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Abstract

Properties of gene genealogies such as tree height (H), total branch length (L), total lengths of external (E) and internal (I) branches, mean
length of basal branches (B), and the underlying coalescence times (T) can be used to study population-genetic processes and to develop
statistical tests of population-genetic models. Uses of tree features in statistical tests often rely on predictions that depend on pairwise
relationships among such features. For genealogies under the coalescent, we provide exact expressions for Taylor approximations to
expected values and variances of ratios Xn=Yn, for all 15 pairs among the variables fHn; Ln;En; In;Bn;Tkg, considering n leaves
and 2 � k � n. For expected values of the ratios, the approximations match closely with empirical simulation-based values. The approxi-
mations to the variances are not as accurate, but they generally match simulations in their trends as n increases. Although En has expecta-
tion 2 and Hn has expectation 2 in the limit as n!1, the approximation to the limiting expectation for En=Hn is not 1, instead equaling
p2=3� 2 � 1:28987. The new approximations augment fundamental results in coalescent theory on the shapes of genealogical trees.
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Introduction
Coalescent theory models random genealogies conditional on
assumptions about the evolutionary process (Hein et al. 2005;
Wakeley 2009). In coalescent theory, a gene genealogy is a tree or
network structure that represents a random draw from a coales-
cent model.

Genealogies in coalescent theory can be summarized using a
variety of quantities. For example, for random tree-like genealogies
with n lineages, the tree height Hn records the sum of branch
lengths on a path from a leaf to the root, and the tree length Ln

sums all branch lengths in the tree. The total length En of external
branches sums over leaves the lengths of paths from leaves to
their nearest internal nodes, and the total length of internal
branches, In ¼ Ln � En, sums the lengths of all remaining branches.

Studies in coalescent theory have often investigated the prop-
erties of tree summaries conditional on assumptions of coales-
cent models, with the goal of understanding how shapes of the
genealogies relate to processes such as population growth and
migration (e.g. Slatkin 1996; Rosenberg and Feldman 2002).
Because mutations can be viewed as occurring conditionally on
underlying genealogies (Hudson 1990), features of genealogical
shape affect the patterns of genetic variation produced by coales-
cent models that permit mutation. Thus, the understanding of
summaries of tree shape predicted by coalescent models is a
component of the interpretation of patterns of genetic variation
in relation to evolutionary processes.

Initial results concerning summaries of genealogical shape fo-
cused on single quantities, producing results on quantities such

as Hn and Ln (Kingman 1982; Hudson 1983, 1990; Tajima 1983).
Studies soon examined the information that resides in the rela-
tionships between pairs of summaries; genetic variation statistics
such as those of Tajima (1989) and Fu and Li (1993) can be viewed
as assessing whether or not one aspect of a tree contains long
branches in relation to another.

Recently, Arbisser et al. (2018) performed a detailed investiga-
tion of the relationship between Hn and Ln under coalescent mod-
els. They studied the mathematical relationship between these
two quantities, computing under a standard coalescent model
with a constant-sized population the covariance and correlation
coefficient of Hn and Ln. Extending the work of Arbisser et al.
(2018) on Hn and Ln, we (Alimpiev and Rosenberg 2022) reported
covariances and correlations for all pairs of variables among
fHn; Ln; En; In;Bn;Tkg, where Bn is the mean of the lengths of the
two basal branches of a genealogy and Tk is the coalescence time
from k to k—1 lineages, 2 � k � n. Our compendium in Tables 1
and 2 of Alimpiev and Rosenberg (2022) summarizes pairwise
relationships for several of the most commonly used features of
coalescent tree shape, recording both new and previously known
results.

