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Abstract Agouti-related-peptide (AgRP) neurons—interoceptive neurons in the arcuate nucleus

of the hypothalamus (ARC)—are both necessary and sufficient for driving feeding behavior. To better

understand the functional roles of AgRP neurons, we performed optetrode electrophysiological

recordings from AgRP neurons in awake, behaving AgRP-IRES-Cre mice. In free-feeding mice, we

observed a fivefold increase in AgRP neuron firing with mounting caloric deficit in afternoon vs

morning recordings. In food-restricted mice, as food became available, AgRP neuron firing dropped,

yet remained elevated as compared to firing in sated mice. The rapid drop in spiking activity of AgRP

neurons at meal onset may reflect a termination of the drive to find food, while residual, persistent

spiking may reflect a sustained drive to consume food. Moreover, nearby neurons inhibited by AgRP

neuron photostimulation, likely including satiety-promoting pro-opiomelanocortin (POMC) neurons,

demonstrated opposite changes in spiking. Finally, firing of ARC neurons was also rapidly modulated

within seconds of individual licks for liquid food. These findings suggest novel roles for antagonistic

AgRP and POMC neurons in the regulation of feeding behaviors across multiple timescales.

DOI: 10.7554/eLife.07122.001

Introduction
The homeostatic drive to feed is at least partially driven by agouti-related-peptide (AgRP) neurons in

the arcuate nucleus of the hypothalamus (ARC). These neurons have privileged access to slow

hormonal signals of energy balance, such as ghrelin and leptin (Willesen et al., 1999, Morton and

Schwartz, 2001, Zigman and Elmquist, 2003, Varela and Horvath, 2012, Wang et al., 2014), and

also receive long-range glutamatergic, GABAergic, and peptidergic synaptic inputs from multiple

central brain nuclei, including the paraventricular and dorsomedial hypothalamus (Krashes et al.,

2014). Both opto- and pharmaco-genetic activation of AgRP neurons drive intense feeding in ad

libitum-fed mice (Aponte et al., 2011, Krashes et al., 2011), while loss-of-function experiments in

food-restricted mice lead to a reduction in food consumption (Gropp et al., 2005, Luquet et al.,

2005, Krashes et al., 2011). These studies suggest that AgRP neurons represent a critical node in the

neural pathway (or pathways) linking interoceptive sensing of energy deficit with the decision to seek

and consume food. A requirement for pinpointing the precise role of AgRP neurons in driving various

aspects of this complex feeding process involves the direct evaluation of their endogenous spiking

activity.

Previous attempts to directly record spiking activity of AgRP neurons have been restricted to in

vitro approaches, due to the technical challenges of extracellular electrophysiological recordings in

the ARC in living animals, and the fact that AgRP neurons are intermingled with pro-opiomelanocortin

(POMC) neurons with opposing effects on food intake (Varela and Horvath, 2012, Zhan et al., 2013).
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Consistent with the hypothesized enhancement of AgRP neuron firing in times of caloric deficit, in

vitro recordings of AgRP neurons in brain slices from mice during their dark cycle or during a period of

fasting revealed enhanced action potential firing and spontaneous subthreshold currents as compared

to recordings during the light cycle (Yang et al., 2011, Liu et al., 2012, Krashes et al., 2013).

Interestingly, opposite effects were observed in satiety-promoting POMC neurons (Yaswen et al.,

1999, Aponte et al., 2011, Zhan et al., 2013), which are known to be inhibited by GABA release from

AgRP neurons (Cowley et al., 2001, Atasoy et al., 2012). Studies performed in vitro further suggest

that AgRP and POMC neurons exert antagonistic influences, not only on each other’s activity (Cone

et al., 2001, Yang et al., 2011, Atasoy et al., 2012), but also on the activity of common long-range

target nuclei (Bagnol et al., 1999, Cowley et al., 1999, Atasoy et al., 2012, Atasoy et al., 2014).

However, these in vitro experiments were performed under conditions in which most endogenous

circulating factors are absent, and most sources of slow and fast afferent neuronal input are severed.

Indeed, in the presence of realistic levels of synaptic inhibition, recordings from de-afferented AgRP

neurons show minimal action potential firing in vitro (Yang et al., 2011). High-temporal resolution in

vivo recordings of spiking activity in identified single neurons in the intact ARC would be necessary to

confirm these findings regarding sensitivity to slow changes in energy deficit and could potentially

reveal novel roles for AgRP and other ARC neurons in guiding food-seeking and feeding behaviors at

shorter timescales.

Here, we used an optetrode approach to investigate the in vivo spiking activity of AgRP neurons

and a group of nearby neurons inhibited by AgRP neuron photostimulation (ARCinh neurons). Because

the only ARC neurons currently known to be inhibited by AgRP neurons are POMC neurons

eLife digest Appetite is controlled in part by the opposing actions of the ‘hunger hormone’

(called ghrelin) and the ‘satiety hormone’ (called leptin). Ghrelin is released by the stomach when

empty and stimulates appetite, whereas leptin is released by fat stores and induces feelings of

fullness. Both hormones travel via the bloodstream and are detected by a region of the brain called

the hypothalamus.

