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Abstract

Background: Myocardial infarction (MI) is a major cause of death, particularly during the first year. The avoidance of 
potentially fatal outcomes requires expeditious preventative steps. Machine learning (ML) is a subfield of artificial intelligence 
science that detects the underlying patterns of available big data for modeling them. This study aimed to establish an ML 
model with numerous features to predict the fatal complications of MI during the first 72 hours of hospital admission. 

Methods: We applied an MI complications database that contains the demographic and clinical records of patients during 
the 3 days of admission based on 2 output classes: dead due to the known complications of MI and alive. We utilized the 
recursive feature elimination (RFE) method to apply feature selection. Thus, after applying this method, we reduced the 
number of features to 50. The performance of 4 common ML classifier algorithms, namely logistic regression, support vector 
machine, random forest, and extreme gradient boosting (XGBoost), was evaluated using 8 classification metrics (sensitivity, 
specificity, precision, false-positive rate, false-negative rate, accuracy, F1-score, and AUC).

Results: In this study of 1699 patients with confirmed MI, 15.94% experienced fatal complications, and the rest remained 
alive. The XGBoost model achieved more desirable results based on the accuracy and F1-score metrics and distinguished 
patients with fatal complications from surviving ones (AUC=78.65%, sensitivity=94.35%, accuracy=91.47%, and F1-
score=95.14%). Cardiogenic shock was the most significant feature influencing the prediction of the XGBoost algorithm.

Conclusion: XGBoost algorithms can be a promising model for predicting fatal complications following MI.
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Introduction 
Myocardial infarction (MI) is one of the most 

challenging issues in modern medicine, with a high rate 
of first-year mortality.1 It is the leading cause of death in 
the United States owing to coronary artery disease, and 
its incidence remains high in all countries. According to 
the World Health Organization (WHO), an estimated 17.9 
million people died from cardiovascular diseases in 2019, 
representing 32% of all global deaths, principally because 
of heart attack and stroke. The American Heart Association 
2021 statistics reported that over 3.1% of adults over age 
20 (over 880,0000 people) had experienced MI between 
2015 and 2018.2 During the acute and subacute phases of 
MI, about half of the patients develop complications that 
aggravate the condition and could lead to death. These 
complications negatively affect both short- and long-term 
survival.3 Despite advances in the management of MI 
complications, rates are still high. These complications 
should be clinically recognized and treated expeditiously 
to prevent mortality and morbidity. The early detection 
of these complications requires a high clinical index of 
suspicion.4

Machine learning (ML) is a subfield of artificial 
intelligence (AI) science. Pattern recognition, rule-based 
reasoning techniques, and modeling big data that teach 
computers how to favor “good” outputs and reject “bad” 
ones are some of the core principles of ML methods in 
medicine.4

Diagnosing COVID-19, chronic kidney disease, urinary 
infections, pulmonary hypertension, influenza, skin 
lesions, and acromegaly; predicting the risk of severe 
complications after bariatric surgery;5 estimating the 
prevalence of long-term complications in patients with 
type 2 diabetes,6 and determining the risk of major adverse 
events following intravenous lead extraction for cardiac 
rhythm management7 are some examples of the application 
of ML in medicine.8, 9 Predicting fatal MI complications 
through prompt and critical preventive measures is crucial 
since competent experts are almost always unable to 
forecast all these problems.

Blood tests and electrocardiographic (ECG) signals are 
among the tools for MI diagnosis. Nonetheless, post-MI 
blood enzyme levels take time to rise. This time delay 
may suspend the diagnosis of MI. Very few studies have 
investigated the use of AI in the field of MI. Most of these 
studies have used only information related to blood tests and 
ECG and paid little attention to other clinical information. 
Some ML models using standard 12-lead ECG signals or 
different troponin levels in different ages, sexes, and times 
have been proposed to improve the risk assessment of this 
disease in patients.10,11

The present study aimed to establish an ML model 
with numerous features to predict mortality following MI 

complications during the first 72 hours of admission. We 
used clinical and comprehensive factors that have not been 
investigated to this extent. Applying such models may help 
clinicians implement appropriate interventions to attenuate 
the risk of MI-induced mortality. 

Methods

The study protocol complied with the Declaration of 
Helsinki and was approved by the Ethics Committee of 
Urmia University of Medical Sciences (Code: IR.UMSU.
REC.1401.128).

