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The advent and rapid development of single-cell technologies have made it possible to study cellular heterogeneity at an

unprecedented resolution and scale. Cellular heterogeneity underlies phenotypic differences among individuals, and study-

ing cellular heterogeneity is an important step toward our understanding of the disease molecular mechanism. Single-cell

technologies offer opportunities to characterize cellular heterogeneity from different angles, but how to link cellular het-

erogeneity with disease phenotypes requires careful computational analysis. In this article, we will review the current appli-

cations of single-cell methods in human disease studies and describe what we have learned so far from existing studies about

human genetic variation. As single-cell technologies are becoming widely applicable in human disease studies, population-

level studies have become a reality. We will describe how we should go about pursuing and designing these studies, partic-

ularly how to select study subjects, how to determine the number of cells to sequence per subject, and the needed sequenc-

ing depth per cell. We also discuss computational strategies for the analysis of single-cell data and describe how single-cell

data can be integrated with bulk tissue data and data generated from genome-wide association studies. Finally, we point out

open problems and future research directions.

Human physiology is shaped by trillions of cells. Although all cells
contain nearly identical genomes, cells are programmed via the
complex rules of genomic regulation, which requires the consider-
ation of many variables, such as chromatin conformation, DNA
methylation, histone modifications, etc., to take on unique cell
states. These cell states, such as those associated with our common
notions of cell types, enable cells to perform specific functions.
Through the interaction of cells within local structures defined
by tissues and across different local structures in organ systems,
cells generate higher level functions of human physiology, for ex-
ample, serumglucose regulation via cells of the pancreas, liver, and
skeletal muscle.

Human diseases are often marked by abnormalities in high-
level functions of human physiology that are caused by abnormal-
ities in subpopulations of cells. One fundamental goal of human
disease research is to identify the appropriate perturbations, for ex-
ample, taking a drug or eating a certain diet, that will produce mo-
lecular changes in the subpopulation of cells to fix aberrant
behavior; in doing so, such perturbations should produce down-
stream changes in higher-level physiology that will achieve im-
provement in health status. Moreover, precision medicine aims
to achieve this goal by considering the influence of genetics
(Ashley 2016). Achieving the ability to predict the effect of pertur-
bations in humans to improve healthwill require an unmasking of
the complex regulation of the cell and improved understanding of
how cell interactions shape human physiology.

The advent of high-throughput single-cell genomics technol-
ogies has brought the scientific community one step closer toward
meeting this fundamental goal (Linnarsson and Teichmann
2016). As single-cell RNA-sequencing (scRNA-seq) has been adopt-
ed earliest by the scientific community, its use has now become
widespread and the technology has improved rapidly. At present,
it is now common for laboratories to assay genome-wide transcrip-
tomes of thousands of cells in a single scRNA-seq experiment
(Aldridge and Teichmann 2020). Recent years have brought on
continued development of single-cell technologies. The cost of
single-cell experiments continues to cheapen. Technologies that
enable the measurement of new information about single cells—
for example, chromatin accessibility (Cusanovich et al. 2015;
Lake et al. 2018; Preissl et al. 2018), protein quantification
(Oikonomou et al. 2020; Brunner et al. 2021; Specht et al. 2021),
spatial location (Moffitt et al. 2018; Eng et al. 2019; Takei et al.
2021), and RNA velocity (Qiu et al. 2020)—have been developed.
Further, it has now become possible to profile multiple molecular
modalities simultaneously within the same cell (Macaulay et al.
2017; Stoeckius et al. 2017; Cao et al. 2018; Chen et al. 2019;
Zhu et al. 2019; Fiskin et al. 2020; Ma et al. 2020; Swanson et al.
2021; Xiong et al. 2021).

In this article, we first review the current state of single-cell
studies in common disease and then discuss factors that need to
be considered when designing a large-scale population-based sin-
gle-cell study. We then describe computational strategies for the
analysis of population-scale single-cell data. We conclude by sum-
marizing lessons learned so far from existing single-cell studies of
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human disease and point out open questions and new opportuni-
ties for future research.

Applications of single-cell genomics to characterize

cell state abnormalities in human disease

Although recent years have seen the development of single-cell
technologies to survey new molecular modalities such as proteins
and chromatin accessibility, scRNA-seq has been mostly widely
used to study human disease because of its maturity. Since the first
transcriptome-wide profiling of mRNA by high-throughput se-
quencing in a single cell was reported in 2009 (Tang et al. 2009),
scRNA-seq has increasingly gained popularity owing to its ability
to survey cell state diversity in an unbiased fashion. In the past
few years, we have witnessed rapid development of scRNA-seq
technologyboth in throughput and indetection sensitivity (Svens-
son et al. 2018). In particular, sample multiplexing and droplet-
based approaches allow several thousands of cells to be assayed
simultaneously. These technological advances and the increased
adoption of scRNA-seq approaches have begun to shift the applica-
tion of this method from descriptive analyses of cell heterogeneity
closer toward the understanding of disease mechanisms.

scRNA-seq has been used in several contexts to characterize
cell state differences between diseased and nondiseased individu-
als in cross-sectional designs. Type 2 diabetes (T2D) is among the
disease fields that has adopted scRNA-seq since the earliest stages
of scRNA-seq technology. In 2016 alone, there were six published
studies that used scRNA-seq to profile the transcriptomes of pan-
creatic islets in healthy and T2Ddonors. Although the initial study
only had less than 100 cells (Li et al. 2016), later studies have in-
creased the number of cells as well as the number of donors
(Baron et al. 2016; Segerstolpe et al. 2016; Wang et al. 2016; Xin
et al. 2016; Lawlor et al. 2017). Most notable among these studies,
Segerstolpe et al. (2016) profiled more than 2200 cells in six
healthy and four T2D donors, the largest single-cell study in T2D
at that time. Using the Smart-seq2 protocol, they generated tran-
scriptional profiles of individual pancreatic endocrine and exo-
crine cells of healthy and T2D donors and simultaneously
defined the transcriptional signatures of both abundant and rare
cell types in the pancreas, including delta, gamma, epsilon, stel-
late, immune, and endothelial cells. Further analyses revealed
cell type–specific gene expression and novel subpopulations, as
well as gene correlations to body mass index and gene expression
alterations in diabetes. After assigning cells to cell types, they ob-
served that cell types grouped according to donor, yet they were
able to identify subpopulations and cellular states after correcting
for donor differences. Their computational analyses showed the
power of cell type–resolved analyses and revealed cell type–specific
gene expression programs, subpopulations, and transcriptional al-
terations in T2D. scRNA-seq has shown broad use and impact in
other disease areas as well, such as Alzheimer’s disease (AD). By an-
alyzing single-nucleus RNA-seq (snRNA-seq) data from the pre-
frontal cortex of 48 individuals with varying degrees of AD
pathology, Mathys et al. (2019) identified transcriptionally dis-
tinct subpopulations, as well as cell type–specific disease-associat-
ed gene expression changes from80,660 cells. Notably, they found
that female cells were overrepresented in disease-associated sub-
populations and that transcriptional responses were substantially
different between sexes in several cell types. The relatively large
number of subjects enabled the investigation of sex effects on
AD for the first time.