Ghrelin and leptin act specifically on a group of cells in the hypothalamus that contains at least

two major cell types: AgRP neurons and POMC neurons. Electrode recordings from slices of mouse

brain show that AgRP neurons fire more rapidly at night—when mice normally feed—than during the

day, whereas POMC neurons do the opposite. This suggests that the activity of AgRP neurons drives

food-seeking behavior, whereas POMC firing inhibits it. However, the absence of circulating

hormones such as leptin and ghrelin in brain slices makes it difficult to draw firm conclusions about

the role of these cells in controlling appetite.

Mandelblat-Cerf, Ramesh, Burgess et al. have addressed this issue by performing the first

recordings of spiking activity in individual AgRP neurons and other cells that are likely to be POMC

neurons in awake mice. Consistent with the results of slice experiments, the firing rate of AgRP

neurons increased steadily over the course of the day, suggesting that their activity signals an

increasing need for food. Furthermore, as soon as food became available, the firing rate of the AgRP

neurons suddenly dropped—even though the animals’ energy reserves would still have been low.

These results are consistent with the findings of two recent studies reported earlier this year that

used different methods to indirectly measure neuronal activity in awake mice. Notably, even after the

drop in activity, the firing rates of AgRP neurons remained above those recorded in fully sated

mice—which possibly reflects the fact that the animals’ energy reserves were still low. The putative

POMC neurons generally showed opposite effects to the AgRP neurons.

The results of these electrode recordings in awake mice thus suggest that AgRP and POMC

neurons together maintain a drive to seek out food sources as energy reserves fall, and to refrain

from doing so when energy reserves are plentiful. Moreover, the seemingly paradoxical drop in

AgRP firing and increase in POMC firing upon receiving food may act as a signal to temporarily stop

searching for food, so that feeding itself can begin. Alternatively, since the release of satiety

hormones after eating a meal is slow, these rapid changes in firing may provide more immediate

feedback to the neuronal circuits that regulate the drives to seek and consume food.

DOI: 10.7554/eLife.07122.002
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(Cowley et al., 2001, Atasoy et al., 2012), a large fraction of ARCinh neurons are likely to be POMC

neurons. We found that AgRP neuron firing rates increased across hours over the course of the light

period. Surprisingly, we also found that AgRP neurons exhibited a sudden and sustained decrease in

spiking over the course of minutes, in response to feeding as well as to cues that predicted the

availability of food. This decreased level of spiking, which persisted throughout the meal, nevertheless

exceeded spiking rates during recordings from ad libitum fed, sated mice at the onset of the light

cycle. This abrupt change in spiking cannot simply reflect homeostatic changes but instead suggests

that the drop in AgRP neuron spiking reflects a reduction in the drive to seek food at the initiation of

food consumption. Finally, we observed that the activity of ARC neurons could be modulated on the

timescale of seconds by feeding-related behaviors, including individual licks for liquid food. In

general, neurons inhibited by AgRP neuron photostimulation show opposite effects to AgRP neurons.

Together, these results suggest that, in addition to sensing slow systemic changes in energy balance,

AgRP and POMC neurons may also integrate this information with complex environmental cues

regarding food availability and feeding context, in order to dynamically adjust feeding behaviors at

timescales from hours to seconds.

Results

Extracellular recordings of ARC neurons in awake mice
We recorded spiking activity from AgRP neurons and other nearby ARC neurons, by selectively

expressing cre-dependent channelrhodopsin (AAV9-FLEX-hSYN-ChR2-mCherry) in the ARC of Agrp-

IRES-Cre mice, and by subsequently performing extracellular optetrode recordings in awake,

behaving mice in which putative AgRP neurons were identified via a significant increase in firing

during optogenetic photostimulation (see below). Because AgRP neurons are densely packed in the

ARC (Figure 1A), we used tetrodes with high impedance that allowed for isolation of large spike

waveforms (Figure 1B) from neurons proximal to the tetrodes (4–8 bundles of 4 wires, <70 μm total

diameter per bundle). Several neurons could be recorded and discriminated on each tetrode and

clustered via differences in spike waveform amplitudes across electrodes within a tetrode (Figure 1B,C).

We verified that recordings were located within the ARC; Figure 1A.

We separated ARC neurons into classes by matching spikes with near-identical waveforms

obtained during ongoing activity and periods of photostimulation and identifying neurons that were

either driven (putative AgRP neurons, henceforth termed ‘AgRP neurons’) or suppressed (‘ARCinh

neurons’) by laser photostimulation (Lima et al., 2009, Cohen et al., 2012; see below, Figure 1A–E

and ‘Materials and methods’). Across 75 daily sessions in 15 mice, we recorded spiking activity in 100

ARC neurons, of which 41 were optogenetically identified as AgRP neurons on the basis of sustained

firing increases during photostimulation (see Figure 1D, Figure 1—figure supplement 1A; see

‘Materials and methods’ for additional details of classification). We also recorded activity of 26 nearby

ARC neurons that were significantly and strongly suppressed (by at least 20%) by photostimulation

(Figure 1E and Figure 1—figure supplement 1B; see also ‘Materials and methods’). Because the only

ARC neurons currently known to be inhibited by AgRP neurons are POMC neurons (Cowley et al.,

2001, Atasoy et al., 2012), a large fraction of ARCinh neurons are likely to be POMC neurons. We also

recorded from an additional 33 nearby neurons that were unaffected by photostimulation (‘ARCother’).