We applied an MI complications database in the 
Krasnoyarsk Interdistrict Clinical Hospital named after 
I.S. Berzon (Russia) in 1992-1995.12, 13 It contains the 
demographic and clinical records of 1699 patients at the 
time of hospital admission as 111 input features and 12 
complications, including fatal complications during the 
first 72 hours after admission, based on 2 output classes: 
dead due to known complications of MI and alive, with 
7.6% of missing values (Tables 1 & 2).14 Missing values 
in the data set are replaced by their mean value. The 
clinical data were conduction characteristics on ECG at 
the time of hospital admission; time, type, and extent of 
MI; laboratory parameters; underlying diseases; patients’ 
signs and symptoms; and administered drugs at the 
hospital. Complications were considered to be myocardial 
rupture, atrial fibrillation, supraventricular tachycardia, 
ventricular tachycardia, ventricular fibrillation, third-
degree atrioventricular (AV) block, Dressler syndrome, 
pulmonary edema, chronic heart failure, MI relapse, 
and post-infarction angina. Fatal complications were 
considered to be cardiogenic shock, pulmonary edema, 
myocardial rupture, congestive heart failure progression, 
thromboembolism, asystole, and ventricular fibrillation. 
As an attempt to address the class imbalance, samples with 
fatal complications in Class I were weighted 7 times higher 
than those in Class 0.

Recursive feature elimination (RFE) is a methodology 
employed within ML to meticulously curate a subset of the 
most pivotal features of an initially extensive array. The 
process entails training a model employing the complete 
feature set and assigning priority rankings to each feature 
based on their significance. Subsequent stages involve 
an iterative elimination of the least crucial features while 
concurrently retraining the model. This sequential process 
persists until a specified quantity of features is attained, or 
a predetermined performance threshold is achieved. RFE 
significantly enhances model performance, diminishes the 
risk of overfitting, and amplifies model explicability by 
concentrating solely on the most pertinent features germane 
to a given problem.15 We applied the RFE method and 
reduced the number of features to 50.
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Table 2. Patients’ Outcomes as Output Features
n (%)

Alive 1428 (84.04)
Dead due to Fatal Complications

Cardiogenic shock 110 (6.47)
Pulmonary edema 18 (1.05)
Myocardial rupture 54 (3.17)
Progress of congestive heart fail-ure 23 (1.35)
Thromboembolism 12 (0.70)
Asystole 27 (1.58)
Ventricular fibrillation 27 (1.58)

AI enables systems to learn automatically. The principal 
focus of ML algorithms is to develop programs that 
access data and use them for learning. The process of ML 

Table 1. Input Features of the Patients at the Time of Hospital Admission

Demographic Characteristics Age, sex, and obesity

Conduction Characteristics 
on ECG at the Time of 
Hospital Admission

First-degree AV block, type 1 second-degree AV block (Mobitz I/Wenckebach), type 2 second-degree AV block (Mobitz 
II/Hay), third-degree AV block, LBBB (anterior branch), LBBB (posterior branch), incomplete/complete LBBB, 
incomplete/ complete RBBB, ECG rhythm at the time of admission to the hospital (sinus; heart rate=60-90 bpm),  atrial 
fibrillation rhythm,  atrial rhythm, idioventricular rhythm, sinus  rhythm with a heart rate above 90 bpm (tachycardia), 
sinus  rhythm with a heart rate below 60 bpm (bradycardia), premature atrial contractions, frequent premature atrial 
contractions, premature ven-tricular contractions, frequent premature ventricular contractions, paroxysms of atrial 
fibrillation, persis-tent form of atrial fibrillation, paroxysms of supraventricular tachycardia, paroxysms of ventricular 
tachycardia, ventricular fibrillation, and sinoatrial block

Type and Extent of MI Anterior MI (left ventricular) (ECG changes in leads V1–V4), lateral MI (left ventricular) (ECG changes in leads V5–
V6, I, and AVL), inferior MI (left ventricular) (ECG changes in leads III, AVF, and II), posterior MI (left ventricular) 
(ECG changes in leads V7–V9 and reciprocity changes in leads V1–V3), and right ventricular MI

Laboratory Parameters ALT, AST, CPK, WBC, ESR, hypokalemia (< 4 mmol/l), serum potassium, hypernatremia (>150 mmol/l), and serum 
sodium

Underlying Diseases Underlying cardiovascular diseases: chronic heart failure (including the functional class of angina pectoris in the 
last year), coronary heart disease in recent weeks or days before admission to the hospital, essential hypertension, 
symptomatic hypertension (including the duration of arterial hypertension), and premature atrial contractions
Other underlying diseases: diabetes mellitus, obesity, thyrotoxicosis, chronic bronchitis, obstructive chronic bronchitis, 
bronchial asthma, and pulmonary tuberculosis