Single-cell genomics has also impacted many aspects of can-
cer research. Cancer cell populations are subject to high mutation
rates and show high epigenetic plasticity, making tumor cell pop-
ulations heterogeneous and especially sensitive to selective pres-
sures. Understanding the landscape of genetic and epigenetic
heterogeneity, as well as characterizing downstream effects on ex-
pression and cell state, will be crucial to better understand tumor
initiation and progression. Single-cell genomics has shown utility
for understanding both aspects of cancer. To characterize genetic
heterogeneity, Navin et al. (2011) conducted the first single-cell
DNA-seq (scDNA-seq) study in cancer. With the analysis of hun-
dreds of single cells collected from two breast cancer patients,
they identified a genetically diverse subpopulation of cells that
do not travel to themetastatic site and revealed a punctuatedmod-
el of clonal expansion. Since then, many other studies have used
scDNA-seq to investigate cancer clonal evolution and have consis-
tently corroborated the genetic plasticity of cancer (Wang et al.
2014; Garvin et al. 2015; Bakker et al. 2016; Kim et al. 2018; Laks
et al. 2019; Andor et al. 2020; Velazquez-Villarreal et al. 2020).
More recently, novel computational methods have enabled the
study of copy number alterations in an allele- and haplotype-spe-
cific manner. For example, Zaccaria and Raphael (2021) developed
CHISEL, a method for allele-specific copy number analysis relying
on external phasing, and applied it to a detailed lineage recon-
struction of a breast cancer; Wu et al. (2021a) developed
Alleloscope, and through the analysis of multiple types of cancer,
they found pervasive haplotype-specific copy number changes
seeding minor subclones throughout the course of cancer
evolution. Furthermore, Alleloscope allows the detection of haplo-
type-differentiated subclones in single-cell ATAC-seq (scATAC-seq)
data to examine the interplay of genetic and epigenetic evolution.
It is the first time that scATAC-seq has been used to study cancer
clonal evolution in an allele- and haplotype-specific manner,
which enables the dissection of the contributions of chromosomal
instability and chromatin remodeling to tumor evolution.

Single-cell approaches have also been applied to better under-
stand tumor initiation and progression through the lens of
transcription. Multiple studies have used scRNA-seq to identify tu-
mor progenitor cells and to study their transition toward malig-
nant cell states. For example, Kim et al. (2020) collected 208,506
cells of cancerous and noncancerous lung tissue and used these
data to map the trajectory of normal epithelial cells toward malig-
nant cell states in lung adenocarcinoma. Couturier et al. (2020)
collected 53,586 adult glioblastoma and 22,637 normal fetal brain
cells to map the developmental lineages of glioblastoma cells,
which identified glial progenitor–like cells within the tumor that
are highly proliferative. Crucially, such analyses can enable the
identification of candidate molecular signaling pathways and reg-
ulators underlying the transition toward malignant cell states,
whichmay form the basis for therapeutic development. For exam-
ple, Couturier et al. (2020) identified E2F4 pathway activation in
glial progenitor–like cells and showed that inhibition of this path-
waymore effectively targets these cells than does traditional temo-
zolomide chemotherapy used in glioblastoma.

Beyond characterizing intrinsic cell state changes toward ma-
lignant phenotypes in cancer, single-cell approaches have also
been used to help better understand nonintrinsic immune factors
associated with the malignant tumor microenvironment. In lung
adenocarcinoma, Kim et al. (2020) identified exhausted CD8+

T cells and identified macrophages and dendritic cells that express
markers associated with immunosuppression, which may both
play a crucial role in tumor progression. In kidney carcinoma,
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Zhang et al. (2021) used scRNA-seq data from normal and tumor
tissue to identify tumor epithelial expression associated with
aberrantmyeloid recruitment, and they further used cell–cell com-
munication analyses to characterize mediators of myeloid
recruitment.

Single-cell genomics can also be deployed as a powerful diag-
nostic or prognostic tool in human disease. Particularly, in cancer,
tumor heterogeneity may underlie differential survival and re-
sponse to therapy. This suggests measurements of the tumor cell
state distribution from single-cell genomics assays may offer novel
insights needed to better diagnose, prognose, and treat cancer.
Indeed, Zhang et al. (2021) identified associations between the
presence of macrophage subtypes and patient survival in renal
cell carcinoma, and they further suggested the fraction of endothe-
lial cells has prognostic value in therapy response. Through inte-
grative analysis of scRNA-seq data at transcriptomic, genotypic,
molecular, and phenotypic levels, Wang et al. (2021) identified
two subtypes of peritoneal carcinomatosis that were prognosti-
cally independent of clinical variables, and they further construct-
ed a 12-gene prognostic signature that was predictive of cancer
survival and validated the signature in large-scale gastric adenocar-
cinoma cohorts.

Existing efforts to study the population-level germline

genetic determinants of cell state abnormalities

in human disease

As scRNA-seq has become cheaper and more widespread, more
groups have shown interest in understanding the role that germ-
line genetic variation plays as a determinant of gene expression.
The pioneering work by Wills et al. (2013) illustrated how single-
cell analyses can provide mechanistic insights of genetic variants
on gene expression variation. Through innovative analysis of 92
genes in the Wnt signaling pathway in 1440 cells from 15 indi-
viduals, the investigators showed, for the first time, that many
parameters of gene expression, such as expression mean, burst
size, burst frequency, and coexpression between cells, are geneti-
cally heritable and are masked when examining whole-tissue ex-
pression across cells. Later studies by Jiang et al. (2017) and
Larsson et al. (2019) further provided evidence of genetically de-
termined bursting kinetics. In particular, through genome-wide
analysis of allele-specific bursting kinetics in mouse blastocyst
cells and human fibroblast cells, Jiang et al. (2017) showed that
a noticeable fraction of genes shows cis-dependent burst frequen-
cy. Larsson et al. (2019) further showed that burst frequency is
primarily encoded in enhancers, whereas burst size is encoded
in core promoters. These studies show the power of allelic
scRNA-seq for investigating the genetic impact on transcriptional
kinetics. One of the main approaches to identify causal factors in
human disease is GWAS, and eQTL analysis has been pivotal for
the functional interpretation of disease-associated loci. However,
as shown by Jiang et al. (2017) , traditional eQTL analysis with
bulk RNA-seq misses many associations that are bursting related.
Thus, scRNA-seq can be used to identify a more complete set of
genetic variants influencing expression and, specifically, can
identify GWAS variants with functional effects on bursting
parameters.

