, for tumors to grow beyond 1–2 mm in 
diameter, an increase of blood supply and recruitment of new blood 
vessels should occur to provide oxygen and nutrients as well as to 
remove metabolite waste.72 There are several proteins known to induce 
and promote angiogenesis, including VEGF, IL-6, fibroblast growth 
factor-2 (FGF-2), transforming growth factor-beta (TGF-beta), and 
MMPs. On the other hand, thrombospondin 1 (TSP1), plasminogen 
activator inhibitor-2  (PAI2), and endostatin are shown to repress 
angiogenesis.73,74

In the human normal prostate, neuroendocrine cells are the 
primary source of VEGF. Elevated neuroendocrine marker expression 
has been linked to increased angiogenesis in prostate cancer.75,76 
Furthermore, many cytokines involved in NED, such as IL-6, are 
recognized to regulate angiogenesis. This result indicates the existence 
of an interplay between NED signaling and angiogenesis. The induction 
of VEGF and IL-6 by chronic stress is associated with increased 
angiogenesis in ovarian carcinoma.77 Enhanced angiogenesis is another 
mechanism through which beta-adrenergic signaling promotes cancer 
progression. Epinephrine and norepinephrine-induced ADRB2 
activation lead to VEGF induction in prostate cancer cell lines through 
the cAMP-PKA-PI3K-AKT-HIF-1 alpha pathway.14,44 Conversely, 
inhibition of ADRB2 by a beta blocker lead to a reduction of rat 
prostate blood vessel volume.78 Recently, Zahalka et al.15 found that 
the endothelial ADRB2 related pathway is critical for activation of an 
angiogenic switch between low-grade preneoplastic stage (low-PIN) 
and high-PIN. Loss of ADRB represses PAC angiogenesis by altering 
oxidative phosphorylation induced by cytochrome c oxidase assembly 
factor 6 (COA6).

Angiogenesis is a complicated process that depends on achieving 
a balance between activators and inhibitors of angiogenesis. The 
ADRB2/PKA/CREB pathway has been shown to induce pro-angiogenic 
factor VEGF. The anti-angiogenic proteins repressed by beta-adrenergic 
signaling had not been identified. Results from the study have 
recently shown two pathways, CREB-HDAC2 and CREB-GRK3, 
regulating angiogenesis at the downstream of cAMP-PKA-CREB 
cascade (Figure 1). GRK3 is a direct target of CREB.13 GRK3, in turn, 
represses two antiangiogenic factors TSP1 and PAI2, which accelerates 
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angiogenesis of PAC.12 We also found angiogenesis was induced by 
chronic stress through CREB-mediated induction of HDAC2, which 
in turn epigenetically inhibits TSP1 in different prostate cancer 
models (PC-3 and LNCaP).11 This result is in contrast with work by 
Hassan et al.,43 which showed no increase of angiogenesis after stress 
induction in mouse xenograft of C4-2 cell line. The apparent conflict 
may be explained by the fact that the C4-2 cell line is already highly 
vascularized.

TSP1 signaling, through receptors CD36 or CD47, inhibits the 
PKA/CREB pathway, inducing platelet activation, inhibiting T cell 
activation, and mediates killing of breast cancer cells.79 With our finding 
that CREB represses TSP1 expression, an antagonism can be postulated 
between PKA/CREB and TSP1 signaling in certain biological processes. 
We confirmed that HDAC2 expression is induced by CREB as a direct 
target. Further, the HDAC2 expression is necessary for prostatic cancer 
angiogenesis induced by beta-adrenergic signaling.11 In the current 
paradigm, activated CREB recruits CREB binding protein (CBP), a 
histone acetyltransferase (HAT), to activate transcription of its target 
genes.80 Increased HDAC activity presumably counteracts CBP and 
decreases CREB-dependent transcription. Thus, it is counterintuitive 
that CREB elevates HDAC2 expression. The study results support a 
new model that HDAC2 is a critical mediator for CREB in enhancing 
angiogenesis and TSP1 repression.