Signs and Symptoms History of cardiovascular signs and symptoms: exertional angina pectoris, incomplete or complete LBBB, incomplete 
or complete RBBB, premature ventricular contractions, paroxysms of atrial fibrillation, persistent form of atrial 
fibrillation, ventricular fibrillation, ventricular paroxysmal tachycardia, first-degree AV block, third-degree AV block, 
LBBB (anterior branch), quantity of MI in the anamnesis
Signs and symptoms at emergency admission: systolic and diastolic blood pressure
Signs and symptoms at ICU admission: systolic and diastolic blood pressure, pulmonary edema, cardiogenic shock, 
paroxysms of atrial fibrillation, paroxysms of supraventricular tachycardia, paroxysms of ventricular tachycardia, 
ventricular fibrillation, pain relapse in the first hours§

Administered Drugs At the emergency department: opioids, NSAIDs, and lidocaine
At the ICU: liquid nitrates, lidocaine, β-blockers, calcium channel blockers, anticoagulants (heparin), acetylsalicylic 
acid, ticlopidine, pentoxifylline, opioids§, and NSAIDs§ 
Fibrinolytic therapy:  with сеliasum (750k IU)/сеliasum (1m IU)/сеliasum (3m IU)/ streptase/сеliasum (500k IU)/
сеliasum (250k IU)/streptodecase (1.5m IU)

Other Parameters Time elapsed from the beginning of the attack of coronary heart disease to hospital admission and ob-serving 
arrhythmias in the anamnesis

§Also determined at 24, 48, and 72 hours after admission
MI, Myocardial infarction; ECG, Electrocardiogram; AV, Atrioventricular; NSAIDs, Non-steroidal anti-inflammatory drugs; LBBB, Left bundle branch 
block; RBBB, Right bundle branch block; ALT, Alanine transaminase; AST, Aspartate aminotransferase; CPK, Creatine phosphokinase; WBC, White blood 
cell; ESR, Erythrocyte sedimentation rate

algorithms begins by observing and working with data to 
find the desired pattern and make informed decisions based 
on the provided samples. The main goal of ML methods is 
to extend learning beyond trained examples.5

ML methods are divided into 3 groups: supervised 
learning, unsupervised learning, and reinforcement 
learning.5 In supervised learning, a machine is trained using 
labeled data. In other words, in this type of learning, the data 
are already labeled with correct answers. In unsupervised 
learning, the machine is trained using unlabeled data. 
In this method, the learning algorithm is not told what 
the data represent. In reinforcement learning, similar to 
unsupervised learning, the data used for learning are not 
labeled. In this method, when a question is asked for data, 
the result is graded.
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In the current study, the supervised learning approach was 
considered for classification. Four common ML classifier 
algorithms were used: logistic regression, support vector 
machine (SVM), random forest, and extreme gradient 
boosting (XGBoost). Each of these classifiers applies 
different classification methods.

Logistic regression: Logistic regression is a very simple, 
basic, and useful algorithm for classification. It uses a linear 
equation with independent predictors to predict a value. 
The predicted value can be between negative infinity and 
positive infinity. In this study, the output of the algorithm 
was considered to be the class variable (alive or dead). 
Therefore, the output of the linear equation was transferred 
to a range of 0 to 1. To transfer the predicted value between 
0 and 1, we utilized the sigmoid function.5

0 1 1  .  .n nz x xθ θ θ= + +…+
                                   (1)

                                                                                   
                                                                                    (2)( ) 1 
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The output of Eq. (1) was given to the function g, Eq. 
(2), which returned the transfer value in the range of 0 to 1. 
The sigmoid function became asymptotic to y=1 for large 
positive values of x and became asymptotic to y=0 for large 
negative values of x. For the prediction of class values, a 
logarithmic loss function was used to calculate the cost of 
misclassification, Eq. (3), where x was the input vector, and 
θ was the coefficient vector.