All recordings were performed in mice habituated to head restraint (see ‘Materials and methods’), as

this enabled recordings with greater stability from a larger number of electrodes.

Opposing modulations in ARC neuron firing across times of day
In a first experiment in ad libitum-fed mice, we measured the firing of ARC neurons during daily 1-hr

recording sessions at different phases of the light period, as the stomach is emptying (Kentish et al.,

2013), levels of ghrelin, a hormone known to increase AgRP neuron activity, are rising (Tschop et al.,

2000, Cummings et al., 2001, Wang et al., 2002, Bodosi et al., 2004), and minimal feeding is

occurring as compared to the subsequent dark period (Lu et al., 2002). Stable firing across tens of

minutes (Figure 1F) allowed reliable estimation of mean firing rate. As predicted by diurnal variations

in in vitro AgRP neuron activity (Yang et al., 2011, Krashes et al., 2013) and in ARC expression of

Agrp mRNA (Lu et al., 2002), AgRP neurons demonstrated a significant, approximately fivefold

increase in firing in afternoon vs morning recordings (p = 0.001; n = 10 vs 9 neurons, respectively;

Figure 2A). In contrast to AgRP neurons, we observed a trend towards decreased firing in afternoon
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Figure 1. Stable optetrode recordings from arcuate hypothalamic neurons. (A) An optetrode was implanted into the arcuate nucleus of the hypothalamus

to identify genetically-defined, ChR2-mCherry-expressing agouti-related-peptide (AgRP) neurons (see below and ‘Materials and methods’). Left: coronal

section, 1.5 mm posterior to Bregma (inset) and example histological section, showing AgRP neurons in the ARC (mCherry expression, red), and

localization of optetrode recording site (as determined by visualization of optetrode track). White inverted ‘T’ shape denotes location of optetrode track

(vertical line) and approximate width of optetrode (horizontal line), which estimates the medial-lateral range of potential locations of recorded single-units.

Right: schematic showing optetrode locations across 12 mice for which optetrode tracks were recovered. (B) Example voltage traces from recordings of

spontaneous spiking from one tetrode. Note differences in scale bar across electrode channels, reflecting difference in waveform amplitude across

channels. (C) Cluster-plots showing discriminability of spikes from different cells using tetrodes. Each dot represents the peak amplitude of a single-spike

waveform, measured on three different electrodes within the four-wire tetrode bundle. In this example, each spike waveform was designated as belonging

to one of three separable single-units (colored dots), or to multi-unit activity (gray dots). Colors for different single-units match the ticks above the spike

traces in B. (D) Example of a single-unit defined as a putative AgRP neuron, with peri-photostimulation (blue lines) spike raster plot (top), average peri-

stimulus time histogram (PSTH) across trials (middle), and mean normalized PSTH (average of individual neuron PSTHs after normalization by pre-pulse-

train firing rate) across all 19 AgRP neurons recorded from 9 ad libitum-fed mice (bottom). Shaded areas denote SEM. (E) Raster and PSTH plots (top,

middle) for an example single-unit defined as significantly and strongly (>20%) inhibited by AgRP neuron photostimulation (ARCinh), and mean normalized

Figure 1. continued on next page
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vs morning recordings across all non-AgRP neurons (p = 0.09, n = 32 neurons), with ARCinh neurons

showing a similar trend (p = 0.13, n = 14; Figure 2A).

AgRP neuron photostimulation of food-seeking and food intake has been shown to be dependent

on stimulation frequency, with greater potency at 20 Hz than at 5 Hz or 10 Hz (Aponte et al., 2011).

Further, the release of peptides is also likely to depend on spike frequency (Summerlee and Lincoln,

1981, Aponte et al., 2011, Arrigoni and Saper, 2014, Schone et al., 2014). Thus, we sought to gain

insight into instantaneous spiking frequency in our sample of ARC neurons by considering the

distribution of inter-spike intervals (ISIs). Most neurons (94/100) demonstrated tonic firing with

unimodal ISI distributions (Figure 2—figure supplement 1; Hartigan’s Dip Test, p < 0.05), suggesting

the absence of pronounced burst-like behavior (van den Top et al., 2004). In contrast to in vitro

recordings, where spiking often demonstrates machine-like regularity, we observed that ISI

distributions in vivo were quite broad (ratio of standard deviation to mean, or coefficient of variation,

exceeding a value of 1; see Figure 2—figure supplement 1 for details) for all three classes of neurons,

likely reflecting strong moment-to-moment fluctuations in synaptic input in vivo, as well as differences

in the cellular milieu in vivo vs. ex vivo. It is notable that, in the context of recordings from AgRP

neurons in free-feeding mice, we rarely observed short ISIs (<50 ms) in morning recordings, but

observed a roughly 14-fold increase in occurrence of such events in afternoon recordings (Figure 2B;

p = 0.02). In contrast, the non-AgRP neurons (ARCinh and ARCother) show the opposite trend, with

short ISIs occurring more often in the morning than in the afternoon (p = 0.13). Taken together, these

in vivo increases in AgRP firing and decreases in ARCinh firing from morning to afternoon recordings

are consistent with the homeostatic roles proposed for AgRP and POMC neurons in feeding behavior

(Krashes et al., 2011).