ADRB2 SIGNALING PATHWAY ON PROSTATE CANCER 
METASTASIS
Metastasis is a process with multiple sequential steps. In this process, 
the cancer cell has to overcome restrictions from its primary tumor site, 
degrade extracellular matrix, and invade and settle in distant tissues. 
During metastasis, beta-adrenergic signaling participates in prostate 
cancer cell invasion and survival.14,81

Norepinephrine drives PC-3 metastasis both in vivo and in vitro. It 
is inhibited by ADRB1 blocker atenolol and ADRB2 blocker ICI118551, 
indicating that ADRBs are essential for norepinephrine’s impact on PAC 
metastasis.37,82 In a study by Magnon et al.,33 sympathetic nerve ablation 
inhibited PC-3 metastasis in mice. They also observed a significant 
reduction of tumor volume in the primary site and metastasis of 
PC-3 xenografts in an ADRB2/ADRB3 double knockout mouse model. 
The data mentioned above suggest ADRB signaling is a key pathway for 
PAC metastasis. However, as mentioned in the section of prostate cancer 
progression, expression of ADRB2 in metastatic prostatic cancer cells is 
heterogeneous. Yu et al.36 found ADRB2 is downregulated in metastatic 
prostate cancer, especially in the aggressive subtype, compared to 
clinically localized tumors. ADRB2 knock-down promoted EMT of 
an immortalized prostatic epithelial cell line  (RWPE-1), increasing 
mesenchymal cell markers vimentin and N-cadherin, and decreasing 
adhesion molecules beta-catenin and integrin-beta 4. These data suggest 
that low expression of ADRB2 is associated with the mesenchymal-like 
phenotype. During colonization, disseminated mesenchymal tumor 
cells may have the potential to differentiate into epithelial cells with 
upregulation of ADRB expression at the metastatic site.

An adrenergic effect has also been described for the survival of 
PAC cells. Epinephrine protects C4-2  cells from apoptosis in mice 
and may promote PAC progression.83 Surgical stress delays prostate 
cancer apoptosis, which could be prevented by blocking ADRB2 
with ICI118551 in mice.43,84 Several pathways are downstream of 
the ADRB2-cAMP-PKA pathway that mediate the stress-induced 
resistance to apoptosis. Phosphorylation of BAD induced by PKA 
renders BAD unable to bind BCL2, thereby repressing the apoptosis. 
As noted in the section of beta-adrenergic regulation of prostate 

neuroendocrine differentiation, PAK4 is also able to regulate BCL2 
through activating CREB.70 Moreover, PKA has been reported to 
directly phosphorylate actin monomers,85 suggesting that PKA may 
regulate actin remodeling in PAC metastasis.

CLINICAL STUDIES WITH BETA-ADRENERGIC EFFECTS IN 
PROSTATE CANCER
While most beta-blockers could interfere ADRB1/2, ADRB2 is 
highly expressed in prostatic luminal cells and required for PAC 
progression,34,35 As we know, beta-blockers have been safely used 
as cardiovascular therapeutics.86 Since beta-adrenergic signaling 
modulates PAC progression via multiple pathways, ADRB antagonists 
may be effective therapeutics targeting PAC cells and their surrounding 
microenvironment in cancer patients.

Several epidemiologic reports have investigated the association of 
usage of beta-blockers with prostate cancer–specific survival rate and 
found that repressing ADRBs by beta-blockers may reduce prostate 
cancer mortality,8,9 Furthermore, usage of beta-blockers has been linked 
to a better prognosis in several other solid cancer types, such as breast, 
lung, pancreas, colon, stomach, and ovarian cancer.87–90 There is still no 
direct evidence showing anti-PAC effects of beta-blockers in clinical 
oncology.10,91 However, several clinical trials are directly investigating 
the anti-tumor effects of beta-blockers in prostate cancer (ClinicalTrial.
gov identifiers: NCT01857817, NCT02944201, and NCT03152786).