SVM: The SVM algorithm is one of the most powerful 
ML models. This algorithm can be used for linear or 
nonlinear classification and regression problems. SVM is 
one of the most popular ML models, especially since this 
algorithm is suitable for classifying small or medium-sized 
data sets. SVM creates a boundary between classes called 
“a hyperplane”. The goal of this algorithm is to maximize 
the margin between classes [5] by minimizing Eq. (4)

                                                                                    (4)( )( )2
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where n is the number of the samples and C is the balance 
value between the extent of decision boundaries. SVM can 
draw nonlinear boundaries using kernel tricks. As a result, 
the data samples are extended into the feature space with 
higher dimensions so that they can be linearly separated.5

Random forest: The random forest algorithm is an 
ensemble algorithm that uses decision trees for its simple 
algorithms. This algorithm, one of the most common ML 
algorithms, is used for both classification and regression 
problems. Since a decision tree algorithm can easily 
perform classification operations on the data, several 

decision trees are employed in the random forest algorithm. 
A set of decision trees together produces a forest, and this 
forest can make better decisions than a single tree. Finally, 
the random forest algorithm can select the class with the 
most votes among the decision trees by voting and place it 
as the final class for the classification problem.5

XGBoost: XGBoost is a family of tree-structured 
algorithms. Tree-based models are frequently implemented 
in this method, considered a collective classification 
method. In other models, the models are merged, so that the 
final operation takes place. However, this algorithm takes 
a smart approach. In this algorithm, instead of training all 
the models separately from each other, the boosting process 
trains the models one after the other. Each new model is 
trained with the aim of correcting the errors caused by 
previous models. Models are added sequentially until 
there is no further development possible. The advantage 
of this iterative method is that the added models seek to 
correct the mistakes made by other models. In the standard 
ensemble classification method, where models are trained 
individually, all models may make the same mistakes. 
Gradient boosting refers to a method in which new models 
are trained with the aim of predicting the residuals of 
previous models.16

In this study, 8 classification metrics (sensitivity, 
specificity, precision, false-positive rate, false-negative 
rate, accuracy, F1-score, and AUC) were chosen to 
evaluate the performance of ML models in predicting fatal 
MI complications according to the database of patients 
after being hospitalized. These 8 metrics were applied 
to compare the performances of the models (positive 
instances: patients who died due to fatal complications of 
MI and negative instances: living patients).

Accuracy: Accuracy can be inferred as how close the 
measured value is to the desired value9, 16:

Accuracy =

                                                                                       (5)

   
    

    
  

True positive Truenegative
True positive False positive Falsenegative Truenegative

Correct lethal complicationdetection
Total complicationdetection

+
=

+ + +

Sensitivity or Recall: It is the fraction of positive responses 
that have been correctly identified9, 16:

                                                                                       (6)  
  

True positiveSensitivity
True positive Falsenegative

=
+

Specificity: The ability of the test to correctly diagnose 
patients without the listed disease or condition9, 16:

                                                                                       (7)  
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=
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Precision (PPV):  It indicates how close the measurement 
values are after consecutive value measurements 9, 16:

                                                                                        (8)
  

  
True positivePrecision

True positive False positive
=

+

False-Positive Rate: it corresponds to the proportion 
of negative data points that are mistakenly considered as 
positive, with respect to all negative data points9, 16:

                                                                                        (9)     
  

False positiveFalse Positive Rate
Truenegative False positive

=
+

False-Negative Rate: signifies how many positive class 
samples your model predicted incorrectly 9, 16:

                                                                                      (10)   
  

FalsenegativeFalse Negative Rate
Truenegative Falsenegative

− =
+

F-Score (F1-Score): It is used to combine the 2 criteria of 
specificity and accuracy, and it is a measure of the accuracy 
of the test 9, 16:

                                                                                      (11)21  Precision RecallF Score
Precision Recall
× ×

− =
+

AUC: It is the area under the receiver operating 
characteristic (ROC) curve that shows the overall 
performance of the models.9,16

In this study, ML explanatory and interpretable methods 
were used to identify the salient features influencing the 
decision-making of ML models. Explain Like I'm 5 (ELI5) 
is an interpretability method used to explain the predictions 
of ML models and their interpretation. It is an easy method 
in that it can identify salient features and support agnostic 
methods.18

The effects of these 4 models (in this method, taking 
into account the classification results, different clauses are 
adopted in the final decision) and the effects of selecting 
and extracting more discriminant features confer more 
desirable results. Therefore, finding those crucial features 
and reporting them can benefit other researchers.

The final decision about the effects of models was 
made based on the accuracy of the different classification 
methods. Additionally, finding those optimal features can be 
advantageous to other researchers.