In addition to computing the covariance and correlation coef-
ficient of Hn and Ln, Arbisser et al. (2018) also found approxima-
tions to the expectation and variance of the ratio Hn=Ln under the
coalescent model. This ratio gives a summary of the joint distri-
bution of Hn and Ln that characterizes the relative magnitudes of
the variables—a feature not captured by their covariance or cor-
relation. Arbisser et al. (2018) found that although the approxima-
tion to Var½Hn=Ln� differed noticeably from the exact value,
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as obtained by numerical integration and simulations of the

coalescent model, the approximation to E½Hn=Ln� was quite accu-

rate.
In this article, we extend the work of Arbisser et al. (2018) to

compute approximations to the expectations and variances for

ratios of the 14 remaining pairs among fHn; Ln; En; In;Bn;Tkg. The

study performs for the expectation and variance of coalescent ra-

tios an analogous extension of Arbisser et al. (2018) to that per-

formed by Alimpiev and Rosenberg (2022) for the covariance and

correlation coefficient.

Materials and methods
Tree variables
We work with a haploid population of constant size N that fol-

lows a standard coalescent model. Time is measured in units of

N generations. In this section, we recall the definitions of the coa-

lescence time Tk and tree properties Hn, Ln, En, In, and Bn for sam-

ple size n � 2 and 2 � k � n.
Tk is defined to be a random variable representing the time to

coalescence of k to k—1 lineages, for 2 � k � n. Variable Tk has

exponential probability density function

fTk ðtÞ ¼
k
2

� �
e
�

k
2

� �
t

:

The expectation and variance of Tk are

E½Tk� ¼
2

kðk� 1Þ ; (1)

Var½Tk� ¼
4

k2ðk� 1Þ2
: (2)

The tree properties Hn, Ln, En, In, and Bn are defined in terms of
the Tk. Visual depictions of these properties appear in Fig. 1, and
mathematical definitions of these quantities appear in Table 1.

We define Sp;n ¼
Pn

k¼1 k�p as a useful shorthand. The limit
limn!1 Sp;n ¼ Sp;1 is the Riemann zeta function, usually denoted
fðpÞ. In particular, S1;1 diverges, S2;1 ¼ p2=6 � 1:64493, and S3;1 is
Apéry’s constant, approximately 1.20206.

Taylor approximations to expectations and
variances of ratios
To compute approximate expressions for expected values and
variances of the ratios of various tree properties, we rely on
Taylor approximations. In particular, consider random variables
X and Y with E½X�;E½Y� 6¼ 0. For the expectation, we have (second-
order) approximation (Elandt-Johnson and Johnson 1999,
eq. 3.88):

E
X
Y

� �
� E½X�

E½Y� �
Cov½X;Y�
E½Y�2

þ E½X�Var½Y�
E½Y�3

: (3)

For the variance, we have (first-order) approximation (Stuart
and Ord 1994, eq. 10.17):

Var
X
Y

� �
� E½X�

E½Y�

� �2 Var½X�
E½X�2

� 2Cov½X;Y�
E½X�E½Y� þ

Var½Y�
E½Y�2

 !
: (4)

Table 1. Definitions of random variables associated with various
tree summaries.

Variable Definition

Hn
Pn

k¼2 Tk

Ln
Pn

k¼2 kTk

En
Pn

i¼1 eðnÞi

In Ln � En

Bn
1
2 T2 þ

Pn�1
j¼3

Pj
k¼2

1
jðj�1ÞTk

h i
þ

Pn
k¼2

1
n�1 Tk

� �
Here, Tk is the random variable representing the coalescence time from k to k—1
lineages, and eðnÞi is the (random) length of the ith external branch of a tree
with n leaves. We define Hn, Ln, and En for n � 2, In for n � 3, and Bn for n � 4.
The expression for Bn follows a form that incorporates terms associated with
all of its contributing branches, following p. 1400 of Uyenoyama (1997) and
Section 2.6 of Alimpiev and Rosenberg (2022), and it can be simplified to
Bn ¼

Pn
k¼2

1
k�1 Tk.

Table 2. Expectations and variances of properties of tree branch lengths.