scRNA-seq has also been used in contexts to study single-cell
expression effects of known genetic risk variants. For example,
GWAS has identified more than 30 AD genetic risk loci, many of
which appear to be related to innate immunity and microglial

function, includingAPOE and TREM2 variants, which are associat-
ed with high genetic risks for sporadic AD (Guerreiro et al. 2013;
Jonsson et al. 2013; Lambert et al. 2013; Efthymiou and Goate
2017; Neu et al. 2017; Kunkle et al. 2019; Bellenguez et al. 2021;
Schwartzentruber et al. 2021). The TREM2 R47H variant is as-
sociated with an approximately threefold increased risk for AD,
whereas the APOE E4 variant is associated with an approximately
three- to fourfold increased risk with one copy and an approxi-
mately 10- to 12-fold increased risk with two copies. How genetic
risk factors, likeAPOE andTREM2, intersect with cellular responses
to AD pathology in human tissues is not understood. Using
snRNA-seq of 131,239 nuclei obtained from 15 postmortem hu-
man brains with varied APOE and TREM2 genotypes and neuropa-
thology, Nguyen et al. (2020a) identified distinct microglia
subpopulations, including a subpopulation of CD163-positive am-
yloid-responsivemicroglia that are depleted in AD caseswithAPOE
and TREM2 risk variants. These results were validated in an ex-
panded cohort of AD cases, showing that APOE and TREM2 risk
variants are associated with a significant reduction in CD163-pos-
tive amyloid-responsive microglia. This study showcased how
genetic information, when integrated with single-cell transcrip-
tomics, can advance our understanding of how genetic risk factors
influence cellular responses to underlying pathologies.

Other studies have taken genome-wide approaches to identi-
fy the genetic determinants of disease-associated expression via
single-cell eQTL studies. Sarkar et al. (2019) generated scRNA-seq
data from induced pluripotent stem cells derived from 53 Yoruba
individuals and investigated how genetic variants control gene ex-
pression variations both at themean and the variance levels. Their
analyses suggest that although the variance of gene expression is
genetically controlled, the corresponding QTLs explain less phe-
notypic variance than eQTLs that control the mean expression.
Although Wills et al. (2013) examined the relationship between
coexpression and genetic variants, their study was limited by the
small number of individuals and genes. Recently, van der Wijst
et al. (2020) performed a similar study, but with 45 individuals
and approximately 25,000 peripheral blood mononuclear cells.
Through the construction of personalized coexpression networks,
they identified genetic variants that significantly impact the coex-
pression of genes, implying that gene regulatory networks (GRNs)
may vary across individuals. Because hundreds of genetic variants
located in a few key regulatory pathways can contribute to com-
plex diseases (Westra et al. 2013; Fagny et al. 2017), constructing
personalized cell type–specific GRNs is a crucial step toward the
understanding of genetic contributions to complex diseases. The
recently formed Single-Cell eQTLGen Consortium will conduct
GRN-based QTL analysis to examine genetic differences that
change the architecture of the networks. Findings from such an
analysis will enhance our basic understanding about the genetic
contributions in gene expression and its regulation.

Efforts to detail the contribution of germline genetics to cell
dynamics have also beenmade. Cuomo et al. (2020) studied the ge-
netic determinants of iPS endoderm differentiation efficiency
from36,044 cells collected from125 patient samples.More recent-
ly, in one of the largest scRNA-seq studies of humans to date, Jerber
et al. (2021) studied the genetic determinants of iPS dopaminergic
neuron differentiation fromover 1million cells collected from215
human samples. Expanded efforts to study the genetic influence
over other dynamic processes, such as differentiation, cell cycle,
and circadian cycle, will greatly enhance our understanding of
the context in which genetic variants exert their influence in
disease.
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Study design considerations for population-based

single-cell studies

Although current studies have shown the power of single-cell
technologies, these studies have been limited by the number of
subjects. Nguyen et al. (2020a) were able to study the impact of
APOE and TREM2 with a limited number of subjects owing to
the use of a genetic risk variant–enriched study design. Their suc-
cess in identifying risk variant–dependent microglia subpopula-
tions underscored the importance of study design. As the field
is now moving into large-scale population-based single-cell
studies, it becomes even more important to consider study de-
sign–related issues. Given a fixed budget, a key question to ask
is how to allocate the limited budget while maximizing the infor-
mation gain. Parameters that need to be considered include the
number of subjects, the number of cells per subject, and the se-
quencing depth per cell. Determination of these parameters
will depend on the goals of the study and in the selection of
study subjects.

Sample selection

When the goal is to investigate the interaction between known ge-
netic risk factors and cellular responses to disease, an appealing de-
sign is the genetic risk factor–enriched design as was performed by
Nguyen et al. (2020a). When genetic information is available, se-
lecting genetic risk factor–enriched individuals can substantially
reduce the number of needed subjects (Fig. 1A). Although DNA
genotyping needs to be performed for a large number of individu-
als when studying rare variants, the cost of DNA genotyping is
much lower than that of scRNA-seq. When genetic risk factors
are unknown, an alternative design is the extreme phenotype sam-
pling design, which selects individuals that cover both extreme
ends of a disease spectrum (Fig. 1B). There is a well-established in-

verse relationship between the allelic frequency of a given variant
and its effect size on the phenotype (Lander and Botstein 1989;
Peloso et al. 2016), and many studies have shown that extreme
phenotypes tend to occur in extreme cases with an excess of rare
variants. The extreme phenotype sampling design offers a cost-ef-
fective strategy for studying the interaction between rare variants
and cellular responses.

Number of cells and sequencing depth per cell

After study subjects are determined, the next consideration is
how many cells to sequence and the sequencing depth per cell.
Shall we sequence a large number of cells with shallow sequenc-
ing depth per cell or deeply sequence a few cells for each subject?
Although common cell types can be detected and their gene ex-
pression levels reliably measured with a relatively small number
of cells (Heimberg et al. 2016; Zhang et al. 2020), to reliably
detect rare cell types, a larger number of cells is needed. Thus,
the number of cells per subject is largely determined by the fre-
quency of the rarest cell type of interest. A number of software
packages have been developed to estimate the number of cells
that must be sampled in a single-cell sequencing experiment.
For example, based on the user-specified frequency of the rarest
cell population and the number of populations with approxi-
mately this frequency, SCOPIT (Davis et al. 2019) can estimate
the number of cells for planning single-cell sequencing experi-
ments. Schmid et al. (2020) developed scPower, a more general
framework for single-cell power calculation, in which they
showed that, for a fixed budget, the number of cells per individ-
ual is the major determinant of power of detecting rare cell types
and differentially expressed genes, followed by the number of
subjects and read depth. In general, shallow sequencing of high
numbers of cells per individual leads to a higher overall power
than does deep sequencing of fewer cells.

d/d
Low disease risk group

D/d
Moderate disease risk group

D/D
High disease risk group

Population stratified by 
phenotypes of interest

Population stratified by 
genetic risk factor

General population

General population

Studying cellular/molecular variations
due to genetic risk factor

xxx

• Identify genetic risk factor enriched/depleted cell types
• Identify cell-type-specific genes that are associated
• with genetic risk factor