After the implementation of the mentioned models, the 
5-fold cross-validation method (20% of the data in each 
round for testing the algorithm and validating and the rest for 
training the program) was used to check the efficiency of the 
models and the effects of using more appropriate features. 
The k-fold cross-validation method divided the data set into 
K number of subsets. Then, each evaluation partition was 
considered the test data set, and the rest was considered the 
training set. This approach was repeated for K times, so 
that each partition was utilized as a test set once. Next, the 
prediction error was calculated for each partition, and their 
average was considered the total cross-validation error. At 
each stage, the test data were given to the machine, and the 
output was compared with the desired values of the classes 
that were available. Further, performance evaluation criteria, 
composed of accuracy, sensitivity, specificity, F1-score, 
precision, negative predictive value, false-positive rate, and 
false-negative rate, were calculated, and the quantitative 
evaluation was carried out based on them. 

The data were analyzed using NumPy, SciPy, Matplotlib, 
Pandas, and Scikit libraries in Python programming software, 
version 3.7.

Results

The present study evaluated 1699 patients with confirmed 
MI (62.65% males and 37.35% females) with a mean age 
of 61.86±11.26 years. Within 3 days of admission, 15.94% 
of the study population experienced fatal complications, and 
the rest remained alive (Table 2). Among all the patients, 663 
(39%) did not experience any complications. 

Table 3 shows the diagnostic performance of the 
applied models. Different classification metrics provide 
valuable but different insights into the performance 
of the classifiers. Confusion matrices are presented in                                                
Figure 1. The XGBoost model achieved better results based 
on the accuracy and F1-score metrics and distinguished 
patients with fatal complications from survived ones 
(AUC=78.65%, sensitivity=94.35%, accuracy=91.47%, 
and F1-score=95.14%). Via the ELI5 method, the most 
decisive features influencing the prediction of the XGBoost 
algorithm are shown in Figure 2. Additionally, Table 4 
presents the distribution of the most influential features 
regarding the target class.

Table 3. Performance of the Applied Models at the Time of Admission
Algorithm Sensitivity Specificity Preci-sion False-Positive Rate False-Negative Rate Accuracy F1-Score AUC (%)

Logistic regression 92.83 66.6 96.28 33.33* 7.17 90.29 64.53 73.14
Support vector ma-chine 89.54 80.00 98.98 20.00 10.46* 89.12 94.02 77.12
Random forest 91.28 84.21* 98.99* 15.79 8.72 90.88 94.98 67.68
XGBoost 94.35* 69.23 95.95 30.77 5.65 91.47* 95.14* 78.65*

*The favorable metrics among all models
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Figure 1. The images present the confusion matrices of the classifiers at the time of admission.

Table 4. Distribution of the Samples Considering the Most Notable Features and Target Class

Feature States
Outcome

Alive Dead
Cardiogenic shock at the time of admission to the ICU (K_SH_POST)

Yes 3 43
No 1414 224
Missing value (N/A)* 12 3

Frequent premature ventricular contractions on the electrocardiogram at the time of admission to the hospital (n_r_ecg_p_04)
Yes 50 19
No 1272 243
Missing value (N/A) 107 8

Third-degree atrioventricular block on the electrocardiogram at the time of admission to the hospital (n_p_ecg_p_06)
Yes 12 15
No 1308 249
Missing value (N/A) 109 6

Presence of chronic heart failure in the anamnesis (ZSN_A)
I stage 98 5
IIÐ-R stage 11 16
IIÐ-L stage 18 11
IIB (IIÐ-R & IIÐ-L) stage 6 13
No 1292 175
Missing value (N/A) 4 50

Pulmonary edema at the time of admission to the ICU (O_L_POST)
Yes 67 43
No 1351 226
Missing value (N/A) 11 1

*The missing values are filled with the mean value of that specific feature, although not considered by the machine learning models for training.
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Figure 2. The image presents the most notable features of the XGBoost model.
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Discussion
AI and ML can support medical professionals with data-

driven processes in the healthcare system. Although, as 
an emerging technology, there have always been running 
debates on the pros and cons of its application in healthcare 
systems, the numerous profits of ML outweigh a few possible 
losses. It has the advantages of flexibility and scalability 
compared with traditional biostatistical methods, which 
makes it deployable for many tasks, such as risk stratification, 
diagnosis and classification, and survival predictions using 
various data types. Medical application of ML requires 
data pre-processing, model training, and system refinement 
regarding the actual clinical problem.17 Compared with risk 
assessment guidelines that require the manual calculation 
of scores, ML-based prediction of disease outcomes can be 
utilized to save time and improve prediction accuracy.