Opposing modulations in ARC neuron firing across tens of minutes
during feeding behavior
In a second experiment, we recorded activity of ARC neurons in food-restricted mice trained to lick

a lickspout to receive high-calorie liquid food (Ensure; see ‘Materials and methods’). As described in

Figure 3A, during each daily session, we recorded spiking activity (i) prior to presence of any food-

predicting cues (‘baseline period’) and (ii) prior to feeding but following the presentation and

positioning of the lickspout in front of the snout, and (iii) during a period of at least 45 min in which the

mouse could lick to receive food rewards. Across sessions, the onset of food availability had a variable

delay following lickspout placement in order to disambiguate ARC responses to initiation of feeding

(Figure 3) from any pre-feeding responses to food-associated cues (Figure 4). The main findings are

illustrated in two example ARC neurons (Figure 3B,C). We observed a dramatic decrease in firing rate

in the AgRP neuron (Figure 3B) when comparing the 5-min baseline period before lickspout

placement (orange dashed line) to the 45-min period following onset of food consumption (red

dashed line). By contrast, we observed a large increase in firing in the example ARCinh neuron

(Figure 3C).

Abrupt and sustained decreases in AgRP neuron firing, and increases in ARCinh neuron firing, were

also observed at the population level. We visualized firing changes at the population level as follows:

because neurons in our sample exhibited a range of baseline firing rates and firing rate variability

(Figure 3—figure supplement 1), we computed an index of reliable changes in firing rate between

the baseline period (5 min) prior to lickspout placement, and a 1-min sliding window of time following

this baseline period. This index, called the area under the Receiver Operating Characteristic (auROC;

see ‘Materials and methods’), has a value of 0 (blue) in periods where a neuron’s firing has decreased

Figure 1. Continued

PSTH (bottom) across all ARCinh units in ad libitum-fed mice (n = 14). (F) Firing rate timecourses, in 2-s bins (gray) and 10-s bins (colored), for the two

example cells in D and E. In ad libitum-fed mice in the absence of food cues or food, AgRP neurons and ARCinh neurons exhibited stable minute-to-

minute firing rates across recordings ranging from 30 to 90 min.

DOI: 10.7554/eLife.07122.003

The following figure supplement is available for figure 1:

Figure supplement 1. Light-evoked responses in different populations of arcuate neurons.

DOI: 10.7554/eLife.07122.004
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robustly (i.e., the distribution of firing rates at the tested period is entirely below the firing rate

distribution of the baseline period), a value of 1 (red) in periods where firing has increased robustly,

and a value of 0.5 for periods with no change in firing (i.e., where the distribution of firing rates in the

test period is indistinguishable from baseline). Using this index, we observed that AgRP neurons

typically showed a rapid and sustained decrease in firing (Figure 3D) when comparing pre-lickspout

baseline firing (prior to gray vertical bar) with firing rates in a sliding window following onset of

feeding (black vertical bars). By contrast, ARCinh neurons, a class that likely includes POMC neurons,

typically showed a rapid and sustained increase in firing (Figure 3D).

We quantified these feeding-related changes from baseline firing (pre-lickspout placement) in

three windows of time: (i) between 0–5 min post-feeding onset, a time that likely precedes most

nutrient absorption and counter-regulatory visceral and hormonal changes (e.g., de Araujo et al.,

2008), (ii) between 5–15 min post-feeding onset, a time when mice were still licking for food at

a maximal rate but when systemic changes may begin to occur (de Araujo et al., 2008), and (iii)

between 15–45 min post-feeding onset, a time when licking for food decreased and became more

sporadic (see dots above x-axis in Figures 3B,C). During each analysis window, we tested for

significant differences in mean firing between baseline and post-feeding firing rates (by K-S tests;

Figure 2. Arcuate neurons demonstrate changes in firing rate across the light period. (A) AgRP neurons (green dots)

fired significantly more in the afternoon (when caloric deficiency is increased and the dark period is approaching)

than in the morning (AM: 1.4 ± 0.3 Hz, n = 10; PM: 7.6 ± 1.7 Hz, n = 9; t-test, p = 0.001), while all other ARC neurons

showed the opposite trend (AM: 12.0 ± 4.0 Hz, n = 15; PM: 5.3 ± 1.1 Hz, n = 17; t-test, p = 0.08). ARCinh neurons

(purple dots) showed a similar trend (AM: 18.5 ± 7.6 Hz, n = 7; PM: 5.9 ± 2.4 Hz, n = 7; t-test, p = 0.14). Note the

presence of ARCinh neurons with very high mean spiking rates above 30 Hz. (B) Same plots as in A, but displaying the

rate of short inter-spike interval events (ISI; spikes occurring <50 ms apart) in morning vs afternoon recordings. AgRP

neurons showed a 14-fold increase in short ISI events (AM: 0.03 ± 0.11 Hz; PM: 2.7 ± 1.1 Hz; t-test p = 0.02), while

non-AgRP ARC neurons showed a trend toward a decrease in short ISI events in the afternoon (AM: 8.7 ± 3.8 Hz; PM:

2.2 ± 0.7 Hz; t-test, p = 0.08); neurons that were inhibited by photostimulation showed a similar trend (AM: 15.3 ± 7.4

Hz; PM: 2.9 ± 1.7 Hz; t-test, p = 0.13).

DOI: 10.7554/eLife.07122.005

The following figure supplement is available for figure 2:

Figure supplement 1. Characterization of ISI statistics in arcuate neurons.