Xn E½Xn� limn!‘ E½Xn� Var½Xn� limn!‘ Var½Xn�

Hn
2ðn�1Þ

n 2 8ðS2;n � 1Þ � 4 n�1
n

� �2
4p2

3 � 12 � 1:15947

Ln 2S1;n�1 1 4S2;n�1
2p2

3 � 6:57974

En 2 2
4; n ¼ 2;

8
ðn� 1Þðn� 2Þ S1;n�1n� 2ðn� 1Þ�; n > 2:

�8<: 0

In 2S1;n�1 � 2 1 4 2½S1;n�1n�2ðn�1Þ�
ðn�1Þðn�2Þ � 2S1;n�1

n�1 þ S2;n�1

h i
2p2

3 � 6:57974

Bn 2S2;n�1 � 2þ 2
n

p2

3 � 2 � 1:28987
2ð3S2;n�1n2�2S2

2;n�1n2þn2�4S2;n�1nþ3n�4Þ
n2 � p4

9 þ p2 þ 2 � 1:04637

Tk
2

kðk�1Þ
2

kðk�1Þ
4

k2ðk�1Þ2
4

k2ðk�1Þ2

These expressions can be found in Alimpiev and Rosenberg (2022). Note that for Ln and In, although the limiting variance is finite, the expectation is infinite (Tavaré
et al. 1997; Wakeley 2009, p. 76).

Fig. 1. Properties of genealogical trees. The tree height is Hn. The sum of
the lengths of all branches is Ln. External branches have total length En

(green). Internal branches have total length In (orange). Basal branches
have mean length Bn (blue).
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We use eE½X=Y� and gVar½X=Y� to denote approximations from
equations (3) and (4). For both the expectation and the variance,
we also take the n!1 limit of the approximations.

Exact expectations, variances, and covariances of
tree properties
Expected values and variances of variables Hn, Ln, En, In, Bn, and Tk

that are used in equations (3) and (4) are known, in many cases,
from early studies in coalescent theory (Fu and Li 1993; Tavaré
et al. 1997; Wakeley 2009). We summarize these expectations and
variances in Table 2.

The covariances compiled by Alimpiev and Rosenberg (2022)
appear in Table 3. In the case of pairs (En, Bn) and (In, Bn), the cova-
riances are approximate, as described by Alimpiev and Rosenberg
(2022).

Evaluating the approximations
For each of 15 pairs of random variables, considering Hn, Ln, En, In,
and Bn as well as Tk, we substitute expressions from Tables 2 and
3 into equations (3) and (4) to obtain approximate expectations
and variances for ratios of pairs of variables. For each pair, we
choose one variable for the numerator and the other for the de-
nominator; approximate expectations and variances for the
reciprocals can be obtained similarly. We present the approxima-
tions in Tables 4 and 5, and we plot them in Figs. 2–5.

For pairs (Xn, Yn), we simulate the values of E½Xn=Yn� and
Var½Xn=Yn� under the coalescent model using ms (Hudson 2002),
performing 100,000 replicate simulations for each tree size

Table 3. Covariances of pairs of variables that summarize
genealogical trees.