Enhancing and repressing effects of beta-adrenergic activation on 
PAC development and progression have both been demonstrated.36,46,64,92 
As discussed by Braadland et al.,14 cells expressing low levels of ADRB2 
may represent a de-differentiated group with EMT phenotype and 
enhanced migration and invasion ability. On the other hand, cells 
expressing high levels of ADRB2 may represent differentiated group 
with anti-apoptosis, angiogenesis, and NED phenotypes. These 
paradoxical results may limit the use of beta-blockers for cancer 
treatments. Therefore, further research is needed to elucidate the 
dynamic effects of beta-blockers on cancer progression in mouse 
models and in patients.

PROSPECT AND FUTURE DIRECTION
Much remains to be elucidated regarding chronic stress, beta-adrenergic 
signaling, and PAC progression. The effects of low and high levels of 
ADRBs during PAC development remain controversial. Since NEPC 
tumor shares many genetic alterations with adenocarcinoma,26 it is 
believed that treatment-related NEPC cells are derived from PAC cells. 
This conclusion is also supported by lineage tracing using genetically 
engineered mouse models.7 Further in-depth investigations are 
required to determine whether ADRB signaling is a key contributor 
in NEPC progression after androgen deprivation.

In addition to PKA, EPAC is an important downstream mediator 
of ADRB-cAMP. It has been reported that EPAC induces TSP1 in 
endothelial cells, and using EPAC specific cAMP analog is able to 
regulate RhoA and AKT activity in prostatic epithelial cells.93–95 The 
synergy between EPAC-ras-related protein 1 (Rap1) and PKA-CREB 
in prostate cancer progression warrants further study.

We discovered that GRK3 promotes PAC progression.12 Detailed 
regulatory mechanisms of GRK3 induction of NED are a subject of 
active research. As GRK3 belongs to the GPCR kinase subfamily, 
suggesting that GRK3 may function through critical GPCR pathways. 
On the other hand, other GRKs are known to interact with or 
phosphorylate several non-GPCR targets.96,97 The role of GRK3 in 
NEPC progression can be better understood by further investigating 
these and other possible mechanisms.
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Specific inhibitors targeting downstream key factors of 
beta-adrenergic pathway regulating proliferation, metastasis, 
angiogenesis, and NED may be suitable for PAC therapies. A few kinase 
inhibitors have been effectively and safely employed in current cancer 
therapeutics.98 As mentioned above, we have presented two candidate 
drug targets (GRK3 and HDAC2) downstream of ADRB-PKA-CREB. 
Unlike wild-type  GRK3, the kinase dead mutant of GRK3 can no 
longer depress TSP1 and PAI2. This mutant also fails to induce NE 
marker expression in prostate cancer cells.12,13 These data suggest 
that specific GRK3 kinase inhibitors may be candidates for treating 
aggressive prostate cancer. HDAC inhibitors have been reported to 
repress angiogenesis and induce TSP1.99 We have revealed that HDAC2 
is a major mediator involved in stress-induced angiogenesis. This result 
suggests specific inhibitors for HDACs, especially HDAC2 inhibitors, 
may be effective as adjuvant therapies to treat aggressive PAC and NEPC.

Angiogenesis and neurogenesis are closely linked. Proangiogenic 
factors VEGF and several neurosecretory peptides are known to 
promote angiogenesis in NEPC, which are highly vascularized.78,100 
However, molecular mechanisms underlying the connection between 
NED and angiogenesis are largely unknown. In particular, much 
remains to be understood about the endogenous angiogenic inhibitors 
that are involved in angiogenesis regulation in NEPC. 

Much research has focused on the effects of stress and 
beta-adrenergic signaling on the tumor cells. Notably, ADRBs on 
tumor and their stromal cells can be activated by adrenaline and 
noradrenaline from nerve fibers and blood. Recently, important work 
by Zahalka et al.15 showed that endothelial beta-adrenergic receptor 
signaling via adrenergic nerve-derived noradrenaline in the prostate 
stroma is critical for activation of an angiogenic switch, which thereby 
regulates PAC progression. Thus, more comprehensive analysis of the 
microenvironment surrounding prostate tumors is in urgent need to 
expand our understanding of NEPC progression and facilitate the 
development of new therapeutics and prognostic markers for aggressive 
prostate cancer.
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