DOI: 10.7554/eLife.07122.006
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Figure 3. Arcuate neurons are modulated on the timescale of minutes by feeding. Following instrumental conditioning for liquid food rewards (Ensure) in

food-restricted mice, we recorded arcuate neuron changes during feeding. (A) Experimental paradigm. First, baseline spiking was recorded for at least 5

min. A lickspout was then positioned close to the snout. After a variable duration (0.5–15 min), food was made available, at which point licking resulted in

a delivery of 10 μl of liquid food. Typically, the mouse continued to eat for at least 45 min, beginning with almost continuous licking and gradually

Figure 3. continued on next page
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using distributions of firing rates from each 5 s bin in each period), and we quantified population

estimates of the auROC index described in Figure 3D (which reflects discriminability of firing rate

distributions between pre-lickspout and post-feeding periods).

Surprisingly, during early feeding (0–5 min post-feeding onset), mean firing rates were significantly

different than baseline in 82% (40/49) of all ARC neurons (Figure 3E). In particular, 64% (14/22) of

AgRP neurons had significantly decreased mean firing during this period, while only 23% (5/22) of

AgRP neurons had increased mean firing (Figure 3E). The average auROC index across all AgRP

neurons was significantly less than 0.5 (i.e., a discriminable decrease in distribution of firing rates;

Figure 3F, top left panel; p = 0.016). Indeed, auROC indices for most AgRP neurons were <0.5 during

this period, as illustrated in the cumulative distributions plot (green distribution in Figure 3F, bottom

left panel). In contrast to these decreases in firing, ARCinh neurons demonstrated opposite changes

during this early pre-feeding period, as 66% (8/12) of ARCinh neurons showed a significant increase in

firing, while only 17% (2/12) showed a significant decrease (see Figure 3E; mean auROC significantly

above 0.5, p = 0.01, see Figure 3F).

These drops in firing rate in AgRP neurons, and increases in ARCinh neurons, generally persisted

across later feeding periods (Figure 3E,F; see also Figure 3—figure supplement 1). In general,

feeding-induced changes from pre-lickspout baseline period remained consistent but began to abate

by 15–45 min post-feeding onset, a time of decreased licking and consumption (Figure 3E; see also

Figure 3F, bottom panels; 53% of all 49 ARC neurons showed significant changes in mean firing at

15–45 min after feeding onset, vs 82% and 86% of ARC neurons during earlier post-feeding periods).

Notably, AgRP neurons with higher initial firing rates prior to lickspout placement were more likely to

show a larger subsequent drop in firing after feeding (e.g., at 5–15 min post-feeding onset: r = −0.54;
p = 0.0091; Figure 3—figure supplement 1B). It is possible that certain AgRP neurons may have

already decreased their activity prior to the start of recording, due to other contextual food-associated

cues appearing at each session’s onset. As such, our findings likely provide a conservative estimate of

the number of AgRP neurons with cue- and food-related decreases in firing (see ‘Discussion’).

In general, these findings demonstrate clear and opposite changes in spiking activity in the majority

of AgRP and ARCinh neurons during feeding behavior, consistent with recent studies measuring

changes in calcium activity in ARC neurons during feeding (Betley et al., 2015, Chen et al., 2015). In

addition to these changes in firing, our data provided additional information regarding absolute

activity levels following the onset of feeding. Interestingly, while feeding reduced firing rates, it did

Figure 3. Continued

transitioning to sparser feeding bouts (see below). (B) An example AgRP neuron demonstrating a fast and sustained decrease in firing within minutes of

presentation of a lickspout (orange vertical dashed line; see also Figure 4A) and access to food (maroon vertical dashed line). Dots above x-axis signify 10-

s bins in which licking occurred. Gray trace: firing rate in 2-s bins; colored trace: 10-s bins. Significant decreases in firing were observed from pre-lickspout

baseline to the periods following access to food (p < 0.001 for early-, mid-, and late-feeding periods). (C) Similar to B, but for an example ARCinh neuron

that demonstrated significant increases in firing post-feeding onset (p < 0.001, for early-, mid-, and late-feeding periods; see also Figure 4A).

(D) Timecourses of increases (red), decreases (blue), or no reliable change (white) in firing from pre-lickspout baseline (gray vertical dashed line) for each

cell recorded during this task (n = 49). For visualization purposes, this plot employs a normalized index called the area under the Receiver Operating

Characteristic Curve (auROC; see ‘Materials and methods’). Short vertical black lines denote the onset of food availability. Example neurons in B and C are

denoted by ‘B’ and ‘C’, respectively. (E) Proportion of cells recorded that responded with a significant (two-sample KS-test, p < 0.025) increase (red),

decrease (blue), or with no change in firing at 0–5 min (left), 5–15 min (middle), and 15–45 min (right) post-feeding onset. Data include 22 AgRP neurons, 12

ARCinh neurons, and 15 ARCother neurons from 5 mice. (F) Comparison of auROC values, across AgRP, ARCinh, and ARCother (green, purple, and gray,

respectively) neurons, during early-, mid-, and late-feeding periods (left, middle, and right panels, respectively). Left: bar plot showing averaged auROC

(a value of 0.5 reflects no change in distributions of firing rate). For early-, mid-, and late-feeding periods, mean auROC for ARCinh (early: 0.68, mid: 0.75,

late: 0.68) is significantly larger than those of AgRP (early: 0.35, mid: 0.33, late: 0.38; Analysis of variance, p = 0.046, 0.00004, 0.014, respectively). Error bars

denote SEM. Right: cumulative distribution of auROC values across neurons in each class, for all feeding periods. The abscissa value at an ordinate of 50%

indicates the median auROC for each class.