(Xn, Yn) Cov½Xn;Yn� limn!‘ Cov½Xn;Yn�

Hn, Tk
4

k2ðk�1Þ2
4

k2ðk�1Þ2

Hn, Ln 4S2;n�1 � 4þ 4
n

2p2

3 � 4 � 2:57974

Hn, En
4
n 0

Hn, In 4S2;n�1 � 4 2p2

3 � 4 � 2:57974

Hn, Bn
4½S3;n�1n2�3S2;n�1n2þð4nþ1Þðn�1Þ�

n2 �2p2 þ 4fð3Þ þ 16 � 1:06902

Ln, Tk
4

kðk�1Þ2
4

kðk�1Þ2

Ln, En
4S1;n�1

n�1 0

Ln, In 4S2;n�1 � 4S1;n�1

n�1
2p2

3 � 6:57974

Ln, Bn
4½S3;n�1n�S2;n�1nþn�1�

n � 2p2

3 þ 4fð3Þ þ 4 � 2:22849

En, Tk
4

kðk�1Þðn�1Þ 0

En, In
4S1;n�1

n�1 �
8S1;n�1n
ðn�1Þðn�2Þ þ 16

n�2 0

En, Bn
4ðS2;n�1n�nþ1Þ

nðn�1Þ 0

In, Tk
4ðn�kÞ

kðk�1Þ2ðn�1Þ
4

kðk�1Þ2

In, Bn
4ðS3;n�1n�S2;n�1nþn�S3;n�1�1Þ

n�1 � 2p2

3 þ 4fð3Þ þ 4 � 2:22849

Bn, Tk
4

k2ðk�1Þ3
4

k2ðk�1Þ3

For pairs involving En or In, expressions apply for n � 3; expressions involving
Bn apply for n � 4. The expressions can be found in Alimpiev and Rosenberg
(2022).

Table 4. Approximations to expectations of ratios of pairs of variables.

(Xn, Yn) eE½Xn=Yn� limn!‘
eE½Xn=Yn�

Hn, Tk
ð2k2�2k�1Þn�2kðk�1Þ

n 2k2 � 2k� 1

Hn, Ln
n�1

S1;n�1n�
S2;n�1n�nþ1

S2
1;n�1n þ S2;n�1ðn�1Þ

S3
1;n�1n 0

En, Hn
nð2S2;nn2�2n2�nþ1Þ

ðn�1Þ3
p2

3 � 2 � 1:28987

Hn, In n�1
ðS1;n�1�1Þn�

S2;n�1�1
ðS1;n�1�1Þ2 þ

S2;n�1ðn�1Þðn�2Þ�4nþ4S1;n�1þ4
ðS1;n�1�1Þ3nðn�2Þ 0

Bn, Hn
S2;n�1n�nþ1

n�1 þ 3S2;n�1n2�S3;n�1n2�4n2þ3nþ1
ðn�1Þ2 þ ðS2;n�1n�nþ1Þð2S2;nn2�3n2þ2n�1Þ

ðn�1Þ3
p4

18� p2

6 � fð3Þ � 2 � 0:56463

Ln, Tk 2S1;n�1k2 � ð2S1;n�1 þ 1Þk 1

En, Ln
ðS2

1;n�1þS2;n�1Þn�2S2
1;n�1�S2;n�1

S3
1;n�1ðn�1Þ 0

Ln, In
ðS3

1;n�1þS2;n�1Þðn�1Þðn�2Þ�S2
1;n�1ð2n2�7nþ2ÞþS1;n�1ðn2�8nþ8Þ

ðS1;n�1�1Þ3ðn�1Þðn�2Þ 1

Bn, Ln
S2;n�1n�nþ1

S1;n�1n þ S2;n�1n�S3;n�1n�nþ1
S2

1;n�1n þ S2;n�1ðS2;n�1n�nþ1Þ
S3

1;n�1n 0

En, Tk
kðk�1Þð2n�3Þ

n�1 2kðk� 1Þ

En, In
S2

1;n�1ðn
2�2nþ4Þ�S1;n�1ð2n2�n�2ÞþðS2;n�1þ1Þðn�1Þðn�2Þ

ðS1;n�1�1Þ3ðn�1Þðn�2Þ 0

Bn, En
ðn2þ2S1;n�1n�8nþ8ÞðS2;n�1n�nþ1Þ

nðn�1Þðn�2Þ
p2

6 � 1 � 0:64493

In, Tk 2kðk� 1ÞðS1;n�1 � 1Þ � kðn�kÞ
n�1 1

Bn, In
S2;n�1n�nþ1
ðS1;n�1�1Þn þ

ðS2;n�1n�nþ1Þ½S2;n�1ðn�1Þðn�2Þ�4nþ4S1;n�1þ4�
ðS1;n�1�1Þ3nðn�1Þðn�2Þ þ S2;n�1n�ðS3;n�1þ1Þðn�1Þ