In this study, we evaluated 4 common ML algorithms 
in terms of 8 metrics using bulk data from 1699 patients. 
Because of the importance of the initial time of patient 
admission, we considered the data set at the time of hospital 
admission to identify acute fatal complications. A multitude 
of variables might determine the rate of complications 
following MI. Knowing how to use this knowledge 
to forecast probable outcomes is crucial. As observed 
from this data set, no single element can provide all the 
necessary predictability information. However, including all 
prominent features improves forecasts. In the literature, the 
improvement in model performance seems very promising 
and revolutionary, but that is not the case in the business 
world. Nevertheless, improving measurement metrics (eg, 
increasing AUC, minimizing log loss, and improving recall 
and specificity by decreasing the false positive and the false 
negative) can augment the model’s performance.

ML has been used for predicting mortality in various 
clinical settings, including COVID-19 and heart failure, 
with accuracy rates of 90% and 80%, respectively.18 ML 
also showed promising results in the diagnosis of chronic MI 
using non-enhanced cine magnetic resonance imaging, with 
an AUC of 94%.19

The results of the current study showed that the proposed 
models accurately predicted the acute fatal complications of 
MI. The XGBoost classifier achieved more desirable results 
based on the accuracy and F1-score metrics. We compared 
4 standard common models to help other researchers avoid 
redundant analysis and select the best model.

No study in the literature has employed ML to detect the 
fatal complications of MI. In 2017, Mansoor et al20 assessed 
2 ML approaches (logistic regression and random forest) 
to predict the possible all-cause in-hospital mortality risks 
of third-degree AV block at the time of admission in 9637 
women hospitalized with a diagnosis of ST-elevation MI 
using the United States National Inpatient Sample Data, 
collected in 2011 and 2013. The reported results were a 

mean accuracy rate of 0.88 for both data-logistic regression 
models and a mean accuracy rate of 0.88 for random forest 
models. Since the data set only included women, the findings 
can be applied only to female patients.

Patients who recover from an MI encounter an elevated risk 
of subsequent cardiovascular events, including an increase 
in mortality. Acute MI can be complicated by a variety 
of pathophysiologic causes categorized as mechanical, 
arrhythmic, ischemic, inflammatory, and embolic 
complications.21 Patients may undergo a risk assessment 
to identify those at high risk for both short- and long-term 
unfavorable consequences. Numerous risk assessment tools 
have been developed, such as the thrombolysis in myocardial 
infarction (TIMI) risk score and the Global Registry of Acute 
Coronary Events (GRACE) risk model, which apply a limited 
set of variables.22 An invasive electrophysiology study (EPS) 
is performed only under very particular circumstances for 
risk classification.23 As these tools are derived from clinical 
trial data with a restricted population, they may not consider 
real features and all aspects required for predicting cardiac 
outcomes. These pitfalls may be fulfilled to some extent by 
ML. ML can uncover the complex effect of each variable and 
relationships between variables presented as simple ones in 
the database.

Based on our results, the most prominent features identified 
in the prediction made by the best algorithm of this study (the 
XGboost classifier) were cardiogenic shock and a history 
of complete left bundle branch block. These characteristics 
could be incorporated into risk score assessments in practice 
or hospital information systems for use by physicians at the 
bedside of patients. On the other hand, these models can 
be improved by using a database specific to each country, 
region, and race. This notion is supported by previous 
clinical findings in the literature that introduce cardiogenic 
shock as the leading cause of in-hospital death in patients 
with acute MI.24 Cardiogenic shock is a consequence of 
heart dysfunction, presenting as myocardial tissue hypoxia 
and necrosis following systemic hypoperfusion. About 10% 
of patients experience cardiogenic shock right after an acute 
MI, with the shock linked to roughly 40% of 30-day death 
rates.25 Patients with acute MI may arrive at the hospital in 
cardiogenic shock, or the condition may develop later on.26 
Despite advances in treatment, the only therapy shown to 
reduce mortality significantly in cardiogenic shock in a 
randomized trial was the emergency revascularization of the 
infarct-related artery.27, 28

This study has some limitations. The applied database was 
set up between 1990 and 1998, when reperfusion strategies 
had not been introduced yet. Future research should compare 
ML mortality prediction with other risk assessment tools.

Our study presents an initial step in testing the capacity 
for ML predictive models suitable for clinical decision-
making and risk avoidance vis-à-vis patients presenting to 
the hospital with acute MI.
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Conclusion

The findings of this study offer a novel viewpoint on 
reducing the fatal outcomes of MI. XGBoost algorithms 
could be a promising model for predicting fatal complications 
following MI. The minimal financial burden of employing 
such models makes it easier for clinicians to reduce patient 
morbidity and mortality.
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