DOI: 10.7554/eLife.07122.007

The following figure supplements are available for figure 3:

Figure supplement 1. Different feeding effects in separate populations of arcuate neurons.

DOI: 10.7554/eLife.07122.008

Figure supplement 2. Neurons recorded across multiple days show similar firing changes to food-associated cues and feeding.

DOI: 10.7554/eLife.07122.009
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not abolish firing in AgRP neurons, and firing rates remained elevated relative to certain ad libitum

conditions. Specifically, we found that the spiking rate of AgRP neurons recorded in food-restricted

mice following refeeding (15–45 min after onset of feeding, whether during epochs that involve or do

not involve licking, 5.9 ± 1.3 and 5.8 ± 1.3 spikes/s, respectively; N = 22 neurons) was significantly

higher than firing rates measured in free-feeding mice at the onset of the light cycle following night

feeding (1.4 ± 0.3 spikes/s; N = 10; p = 0.03 in both cases). These data suggest that the early, feeding-

related drop in AgRP neuron activity represents a partial drop in firing that does not reach the lower

levels of firing exhibited by these neurons in the absence of caloric deficiency.

Opposing modulations in ARC neuron firing by food-associated cues
prior to ingestion of food
We next assessed the possibility of even earlier changes in firing, immediately after presentation of

the food-predicting cue (lickspout placement near the snout) but prior to onset of feeding. As shown

in Figure 4A,B (zoomed-in plots of same example AgRP and ARCinh neurons as in Figure 3B,C),

a closer inspection of this period (between the orange and maroon dashed lines) suggests that ARC

firing rates may begin to change from baseline before feeding has even started, likely due to the

Figure 4. Many ARC neurons are modulated within minutes following food cue presentation, but prior to feeding.

(A) Spiking activity of the same cells shown in Figure 3B,C, zoomed-in to illustrate the drop in spiking in response to

presentation of a food cue (lickspout placement near the snout; orange dashed line) but prior to onset of food

delivery (maroon dashed line). Top: AgRP neuron showing a significant food cue-induced decrease (two-sample KS-

test, p < 0.001); Bottom: ARCinh neuron showing a significant food cue-induced increase (p < 0.001). (B) Proportion

of cells recorded that responded with a significant (two-sample KS-test, p < 0.025) increase in firing (red), decrease in

firing (blue), or with no change in firing (gray) following lickspout placement but prior to feeding. (C) Comparison

between averaged auROCs of AgRP, ARCinh, and ARCother neurons (green, purple, and gray, respectively) for the

period between lickspout placement and feeding (cf. Figure 3F). Left: bar plot of mean auROC (0.5 indicates no

change in a neuron’s distribution of spike rates) across classes. Mean auROC for ARCinh (0.67) is significantly larger

than that of AgRP (0.42) (Analysis of variance, p = 0.0046). Error bars denote SEM. Right: cumulative distribution of

auROC values for all ARC classes.

DOI: 10.7554/eLife.07122.010
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presentation of the food-predicting cue (lickspout placement). Indeed, almost half of all ARC neurons

recorded (45%, 22/49; 2 sample KS-test, p < 0.025) showed significant changes in mean firing in the 5-

min period following lickspout placement, but prior to feeding. As with post-feeding changes, 32% (7/

22) of AgRP neurons showed a significant ‘anticipatory’ drop in firing, while only 5% (1/22) showed

a significant increase. By contrast, 50% (6/12) of ARCinh neurons showed significant anticipatory

increases in firing, while none showed a significant drop. Similar effects were evident in the auROC

change index, plotted in Figure 3D (in the period following the black vertical dashed line, but prior to

the black vertical bar in each row) and quantified in Figure 4C. Thus, a large subset of AgRP neurons

decrease spiking activity in the minutes following presentation of a food-predicting cue, while ARCinh

neurons showed the opposite effect. These findings suggest that AgRP neurons decrease their firing

upon identification of an upcoming source of food, either to decrease the drive to continue the search

for food (see ‘Discussion’), or in anticipation of future meal-induced restoration of caloric deficit.

Reliability of AgRP neuron modulation by food cues and feeding across
sessions
While we ensured that neurons recorded across daily sessions were distinct (by electrode adjustment

and analysis of spike waveforms), in two cases, we did record from what appeared to be the same

AgRP neuron in back-to-back sessions (including the example neuron in Figures 3B, 4A; based on

similarity of waveforms and amplitudes across channels of the same tetrode across days, see

Figure 3—figure supplement 2A,B,D,E). These examples illustrate that our findings of rapid

decreases in AgRP neuron firing, both prior to and following the onset of feeding, were highly

consistent for the same neuron when assessed across days. Interestingly, the second example neuron

(Figure 3—figure supplement 2C,F) was recorded during two sessions involving long imposed

durations between lickspout placement and commencement of feeding (orange and maroon dashed

vertical lines). On both days, this AgRP neuron showed a transient drop following lickspout placement

that partially recovered over minutes, followed by a more sustained drop following onset of feeding

(Betley et al., 2015, Chen et al., 2015). Thus, such stable recordings of the same ARC neurons across

days should be possible using our approach (see e.g., Kentros et al., 2004, Siegle and Wilson, 2014,

Thorn and Graybiel, 2014) and can provide valuable insights into slow and fast motivational changes.