ðS1;n�1�1Þ2ðn�1Þ 0

Bn, Tk
2kðk�1ÞðS2;n�1n�nþ1Þ

n � 1
k�1

1
3 p2 � 6ð Þk k� 1ð Þ � 1

k�1

Expressions involving En or In apply for n � 3; expressions involving Bn apply for n � 4. The value for (Hn, Ln) follows equation 15 of Arbisser et al. (2018). The
expressions are obtained using equation 3 and Tables 2 and 3.
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n ¼ 2; 3; . . . ; 50. We plot the simulated values alongside the ap-

proximate values from Tables 4 and 5 in Figs. 2 and 4.

Results
Expectations of the ratios
The approximate expected values in Table 4, as approximations

of ratios, have the form of rational functions. As n grows, the ap-

proximate expectations of Hn=Ln; Hn=In; En=Ln; En=In; Bn=Ln, and

Bn=In approach 0. This behavior is sensible when considering the

properties of the coalescent model: in the numerators, En has ex-

pectation 2 and E½Hn� and E½Bn� have bounded expectation in the

limit as n!1; in the denominators, Ln and In have expectations

that grow without bound (Table 2). Similarly, approximate

expectations of ratios Ln=Tk or In=Tk with Ln and In in the numera-

tor and Tk in the denominator grow to infinity as n increases. The

approximation to E½Ln=In� approaches 1 in the limit as n!1: as

the number of leaves in the tree grows, internal branches occupy

an increasingly large fraction of the total branch length.
For pairs of variables that both have finite expectation, the ap-

proximate expectations of their associated ratios—Hn=Tk; En=Hn;

En=Tk; Bn=Hn; Bn=En, and Bn=Tk—also approach finite values in
the limit as n!1. It is interesting to observe that although
limn!1 E½En� ¼ limn!1 E½Hn� ¼ 2 (Table 2), eE½En=Hn� ¼ p2=3� 2
� 1:28987 6¼ 1. In other words, although expectations of the individ-
ual variables approach the same value, we expect En=Hn to be
somewhat larger than 1 on average.

For each of the 10 pairs of variables among fHn; Ln; En; In;Bng,
the approximate expectations from Table 4 are plotted in Fig. 2
together with the simulated values. Although some divergences
are present for small n, the approximate and simulated values
match closely.

The approximate ratios involving Tk are shown in Fig. 3 as
functions of k for each of three values of n. Ln is the fastest-
growing variable according to the expression for its expectation
(Table 2), and the graph for eE½Ln=Tk� is topmost in all three plots.
As expectations of Hn and En are close (Table 2), the graphs foreE½Hn=Tk� and eE½En=Tk� are close in Fig. 3.

Variances of the ratios
The limits of approximations of variances of ratios are presented
in Table 5. They behave similarly to the expectations in Table 4.
Because Ln and In have expectations that grow without bound, for

Table 5. Approximations to variances of ratios of pairs of variables.

(Xn, Yn) gVar½Xn=Yn� limn!‘
gVar½Xn=Yn�

Hn, Tk
2kðk�1Þ½kðk�1ÞS2;nn�ðk2�kþ1Þnþ1�

n
1
3 kðk� 1Þ½ðp2 � 6Þk2 � ðp2 � 6Þk� 6�

Hn, Ln
n�1

S1;n�1n

� �2 2ðS2;n�1Þn2�ðn�1Þ2

ðn�1Þ2 � 2½S2;n�1n�ðn�1Þ�
S1;n�1ðn�1Þ þ

S2;n�1

S2
1;n�1

� �
0

En, Hn
½2S1;n�1nðn�1Þþ2S2;nn2ðn�2Þ�ðn2�3Þð3n�2Þ�n2

ðn�1Þ4ðn�2Þ
p2

3 � 3 � 0:28987

Hn, In
2S2;nn2�3n2þ2n�1
ðS1;n�1�1Þ2n2 þ 1

ðS1;n�1�1Þ4
½½S2;n�1ðn�2Þ�4�ðn�1Þþ4S1;n�1 �ðn�1Þ

n2ðn�2Þ � 2ðS1;n�1�1ÞðS2;n�1�1Þðn�1Þ
n

h i
0

Bn, Hn
ð4S3;n�1n2þ4S2;nn2þ11n2�5n�10Þðn�1Þ2�S2;n�1ð4S3;n�1n2þ8S2;nn2þ13n2�9n�12Þnðn�1Þþ4S2