Studying cellular/molecular variations
underlying the phenotype

xxx

• Identify disease relevant cell types
• Identify cell-type-specific genes that are associated • 
• with phenotypic differences

Extremely low phenotype
xxx

• Decreased disease risk
• Sensitive to treatment

Extremely high phenotype
xxx

• Increased disease risk
• Resistant to treatment

A

B

Figure 1. Sample selection strategy for population-based single-cell studies. (A) Genetic risk variant–enriched design in which individuals with the genetic
risk variant are oversampled in order to achieve enough number of individuals that carry the genetic risk variant. (B) Extreme phenotype sampling design in
which individuals with extremely low or extremely high phenotypes are selected. These extreme phenotype individuals are expected to carrymore rare genetic
risk variants than are individuals with intermediate phenotypes.
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Sample collection design to mitigate batch effects

Likemanyhigh-throughput technologies (Leek et al. 2010), single-
cellmethods are susceptible to batch effects, which refer to system-
atic differences among samples processed in different batches
(Hicks et al. 2018). Although batch effects can be minimized by
a completely randomized experimental design (Bacher and
Kendziorski 2016), such designs are often infeasible for studies
that involve human tissues because practical considerations re-
quire tissue samples to be processed immediately to avoid tissue
degradation. Furthermore, for studies that involve a large number
of subjects, patients are recruited sequentially, and single-cell ex-
perimentsmay span several days,months, or years apart, introduc-
ing systematic nonbiological differences that can confound
biological variations. Recently, Song et al. (2020) proposed two ex-
perimental designs, the reference panel and the chain-type de-
signs, that can reduce the impact of batch effects from the study
design stage. Under the reference panel design, one batch is re-
quired to include cells from all cell types to serve as the reference
panel, whereas the other batches need to have at least two cell
types. The requirement of a reference batch that includes all cell
types makes it difficult to achieve in practice. An alternative and
more practical design is the chain-type design, which requires
two cell types to be shared between every two consecutive batches.
A special form of this design is when two cell types are shared
among all batches, a situation that is easy to meet in real studies.
Song et al. (2020) mathematically proved that under these two ex-
perimental designs, true biological variability can be separated
from batch effects.

Cost reduction by cell type deconvolution analysis

in bulk RNA-seq

Although the cost of scRNA-seq has reduced in recent years, using
scRNA-seq for all study subjects in a large-scale population-based
study might still be cost prohibitive. Integrative analysis of
scRNA-seq and bulk RNA-seq data offers an alternative approach
that can substantially reduce the cost while returning cell
type–specific gene expression information. Such integrative anal-
ysis relies on cell type deconvolution, which aims to infer cell
type proportions from bulk transcriptomics data. Many methods
have been developed that use scRNA-seq data to infer cell type
proportions in bulk RNA-seq samples in the last few years
(Newman et al. 2015, 2019; Du et al. 2019; Wang et al. 2019;
Jew et al. 2020; Dong et al. 2021). The estimated cell type pro-
portions can be treated as known, and further analyses that incor-
porate these proportions as covariates can infer cell type–specific
gene expression in each subject, as is performed in CIBERSORTx
(Newman et al. 2019); detect allelic expression imbalance, as is
performed in BSCET (Fan et al. 2021); or detect cell type–interact-
ing QTLs (Donovan et al. 2020; Kim-Hellmuth et al. 2020) or cell
composition QTLs (Park et al. 2021). The estimated cell type pro-
portions can also be used to compare cell type compositions be-
tween diseased cases and controls. Determining whether certain
cell types are increased or decreased in proportion in a disease
state is informative for understanding disease pathophysiology.
For example, such analyses have detected the loss of beta
cells in T2D (Wang et al. 2019; Dong et al. 2021), an increase of
disease-associated microglia in AD (Buttner et al. 2020), and an
increase of microglia in advanced age-related macular degenera-
tion (Lyu et al. 2021).

Computational analysis and considerations for

population-based single-cell studies

In this section, we describe analytical strategies of population-
based single-cell studies. An overview of single-cell analysis work-
flow is shown in Figure 2. Analysis of single-cell data starts from
data preprocessing and normalization. Imputation may also be
performed when needed. As other papers have thoroughly re-
viewed these aspects (Bacher and Kendziorski 2016; Hie et al.
2020; Hou et al. 2020; Lytal et al. 2020; Wu and Zhang 2020;
Zhang and Zhang 2020; Ahlmann-Eltze and Huber 2021;
Melsted et al. 2021; Slovin et al. 2021), wewill focus our discussion
on the downstream statistical analyses.

Correction of batch effects

Large-scale single-cell data sets with many subjects contain batch-
specific systematic variations that present a challenge to data anal-
ysis. Batch effects are inevitable in analyses of human tissue and
are prevalent in many single-cell studies (Hicks et al. 2018;
Lähnemann et al. 2020). Failure to remove batch effects can not
only generate false-positive signals but also obscure true biological
variations. As such, many methods have been developed to re-
move batch effects in single-cell data analysis. Batch effect correc-
tion can be performed either in the original high-dimensional
gene expression space or the low-dimensional embedding space,
for example, gene expression data projected down onto principal
components from principal component analysis. Batch effect cor-
rection methods such as LIGER (Welch et al. 2019), Conos (Barkas
et al. 2019), Harmony (Korsunsky et al. 2019), BBKNN (Polanski
et al. 2020), and DESC (Li et al. 2020) remove batch effects only
for the embedding space. Although useful for profiling the overall
characteristics of cells such as clustering and trajectory reconstruc-
tion, these methods cannot be used for downstream gene-level
analysis like differential expression (DE) and coexpression.

To be useful for gene-level analysis, batch effects need to be
removed in the original high-dimensional gene expression space.
However, this task ismuchmore challenging than batch effect cor-
rection in the embedding space (Lucken et al. 2020). Popular
methods such as Seurat 3.0 (Stuart et al. 2019) rely on the mutual
nearest-neighbor (MNN) approach (Haghverdi et al. 2018) to re-
move batch effects for each gene, but MNN can only analyze
two batches at a time. Its performance is affected by the order in
which batches are corrected, and it quickly becomes computation-
ally infeasible when the number of batches gets large. Scanorama
(Hie et al. 2019) overcomes the computational issue of MNN by
finding matching elements among all batches at once, which
also makes it invariant to batch order. A more desirable approach,
however, should remove batch effects in gene expression for all
batches simultaneously. A few neural network–based methods
have been developed for this purpose. For example, scVI (Lopez
et al. 2018) removes batch effects by conditioning on batch infor-
mation in a variational autoencoder, which learns a nonlinear em-
bedding of cells; SAVERCAT (Huang et al. 2020) uses a conditional
variational autoencoder to remove batch effects through explicit
modeling of batch information as covariates; and CarDEC
(Lakkis et al. 2021) uses a joint autoencoder together with iterative
clustering to remove batch effects. Beyond the ability to model all
batches simultaneously, an additional advantage of these neural
network–based methods is their flexibility in achieving multiple
tasks within the same framework. These approaches can not
only remove batch effects in the original high-dimensional gene
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expression space but also remove batch effects in the low-dimen-
sional embedding space to facilitate cell clustering. Moreover,
these methods can impute gene expression, which may be desir-
able for downstream gene-level analyses.