AgRP photostimulation results in increased licking and food
consumption
Optogenetic stimulation of AgRP neurons drives voracious feeding (Aponte et al., 2011). Previous

studies, however, were performed in freely moving mice with access to solid food. We confirmed that

AgRP photostimulation in a headfixed mouse trained to lick for liquid Ensure also drives feeding. First,

at the end of feeding experiments (described above), when mice were sated (defined by voluntary

abstinence from licking for liquid food), we repeated the photostimulation procedure to confirm

identification of recorded cells. Here, we investigated whether this AgRP photostimulation would

induce additional licking for liquid food (n = 11 sated sessions from 4 mice, including all sessions in

which the mouse did not lick for Ensure in the 3 min preceding laser stimulation onset). Mice showed

a marked increase in licking behavior after photostimulation onset compared to the period preceding

photostimulation (Figure 5A; p = 0.03). In a separate experiment, we habituated another cohort of

mice to head-fixation and trained them (for 1–2 days, under mild food restriction) to lick for Ensure,

followed by at least 5 days with ad libitum access to food. Under these free-feeding conditions, which

more faithfully approximate published data on AgRP-driven feeding behavior (Aponte et al., 2011,

Krashes et al., 2011), mice consistently increased licking behavior and food consumption in response

to AgRP photostimulation (Figure 5B,C; pre-photostim.: 12 ± 2 μl/min; during photostim.: 67 ± 5 μl/
min; post-photostim.: 11 ± 2 μl/min, mean ± SEM across 5 mice; pre-photostim vs during photostim:

p = 0.004, during photostim vs post-photostim: p = 0.015; paired t-test).

Fast modulations in ARC neurons firing within 1 s of a lick or lick bout
These feeding-related changes at the timescale of minutes led us to ask whether ARC neurons can be

modulated at the even faster timescale of seconds, by individual licks and/or by bouts of licking

preceded by several seconds without licking (see Figure 6; Chen et al., 2015). If such modulation

existed, it could imply that AgRP neurons and other ARC neurons might contribute to momentary
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fluctuations in the drive to seek and/or consume

food, even at the level of licking microstructure

(Davis, 1989).

Modulation of firing by bouts of licking (de-

fined as periods of intense licking for food,

preceded by at least 8 s without licking) is clearly

evident in the example neuron in Figure 6A. We

focused analyses on the period from 15 to

45 min post-feeding onset, when initiation of licks

and lick bouts was more sporadic (see Figure 3).

Firing activity aligned to each lick bout for this and

three other neurons (see spike raster plots and

average peri-bout time histograms in Figure 6B)

revealed that some neurons appear particularly

modulated at lick bout onset, while others appear

to change their firing proportionally to the

number of individual licks at any time (third

example from left). We estimated whether each

neuron was significantly modulated by licks and/or

by lick bouts, using multiple linear regression

between timecourses of firing rate, licking, and

lick bouts (using 0.5-s bins; see Figure 6C). For

the four example neurons, yellow traces in

Figure 6C (left panels) show changes in firing

rate relative to the moment that a lick occurred

(asterisks denote significant firing modulation,

F-test, p < 0.002, corrected for multiple compar-

isons). Similarly, orange traces in Figure 6C (right

panels) show changes in firing relative to onset of

a bout of licking for liquid food.

At the population level, almost half of ARC

neurons were significantly modulated by individ-

ual licks and/or lick bouts (Figure 6D,E), with most

significant lick- or bout-induced changes in firing

(asterisks in Figure 6C) occurring approximately 1

s before and/or after lick/bout onset (Figure 6D

and Figure 6—figure supplement 1A,B). The

modulation of firing at times substantially pre-

ceding the onset of a lick or lick bout suggests

that these changes do not only reflect efference

motor copies but could partially help drive

initiation of upcoming licks. These analyses show

that firing rates could be influenced by licking

events. However, this rapid source of modulation

did not influence the main conclusions in Figure 3

regarding feeding-related decreases in firing in

most AgRP neurons, or increases in firing in most

ARCinh neurons. These findings remained intact

when considering only epochs with or without

lick events (Figure 6—figure supplement 2).

Feeding-related changes in firing near the end

of the meal persisted in the absence of any licking

or consumption, suggesting that these changes

do reflect actual persistent changes in motiva-

tional drive.

Figure 5. Optogenetic activation of AgRP neurons

promotes licking behavior and food consumption in head-

restrained mice. (A) Mice that have been fed Ensure to

satiety (see Figures 3, 4) subsequently increased licking for

Ensure in response to optogenetic photostimulation of

AgRP neurons. (B) Ad libitum-fed mice also increased

licking for Ensure in response to optogenetic photo-

stimulation of AgRP neurons, even when head-restrained

(Top: individual single-session examples from 5 separate

mice; Bottom: mean ± SEM of lick rate from 5 mice). (C) Ad

libitum-fed mice increased food consumption in response

to optogenetic stimulation of AgRP neurons, even when

head-restrained (asterisks indicate paired t-tests, p<0.02).
DOI: 10.7554/eLife.07122.011
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Figure 6. Arcuate neurons are modulated on short timescales by licking activity. We evaluated whether ARC neuron firing could be modulated by bouts of

licking for food (defined by >8 s without licking, followed by a burst of >3 licks) and/or by the occurrence of an individual lick (timescale of <1 s).