2;n�1ðS2;nn2þn2�n�1Þn2

2ðn�1Þ4
p6

108� p4

18� 3p2

4 þ 11
2 þ 2fð3Þ

� p2fð3Þ
3
� 0:03744

Ln, Tk k2ðk� 1Þ2S2
1;n�1

S2;n�1

S2
1;n�1
� 2
ðk�1ÞS1;n�1

þ 1
h i

1

En, Ln
2S3

1;n�1n�S2
1;n�1ð6n�8ÞþS2;n�1ðn�1Þðn�2Þ
S4

1;n�1ðn�1Þðn�2Þ 0

Ln, In
2S3

1;n�1n�S2
1;n�1ð6n�8ÞþS2;n�1ðn�1Þðn�2Þ
ðS1;n�1�1Þ4ðn�1Þðn�2Þ 0

Bn, Ln
S2

1;n�1 ½�2S2
2;n�1n2þS2;n�1ð3n�4Þnþn2þ3n�4�þ4S1;n�1ðS2;n�1n�nþ1ÞðS2;n�1n�S3;n�1n�nþ1Þþ2S2;n�1ðS2;n�1n�nþ1Þ2

2S4
1;n�1n2 0

En, Tk
k2ðk�1Þ2ðn2þ2S1;n�1n�9nþ10Þ

ðn�1Þðn�2Þ k2ðk� 1Þ2

En, In
2S3

1;n�1n�S2
1;n�1ð6n�8ÞþS2;n�1ðn�1Þðn�2Þ
ðS1;n�1�1Þ4ðn�1Þðn�2Þ 0

Bn, En
4S1;n�1nðS2;n�1n�nþ1Þ2�2S2

2;n�1ðn
2þ3n�6Þn2þS2;n�1ð3n�4Þðnþ6Þnðn�1Þþðn2�10nþ8Þðn�1Þ2

2n2ðn�1Þðn�2Þ � p4

30þ p2

4 þ 1
2 � 0:26159

In, Tk
k2ðk�1Þ½ðk�1ÞS2

1;n�1ðn�1Þðn�2Þ�2S1;n�1ðkn2�4knþnþ2kÞþðk�1ÞS2;n�1ðn�1Þðn�2Þþkn2þn2�9knþ3nþ10k�6�
ðn�1Þðn�2Þ 1

Bn, In
½S2;n�1ðn�1Þðn�2Þ�4nþ4S1;n�1þ4�ðS2;n�1n�nþ1Þ2

ðS1;n�1�1Þ4n2ðn�1Þðn�2Þ þ 2½S2;n�1n�ðS3;n�1þ1Þðn�1Þ�ðS2;n�1n�nþ1Þ
ðS1;n�1�1Þ3nðn�1Þ � 2S2

2;n�1n2�S2;n�1ð3n�4Þn�ðnþ4Þðn�1Þ
2ðS1;n�1�1Þ2n2

0

Bn, Tk
k
2
½kðk�1Þ2ð3nþ2Þþ4n�ðn�1Þ

n2 � ðkþ 1Þðk2 � 3kþ 4ÞS2;n�1

h i
1

12 k½ð18� p2Þk3 � 2ð18� p2Þk2

þð18� p2Þk� 4ðp2 � 6Þ�

Expressions involving En or In apply for n � 3; expressions involving Bn apply for n � 4. The value for (Hn, Ln) follows equation 18 of Arbisser et al. (2018). The
expressions are obtained using equation 4 and Tables 2 and 3.
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ratios Hn=Ln; Hn=In; En=Ln; Bn=Ln; En=In; Bn=In—with Ln or In in the
denominator—the limits of the variance approximations are 0.
As n grows, the denominators grow much faster than the numer-
ators, and the values are therefore increasingly concentrated
around 0. Hence, the variances also approach 0.