Annotation of cell identities

Consistent annotation of cell identities is also a critical step in pop-
ulation-based single-cell studies. As such studies involve a large
number of individuals, the data generation may span multiple
years and across multiple laboratories. For such studies, it becomes
infeasible to use unsupervised clustering algorithms as these algo-
rithms require the reanalysis of all cells whenever new data be-
come available. Moreover, unsupervised clustering algorithms
may have difficulty resolving cell subtypes whose differences are
biologically meaningful (Kiselev et al. 2019). One attractive ap-
proach to circumvent these issues is to rely on available, well-an-
notated single-cell data sets, such as those contained in Azimuth
(Hao et al. 2021). Using these high-quality reference data,methods
have been developed to identify and annotate cell types in new
data. For example, scmap (Kiselev et al. 2018) projects cells in a
query data set to a space determined by highly informative genes
selected from a well-labeled labeled data set and then assigns cell
identities for cells in the query data based on their correlation
with average cell type–specific gene expression in the reference
data. scANVI (Xu et al. 2021), a semisupervised variant of scVI
(Lopez et al. 2018), annotates cell types in a query data set by lever-
aging any available cell annotations in a reference. Seurat 3.0 clas-
sifies cells in the query data by finding anchor cell pairs between a
well-labeled reference and the unlabeled query data sets. Scmap
learns cell type–specific gene expression information only in the

reference but ignores useful information in the query data; thus,
it is vulnerable to batch effects and platform differences between
the reference and query data. Although Seurat 3.0 uses informa-
tion both in the reference and the query data in the identification
of anchor pairs, it does not specifically use cell type label informa-
tion in the reference.

An ideal approach for cell identity annotation should be able
to use cell type–specific gene expression information both in the
reference and the unlabeled query data. Although reference data
sets have become increasingly comprehensive, cell types/subtypes
may exist in the unlabeled query data that were not previously de-
tected in the reference, for example, owing to differences between
the query and reference data in cell sample size or to differences in
subject-specific covariates, etc. As such, approaches should careful-
ly balance the contribution of each data type in cell type assign-
ment annotation. As large single-cell references are continuously
generating well-annotated reference data across various tissues,
an ideal approach should also be able to combine multiple refer-
ences together so that the users can learn from these comprehen-
sivemapswhen annotating their owndata. To address these issues,
transfer learning–based approaches have been developed. For ex-
ample, ItClust (Hu et al. 2020a) borrows ideas from supervised
cell type classification algorithms but also leverages information
in target data to ensure sensitivity in classifying cells that are
only present in the target data through the use of an iterative trans-
fer learning approach with neural networks. scArches (Lotfollahi
et al. 2021) relaxed the requirement of having raw data from the
reference. Through reusing neural network models by adding in-
put nodes and weights and then fine-tuning those, it learns the
joint latent representations of the reference and the query data,
which allows the identification of rare cell states in the query
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data that is otherwise difficult to detect. As the scale of single-cell
studies continues to grow, we anticipate these transfer learning–
based approaches will automate the labor-intensive clustering
and annotation tasks and facilitate comparative analyses across tis-
sues and disease conditions.

DE analysis

After cell identities are annotated, an importantnext step is to iden-
tify genes that are differentially expressed between conditions, for
example, healthy versus diseased, within the same cell subpopula-
tion. Although methods have been developed for DE analysis in
scRNA-seq (Kharchenko et al. 2014; Finak et al. 2015; Korthauer
et al. 2016; Jia et al. 2017), these methods ignore the effect of sub-
ject-specific covariates. Although subject-to-subject variation may
have little impact on the identification of subpopulation-specific
marker genes, their impact onDE analysis betweendifferent condi-
tions within the same cell subpopulation is unknown. Through
simulations, Crowell et al. (2020) investigated the performance of
various methods in detecting DE genes in this situation. Interest-
ingly, they found that the simple “pseudobulk” approach outper-
forms methods that are specifically designed for scRNA-seq. In
such“pseudobulk” analysis, cell-level counts froma subpopulation
are aggregated into a single observation per subject, which are then
used as input for DE analysis using traditional bulk RNA-seqmeth-
ods such as edgeR (Robinson et al. 2010),DESeq2 (Love et al. 2014),
or limma-voom (Law et al. 2014). These aggregation-based DE
methods not only are fast but also show a stable high performance
across various scenarios, making them an appealing choice for
large-scale scRNA-seq studies that involve many subjects. Notably,
cell-level mixed models performed comparably to pseudobulk ap-
proaches inDE analysis, as theDE gene sets identifiedwere similar.
However, cell-level mixed models severely underestimated the ex-
pression differences of certain genes between different cell popula-
tions. For these genes, this is likely owing to the abundance of cells
with zero counts, for which the gene’s maximum likelihood esti-
mate of the mean will be equal to zero for that cell. This becomes
more likely for lowly expressed genes under sparse data settings,
underscoring the need to model expression uncertainty. Perhaps
future cell-level approaches can improve upon this issue bymodel-
ing gene expression uncertainty directly.

Differential splicing analysis

Previous studies have shown that genes showing changes in alter-
native splicing may reflect different biological processes from
those with DE. For example, a recent scRNA-seq study in the adult
mouse cortex found differences in splicing dynamics across cells
were not explained by neuronal cell type definitions based on
differences in isoform-agnostic transcript expression levels, sug-
gesting that alternative splicing regulation might be orthogonal
to transcriptional regulation in specifying neuronal identity and
function (Feng et al. 2021). Therefore, differential alternative splic-
ing may complement DE analysis in characterizing gene regula-
tion. However, low sequencing depth, technical noise, and the
lack of appropriate computationalmethods have precluded the in-
vestigation of splicingheterogeneity inmost scRNA-seq studies. To
date, only a fewmethods have been designed specifically for splic-
ing analysis in scRNA-seq. Huang and Sanguinetti (2017) detected
differential exon-usage by performing a pairwise comparison be-
tween every two cells. Song et al. (2017) quantified exon-inclusion
levels based on junction-spanning reads. Qiu et al. (2017a) and
Ntranos et al. (2019) detected differential transcript usage based

on pre-estimated cell-specific isoform expressions or transcript
compatibility counts. Hu et al. (2020b) detected differential alter-
native splicing by accounting for technical noise and low sequenc-
ing depth through grouping exons that originate from the same
isoform(s). Although these methods have shown promising
performance, they still have limited power for data without full-
length transcript sequencing. Most single-cell studies use drop-
let-based technologies, for example, 10x Genomics (https://www
.10xgenomics.com) or Drop-seq (Macosko et al. 2015), which
have inherent limitations for splicing analysis owing to their
sequencing of only the 3′ or 5′ end of the gene following fragmen-
tation. Although Smart-seq2 (Picelli et al. 2014) can generate full-
length transcripts, the lack of unique molecular identifiers (UMIs)
makes it difficult to remove amplification bias. To fully character-
ize the splicing complexity of single cells, technologies with
full-length transcriptome coverage and UMIs, such as ScISOr-Seq
(Gupta et al. 2018; Joglekar et al. 2021) and SMART-seq3
(Hagemann-Jensen et al. 2020), are needed.

Trajectory analysis

A substantial portion of cell state variation can be explained by
treating states as discrete; differences in our notion of “cell type”
underlie large differences in cell morphology, function, and mo-
lecular composition across cells. Although treating cell states as
discrete may be appropriate in many settings, cell state variation
is best described as a continuum. Cells undergo gradual changes
during cellular differentiation, as they transition from one cell
type to another. Further, cell states can follow a continuumwithin
a given cell type: Cell states are perturbed by both constant factors,
such as the circadian clock, as well as asynchronous factors, such as
the cell cycle. Characterizing continuous aspects of cell state and
understanding the dynamics that give rise to them will be crucial
to understand how cells function and how these functions can go
awry in human disease.

Single-cell technologies provide a powerful tool to study con-
tinuous cell state variation. In particular, scRNA-seq has seenwide-
spread use to characterize state differences owing to cell
differentiation in both human developmental and adult-life con-
texts, for example, smooth muscle cell phenotypic switching dur-
ing atherosclerosis (Wirka et al. 2019; Pan et al. 2020), subtype
switching of macrophages during pathological cardiac hypertro-
phy (Ren et al. 2020), the transition of myeloid cells during the
progression and regression of kidney disease (Conway et al.
2020), the transition from homeostatic microglia to amyloid-re-
sponsive microglia or motile microglia during AD progression
(Nguyen et al. 2020a), and iPS-based models of cell type matura-
tion (Cuomo et al. 2020; Jerber et al. 2021).

A key step in such analyses is the computational assignment
of cells to continuous states, often referred to as trajectory or pseu-
dotime assignment. For example, in the simple case of cells differ-
entiating from one cell type into another, cells could be assigned a
continuous value from zero to one, where zero indicates the start-
ing cell state, one indicates the final cell state, and intermediate
values indicate intermediate states. After the assignment of cells
to continuous states, researchers can characterize molecular
changes, such as mRNA expression associated with changes in
cell state, and generate candidate mechanisms underlying these
changes, for example, changes in transcription factor (TF) activity.

The growth of single-cell technologies has been accompanied
by the development of several computational tools for trajectory
inference (Saelens et al. 2019). The choice and use of such tools
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designed for scRNA-seq require careful consideration. Before tra-
jectory inference, the high-dimensional gene expression data
maybe transformed into a dimensionality-reduced representation.
In the context of large-scale human disease studies, compressed
representations can confer benefits as a tool for noise reduction
when cells are shallowly sequenced and for improvement of the
computational efficiency of trajectory assignment methods.
Using this input, trajectory inference can be performed. A crucial
consideration in selecting a trajectory method is the user’s expec-
tation of the underlying trajectory topology. For settings in which
the user has no expectation of the trajectory topology, flexible
tools have been developed that can detect a wide range of topolo-
gies, such as linear, circular, trees, and disconnected components
(Ji and Ji 2016; Qiu et al. 2017b; Street et al. 2018;Wolf et al. 2019).

One consideration in the use of trajectory reconstruction
methods is the relatively high degree of uncertainty of the trajec-
tory shape and cell ordering (Saelens et al. 2019). This consider-
ation becomes more crucial when the underlying trajectory has
not been adequately sampled, that is, too few cells, whichmaypro-
duce unstable results owing to the similar likelihood of multiple
topological hypotheses. Continued progress in trajectory infer-
ence methods to incorporate RNA velocity information (Lange
et al. 2020) and the quantification of trajectory uncertainty (Lin
et al. 2021) may aid in resolving such ambiguities and in interpret-
ing results, respectively. Given the challenges associated with flex-
ible trajectory models, for cases in which users have expectations
of the trajectory topology, it is recommended they use methods
with inductive biases that reflect this expectation. For example,
variation across cells owing to cell cycle variation should be mod-
eled by methods designed to detect circular topologies, such as
reCAT (Liu et al. 2017).

Outlook and future research

Thus far, single-cell technologies have seen use in characterizing
cell state differences among diseased and healthy individuals.
Incorporating genetic information, groups have now begun to
identify variants influencing cell states. Nonetheless, although
single-cell technologies have rapidly advanced our ability to sur-
vey multiple molecular modalities describing cellular behavior,
we remain far from the ability to predict how molecular and/or
behavioral perturbations will influence high-level physiological
features to improve human health. We believe the following four
areas will see great strides toward this goal in the near future.

Modeling the effect of genotypic variation on transcriptional

regulation

The development of precisionmedicine therapieswill benefit from
predictive models to interpret how genetic variants influence gene
expression. At present, eQTL studies have largelymodeled variants
as having additive, linear effects on the expression of individual
genes. In the presence of small sample sizes, this is a reasonable
approach. However, as regulatory element interactions influence
transcription, for example, enhancer–promoter interactions
(Schoenfelder and Fraser 2019; Fitz et al. 2020) and enhancer co-
operativity (Huang et al. 2018), models that consider regulatory
element variants to contribute independently to changes in tran-
scription kinetics are likely misspecified. Moreover, the lack of var-
iance explained by eQTL models assuming additive linear effects
(Price et al. 2011; Lloyd-Jones et al. 2017) suggests substantial
model improvements are required not only to identify variants

with effects on gene expression but also to faithfully capture
how they affect gene expression.