Because Ln and In are much larger than the coalescence times
Tk, approximations to variances of Ln=Tk and In=Tk diverge to in-
finity as n increases. Interestingly, however, the approximate var-
iance of Ln=In, a ratio of two quantities with diverging
expectations, approaches 0.

The variance approximations with finite nonzero limits are
those for Hn=Tk; En=Hn; En=Tk; Bn=Hn; Bn=En, and Bn=Tk. All give ra-
tios of two variables with finite expectation and variance as n!
1 (Table 2).

Figure 4 shows the expressions from Table 5 together with the
simulated values. Compared to the plots of expectations of ratios

(Fig. 2), differences between the simulated and approximate var-
iances are prominent at small n. For the variances of
Hn=Ln; Bn=Hn, and Bn=Ln, the simulated and approximate values
differ substantially even as n increases. Because the theoretical
value of Cov½En; Bn� that contributes to the approximate variance
of Bn=En is itself an approximation, one of the larger differences
between simulation and approximation occurs for the plot forgVar½Bn=En�.

Figure 5 shows variances of ratios involving Tk for varying k,
for each of three values of n. Qualitatively, the values for approxi-
mate variances behave similarly to expectations in Fig. 3: in par-
ticular, the vertical placement of the curves follows the same
order. Our approximations to the variances of Ln=Tk and In=Tk

grow fastest, as the numerators are typically large and the
expected value of the denominator Tk decreases as k grows.
Approximations to variances of Hn=Tk; En=Tk, and Bn=Tk all display

Fig. 2. Simulated and theoretical approximations of expectations of ratios of pairs of variables, plotted as functions of sample size n. Expressions for
theoretical values are taken from Table 4.
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much slower growth; for these quantities, the expectations of

numerators of the ratios are bounded above by 2 for all n.

Discussion
In this article, we have computed approximations to expected

values and variances of ratios of various branch lengths under

the standard coalescent model. We have considered all 15

possible pairs of variables in fHn; Ln; En; In;Bn;Tkg, a set of varia-
bles whose properties have been studied in detail individually.
We have also assessed the accuracy of approximations to the ex-
pectation and variance by comparing them with values com-
puted by simulation. We have observed that the approximate
expressions behave in a way that matches mathematical intui-
tion about the behavior of random variables associated with the
branch lengths.

In plots of the various approximations, we have illustrated
how the random variables relate to each other, both among
fHn; Ln; En; In;Bng (Figs. 2 and 4) as well as between pairs including
one of fHn; Ln; En; In;Bng along with Tk (Figs. 3 and 5). As n grows
large, the ratios involving Ln and In have nearly identical behavior
in the plots, an observation that is explained by the fact that in-
ternal branches take up increasingly large fractions of the total
branch length. In the limit as n!1, expectations of both Hn and
En approach a constant value of 2 (Table 2), and Cov½Hn; En�
approaches 0 (Table 3). However, we observed that limn!1eE½En=Hn� ¼ p2=3� 2 � 1:28987 is not equal to limn!1 E½En�=
limn!1 E½Hn� ¼ 1. For the ratio Bn=En, the approximation aligns
with the naive prediction, limn!1 eE½Bn=En� ¼ p2=6� 1 ¼ limn!1

E½Bn�= limn!1 E½En�, even though Cov½En;Bn� is also zero in the
limit (Table 2). For Bn and Hn, which possess a high correlation,
limn!1 eE½Bn=Hn� ¼ p4=18� p2=6� fð3Þ � 2 � 0:56463, whereas
limn!1 E½Bn�= limn!1 E½Hn� ¼ p2=6� 1 � 0:64493.