Moving beyond purely additive linear models, convolutional
neural networks (CNNs) appear to be a promising approach toward
modeling the role of genomic variants in cis regulatory logic. In
particular, CNNs have already shown great promise in modeling
the contribution of promoter genetic variation on mean gene ex-
pression levels. Agarwal and Shendure (2020) first introduced their
algorithm, Xpresso, a CNN designed to predict steady-state mean
expression levels using sequence features of gene promoters
and gene bodies.Motivated by the high correlation of gene expres-
sion across cell types, Xpresso first demonstrated an ability to
detect sequence features describing expression variation in a cell
type–agnostic fashion. This suggests that rules exist that generalize
across cell type–specific contexts, and indeed, inspection of the
model identified a number of genomic features associated with
steady state expression including ORF exon density, 5′ UTR GC
content, and promoter CpG content. Nonetheless, promoter-
based models cannot explain all genetically determined expres-
sion variation.NotablywhenXpressowas trained on cell type–spe-
cific expression with accompanying chromatin accessibility data,
genes with the largest prediction residuals were those adjacent to
stretch enhancers. This suggests that an ideal model of cis regula-
tory expression likely will require the consideration of multiple
layers of regulatory control, such as the role of enhancer sequenc-
es, 3D genome configuration, and chromatin accessibility. In a re-
cent preprint, Avsec et al. (2021) introduced a novel model
architecture, dubbed Enformer, which jointly considers distal
and proximal regulatory sequences in gene expression prediction.
When applied to bulk human expression data from GTEx,
Enformer shows a substantial improvement in our ability to pre-
dict expression from sequences. Moreover, the investigators point
toward the use of in silico perturbations of the model to yield can-
didate trans regulators of distal regulatory activity. Although prom-
ising, future work remains to incorporate other layers of
transcriptional control into genetically determined models of
gene expression. Innovation in computational method develop-
ment will be essential for the advancement in our understanding
of the transcriptional regulation effects of variants in the context
of human disease.

The development of models to interpret the transcriptional
regulation effects of human variants will also benefit from contin-
ued development in experimental assays. The largest existing sin-
gle-cell eQTL studies have assayed hundreds of individuals
(Cuomo et al. 2020; Jerber et al. 2021). Although an achievement,
this is a limited sample size relative to the space of regulatory var-
iation observed in humans. The development of high-throughput
base editor mutagenesis technologies holds great promise to probe
the role of genetic variation. Hanna et al. (2021) recently intro-
duced a cytosine base editor to study the effect of 52,034
ClinVar variants in 3584 genes. Future efforts to pair base editor
mutagenesis with scRNA-seq will greatly advance our ability to ex-
plore the space of regulatory variation from human cells at scale.

Construction of GRNs

Evidence suggests cis regulatory variation only modestly explains
gene expression variation (Liu et al. 2019). Although this may par-
tially reflect misspecified models of how cis regulatory variants af-
fect expression, it also points to the need to model the role of trans
effects. Gene expression is regulated by the interaction of cis regu-
latory elements with TFs. The activity of TFs, themselves, depends
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on their expression, which has its own regulatory logic. As such,
faithfully modeling the role of trans effects on gene expression
will require mapping cell type–specific GRNs that detail the gene
targets of TFs. Mapping GRNs will enable researchers to better un-
derstand the underlying drivers of expression differences between
cell states, such as differences in underlying TF levels. Further, they
can inform predictions of how gene expression will change upon
perturbations of TFs or upstream signaling pathways.

It has become increasingly common to estimate GRNs from
steady-state scRNA-seq data, and several computational tools
have been developed for this task. Although there are key nuances
that distinguish each method, these tools generally construct
GRNs by identifying gene pairs showing coexpression patterns
within a given data set. GRNs are then represented as an undirect-
ed graph in which nodes represent genes and binary edges re-
present the presence or absence of relationships. To date, the
application of GRN detection methods to scRNA-seq data has
yielded results ofmixed success. Using simulated scRNA-seq gener-
ated from ground truth GRNs, Nguyen et al. (2020b) recently
showed that existing tools detect GRNswith success slightly better
than random. This may reflect, in part, the inherent limitations of
using scRNA-seq to detect GRNs. However, the general principles
used by the best-performing GRN tools should form the basis for
future computational developments. Notably, one of the earliest
and most popular tools, SCENIC (Aibar et al. 2017), constructed
networks most accurately across a variety of benchmarks. This is
likely owing to SCENIC’s inductive bias that predicted coregulated
genes share motifs for an underlying TF, suggesting that methods
incorporating domain knowledge may be better suited to con-
struct GRNs using scRNA-seq. Nguyen et al. (2020b) also point
out that existing tools assume GRN relationships are linear and
that there are no interactions. This assumptionmay limit the pow-
er of GRN detection tools, as TF–TF interactions are known to
significantly shape gene expression (Zeitlinger 2020). The inter-
pretation of GRNs detected by existing tools is also challenging,
as edges in GRN graphs are often undirected and may not re-
present functional relationships but, instead, correlations. Future
approaches incorporating RNA velocity may help resolve the
direction of GRN relationships from scRNA-seq.

Although GRN detection from steady-state scRNA-seq data
has proved challenging, a promising alternative is the use of per-
turbation approaches paired with single-cell omics to map GRNs.
Crucially, these approaches are high throughput in nature, allow-
ing researchers to identify the regulatory targets of hundreds of TFs
from a single tissue sample. Perturb-Seq (Dixit et al. 2016) first in-
troduced the ability to generate a loss-of-function library of
CRISPR guide RNAs to transfect a cell population andwhose effects
could be read out using single-cell transcriptomics. Using this tech-
nique, Dixit et al. (2016) were able to identify TF–gene regulatory
relationships that were recapitulated using ChIP-seq. Depending
on the loading concentration of guide RNAs, Perturb-Seq is also
amendable to probing the transcriptional effects of higher order
combinations of TF knockouts. A complementary approach to
mapping GRNs is detailing how chromatin accessibility is per-
turbed by TF knockouts. Rubin et al. (2019) introduced Perturb-
ATAC, which uses a loss-of-function library of CRISPR guide
RNAs to assay their effects on single-cell chromatin accessibility.
Using this approach, researchersmaybe able to preferentially iden-
tify TFs responsible for binding heterochromatin and promoting
chromatin accessibility in particular cellular contexts. As such,
Perturb-ATAC may be of particular relevance to help researchers
identify pioneer factors that act as hubs in GRNs.

Integrative analysis of multiple molecular modalities and their

correspondence with cell state

Although scRNA-seq has been predominantly used to characterize
cell state differences between diseased and nondiseased individu-
als thus far, the emergence of single-cell multiomic technologies,
wherein multiple molecular modalities are simultaneously pro-
filed within the same cell, signifies an important next step in the
study of human disease using single-cell approaches. Stoeckius
et al. (2017) first introduced CITE-seq, an approach to jointly pro-
file proteins and RNA in single cells. Since then, technological
developments have made it possible to jointly profile the tran-
scriptome in single cells with chromatin accessibility (Cao et al.
2018; Chen et al. 2019, Ma et al. 2020), DNA methylation (Gaiti
et al. 2019; Luo et al. 2019), nucleosome occupancy (Pott 2017;
Clark et al. 2018), chromatin occupancy (Xiong et al. 2021), or spa-
tial location (Rodriques et al. 2019; Vickovic et al. 2019).
Encouragingly, recent efforts show a trend toward increased detec-
tion sensitivity and cost reduction.

Single-cell multiomics will enable researchers to measure cell
state on a more granular level, as different modalities may contain
independent cell state information. Indeed, Hao et al. (2021)
found protein information could segregate known T cell subtypes
where mRNA could not, suggesting not only that multiomics can
measure more granular aspects of cell state but also that these dif-
ferences coincide with known aspects of biology that distinguish
cell subtypes. Beyond independent information captured by indi-
vidual modalities, multiomic data will also enable more meaning-
ful measures of cell state via modeling of interactions between
modalities that are known to modulate cell state, such as TF abun-
dance and chromatin accessibility. Ultimately, the more granular
cell state information provided by multiomic data will help re-
searchers better distinguish between diseased and healthy cell
states.

The development of tools to estimate cell state from single-
cellmultiomic datawill be essential tomaximize its utility. In brief,
most tools estimate latent factors thatmaximize the joint probabil-
ity of the observed data. Using these tools, researchers can study
differences in cell states associated with disease and health. One
of the earliest tools, LIGER (Welch et al. 2019), deploys an integra-
tive nonnegative matrix factorization approach to estimate latent
factors describing cell state. More recently, Argelaguet et al. (2020)
introduced MOFA+, a Bayesian matrix factorization approach that
uses priors to encourage the learning of sparse latent factors and
loading matrices to improve their interpretability. Moving
beyond linear approaches, Wu et al. (2021b) introduced BABEL,
a nonlinear joint autoencoder approach. Although existing ap-
proaches to estimating cell state have made meaningful contribu-
tions to the analysis of multiomic data, they suffer from two main
issues. First, models that aim to purelymaximize the probability of
the data aremore likely to learn spurious statistical associations un-
der sparse data settings and are less equipped to generalize to un-
seen data from new cell states. Indeed, Wu et al. (2021b)
highlight their method’s difficulty in generalizing to unseen cell
states. Second, latent factors may be uninterpretable, making the
identification of testable hypotheses for experimental follow-up
challenging. In both respects, we believe future cell state estima-
tion tools would benefit from using latent variable models based
on underlying explanatory factors that reflect known biology.
For example, the protein abundance of TFs is known to partially
determine both a cell’s chromatin accessibility and transcriptomic
states; as such, multiomic chromatin accessibility and

Auerbach et al.

1736 Genome Research
www.genome.org



transcriptomic data could be meaningfully described by a latent
variable model wherein latent factors encode TF abundance.
Evidence suggests such models are better equipped to deal with
sparse data and generalize to unseen data and are more robust to
learning spurious statistical associations (Bengio et al. 2013).
Moreover, these more interpretable approaches can help identify
testable hypotheses, such as the knockdown of a TF to perturb cells
from a diseased to a healthy state.

Understanding how cells cooperate to give rise to tissue-level

phenotypes

As we move closer toward understanding how processes are regu-
lated within the cell and predict how molecular perturbations
can direct changes in individual cell states, it is equally important
to understand how changes in individual cells will contribute to
changes in tissue-level and organismal-level physiology. For exam-
ple, one goal in the treatment of atherosclerosis is the develop-
ment of therapies to promote plaque stability. Atherosclerotic
plaques are composed of a multitude of cell types, such as fibro-
chondrocytes, macrophages, smooth muscle cells, and lympho-
cytes (Wirka et al. 2019; Alencar et al. 2020; Pan et al. 2020).
Although a great deal of work has detailed factors associated
with plaque stability such as the role of inflammation, no working
model exists of how cell types and their interactions relate to pla-
que stability. Such a working model would be valuable for identi-
fying candidate molecular perturbations in specific cells to
promote plaque stability. More broadly, in the future it may be
fruitful to understand not just how individual cell states are per-
turbed in disease but also how these dysregulated cells jointly con-
tribute to disrupted tissue-level physiology.

The advent of single-cell spatial transcriptomics (and other
spatial omics methods) appears to be a promising experimental as-
say that will help researchers approach this task. In brief, sequenc-
ing-based spatial omic technologies deploy surfaces that are
arrayed with barcodes corresponding to cellular position. After tis-
sue permeabilization and sequencing, individual cellular locations
can be ascertained based on the identity of the cell barcode. Using
these data, researchers can buildmodels predicting how cells inter-
act to produce tissue-level physiological features. An ideal model
for this task should take into account the spatial location of the
cells, and interactions among cells should be a function of cell–cell
proximity; namely, adjacent pairs of cells should be more likely to
interact than distant pairs of cells (Hu et al. 2021). A natural choice
to consider is the use of graph convolutional neural networks
(GCNNs) in either regression-based or classification-based settings
(Hu et al. 2020c). Using existing approaches to map cells’ gene ex-
pression to cell states, individual cell states can be represented as
nodes on a graph, where edges between nodes indicate that two
cells are physically adjacent to one another. GCNNs can then
use this graph as an input to predict either continuous or discrete
aspects of the tissue of interest. At present, single-cell spatial tran-
scriptomics may not yet be practical to do in large-scale human
studies. Nonetheless, single-cell spatial transcriptomics combined
with cost-effective histology may be a practical alternative to gen-
erate hypotheses of molecular perturbations to improve tissue-lev-
el measures. Using patient samples with matching spatial
transcriptomics and histology, generative models such as those
using graph convolutions can be trained to learn the joint relation-
ship between the histology, spatial transcriptomics, and tissue-lev-
el information such as the stability of an atherosclerotic plaque.
Given larger data of subjects with only collected histology and tis-

sue-level measures, the generative model can first be used to pre-
dict the expression of individual cells for each sample. Using this
predicted expression and the generativemodels, users can perform
in silico perturbations of gene expression that produce improve-
ments in tissue-level measures for each subject. Perturbations pre-
dicted to improve tissue-level measures that are shared across
subjects, or subgroups of subjects, should then be prioritized for
experimental follow-up.

Conclusion

Single-cell technologies have proven to be a valuable tool to under-
stand human disease. Single-cell resolution enables researchers to
characterize differences in cell states associated with disease status.
This can be a powerful approach toward building an understand-
ing of disease pathogenesis and its effects. At present, scRNA-seq
has accounted for a substantial body of single-cell data collected.
Using these data and the substantial body of supporting computa-
tional tools for their analysis, many groups have effectively de-
tailed cell state differences underlying differences in human
disease status. As this technology has grown more widespread, ef-
forts to understand the genetic underpinnings of cell state differ-
ences have begun and continue to grow. The future of single-cell
technologies in studying human disease appears promising, as
new single-cell technologies to capture additional modalities
such as chromatin accessibility, proteins, and spatial location
have matured (Moffitt et al. 2018; Chen et al. 2019; Eng et al.
2019; Zhu et al. 2019; Ma et al. 2020; Specht et al. 2021; Takei
et al. 2021; Thornton et al. 2021) and will enable researchers to de-
tail factors underlying cell state differences not described bymRNA
alone. Moreover, these technologies may help researchers further
our understanding of the interaction between these factors in
cell regulation. Maximizing the impact of single-cell technologies
will require continued development in both experimental ap-
proaches to perturb cell states and in computational approaches
to better understand their effects. Doing so will hopefully bring
us closer to a better understanding of disease and how to treat it.
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