Previously, we evaluated covariances and correlation coeffi-
cients under the coalescent model for the pairs of variables that
we consider here, obtaining exact covariances and correlations
for 13 of 15 pairs and approximations for the other two. We
obtained limiting expressions for these covariances and correla-
tions as n!1. The approximate values that we have provided
here for expectations and variances of ratios make use of these
previous results concerning covariances, adding to the under-
standing of the properties of joint distributions of pairs of genea-
logical variables in coalescent theory.

Many statistical tests of population-genetic models rely on a
model prediction of an equivalence between two quantities,
framed as a null hypothesis that a test statistic equals a particu-
lar value. The prediction is often formulated as a null hypothesis
that a difference between two quantities equals 0 or that their ra-
tio equals a null value such as 1. In coalescent theory, tests that
evaluate site-frequency spectra for agreement with predictions of
coalescent models tend to use differences or other linear combi-
nations (Zeng et al. 2006; Achaz 2009; Ferretti et al. 2010, 2017;
Ronen et al. 2013; Fu 2022). However, several modeling studies
and inference procedures in coalescent theory do emphasize ra-
tios (Slatkin 1996; Uyenoyama 1997; Schierup and Hein 2000;
Rosenberg and Hirsh 2003; Eldon 2011; Arbisser et al. 2018), as do
some test statistics (Schlötterer 2002; Lohse and Kelleher 2009).
Widely used tests in the area of molecular evolution, such as
tests of the relative count of nonsynonymous and synonymous
substitutions and the McDonald–Kreitman test of polymorphism
and divergence, also make use of ratios (Yang 2014).

The choice of a difference or a ratio in formulating a test sta-
tistic can rely on several factors. Ratios are unitless, so that
their values do not depend on conventions chosen during com-
putation (e.g. scaling time in units of N or 2N). Ratios might take
values in a prescribed range that can be simply interpreted,
such as the range of the coalescent ratio Hn=Ln from 1

n to 1
2

(Arbisser et al. 2018). However, the statistical properties of ran-
dom variables formulated as differences are generally easier to

(a)

(b)

(c)

Fig. 3. Theoretical approximations eE½X=Tk� for variables X in
fHn; Ln; En; In;Bng, plotted as functions of k for n¼ 10, n¼20, and n¼ 50.
The expressions plotted are taken from Table 4.
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compute from the properties of the separate random variables
whose difference is taken than are the properties of correspond-
ing statistics formulated as ratios. In general, corresponding dif-
ferences and ratios in coalescent theory have not been formally
compared for features such as their power to reject the null
hypothesis when processes such as natural selection or popula-
tion or species divergence affect the shapes of evolutionary
trees. Our work to obtain approximate expectations and
variances of ratios can augment understanding of scenarios in
which coalescent ratios are considered, and it can assist in eval-
uating the relative utility of difference-based and ratio-based
statistics.

We have found that approximations for fixed n and in the
limit as n!1 are quite accurate in predicting the expected val-
ues seen in coalescent simulations of the ratios (Fig. 2). For the
variances, the approximations are generally less accurate,

although in most cases, graphs of the approximations and simu-
lated values have similar shape (Fig. 4). These approximations
are obtained from a Taylor approximation for the variance of a
ratio (equation 4), and higher-order approximations of this vari-
ance could potentially be applied by use of Taylor’s theorem; as
the order of the approximation increases, however, the complex-
ity of the resulting formula also increases. For those variances for
which the approximation and simulation are not close in Fig. 4,
we advise caution in using the variances in settings in which a
precise approximation is needed.

Data availability
The ms command for simulations is ms n 100,000 -T, where n is
taken from f2; 3; . . . ; 50g and gives the number of leaves of simu-
lated trees.

Fig. 4. Simulated and theoretical approximations of variances of ratios of pairs of variables, plotted as functions of sample size n. Expressions for
theoretical values are taken from Table 5.
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