(A) Example firing rate traces (gray: 2-s bins; green/purple: 10-s bins) and licking (orange) from an AgRP neuron (left) and an ARCinh neuron (right) that both

showed positive correlations between firing rate and licking bouts. (B) Top: raster plots of spiking (black ticks) and licking (orange ticks) for four example

neurons, aligned to the onset of a licking bout. Bottom: average firing (mean ± SEM) relative to bout onset for AgRP neurons (green) and ARCinh neurons

(purple). Dark orange traces are average lick rates. Note that firing of some cells appears linearly related to frequency of individual licks (e.g., third panel

from left), while firing in other cells appeared more strongly modulated by bout onset (first and fourth panles from left). Several AgRP neurons (e.g.,

second panel from left) showed a reliable decrease in firing at bout onset. (C) We estimated the degree of modulation of firing across time relative to an

individual lick (gold traces), and relative to an individual bout onset (orange), using multiple linear regression. Asterisks indicate times of significant

modulation, relative a lick or lick bout (F-test, p < 0.002, corrected for multiple comparisons; see ‘Materials and methods’). (D) Population distribution of

times relative to a single lick (gold) or lick bout (orange) at which significant modulation of firing (asterisks in C) occurred across 44 cells. Note that many

neurons began changing their firing before the onset of a lick or lick bout (gray vertical lines), and that modulation mostly occurred within ±1–2 s of onset

of a lick or lick bout, demonstrating modulation of ARC neuron firing at a surprisingly fast timescale. (E) Proportions of neurons in each class that were

significantly modulated by individual licks (gold), lick bouts (orange), both (red), or neither (gray).

DOI: 10.7554/eLife.07122.012

The following figure supplements are available for figure 6:

Figure supplement 1. Modulation of firing by licking across classes of arcuate neurons.

DOI: 10.7554/eLife.07122.013

Figure supplement 2. Feeding-related effects are observed independent of licking behavior.

DOI: 10.7554/eLife.07122.014
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Of the 5 AgRP neurons that were significantly modulated by lick bouts, 2/5 showed reliable

decreases in firing within seconds of the onset of a licking bout (Figure 6B,C, second neuron from

left), similar to the decrease in firing observed over the course of several minutes during the initial

onset of feeding behavior (Figure 3). While the rest of our small sample of significant bout-modulated

AgRP and ARCinh neurons tended to increase their firing at the time of bout onset (AgRP: 3/5

increased, ARCinh: 2/2 increased; Figure 6—figure supplement 1C), future studies will be required to

confirm whether populations of AgRP vs ARCinh neurons, on average, also show opposite, lick-related

changes in firing at the 1-s timescale.

Modest correlations in firing at the 1-s timescale, within and across
classes of ARC neurons
One potential means to gain additional insight into the question of whether AgRP and ARCinh neurons

show opposite changes in firing at the 1-s timescale, and whether AgRP neurons show synchronized

activity at this timescale, is to evaluate simultaneously recorded pairs of neurons. Overall, we found

significant but modest pairwise correlations in firing rate, at the 1-s timescale, in 40/44 pairs of

simultaneously recorded ARC neurons (see Figure 7A,B and legend). While 3/3 paired recordings

from a simultaneously recorded AgRP neuron and ARCinh neuron showed significant correlations,

correlation coefficients were modest (Figure 7A, <0.2). Similarly, while 7/10 pairs of AgRP neurons

showed significant correlations, these were also quite modest (mostly <0.2). Thus, the correlations in

endogenous activity across ARC neurons differ significantly from the hypersynchronous correlations at

this timescale that likely occur across ARC neurons during periodic, 1-s duration photostimulation

often employed in vivo (Figure 1—figure supplement 1).

Discussion
In this study, we have developed a means for stable extracellular recordings from individual neurons in

the arcuate nucleus of the hypothalamus in awake mice. Using this approach, we demonstrated

dynamic changes in spiking activity in classes of ARC neurons across multiple timescales (Figure 8).

First, consistent with in vitro studies, we found an increase in spiking of putative AgRP neurons

from morning to afternoon recordings in ad libitum-fed mice (Figure 2), despite the fact that food

intake in mice is minimal during this period (Lu et al., 2002). Because the observed increase in

endogenous afternoon firing in AgRP neurons does not drive feeding, additional circuits may exist

downstream of AgRP neurons (Figure 8) that prevent significant daytime feeding until dark period

onset, at which point this ‘drive state’ is released and food-seeking and feeding rapidly occur (Lu

et al., 2002). The slow changes in firing that we observed across the light cycle as caloric deficit

increases are consistent with prior studies employing indirect measures of AgRP activity (Lu et al.,

2002, Ellis et al., 2008), as well as with in vitro recordings from AgRP neurons across times of day

(Yang et al., 2011, Krashes et al., 2013). Similarly, the sustained decrease from baseline spiking in

AgRP neurons at 15–45 min following onset of feeding (Figure 3) was consistent with previous studies

reporting a decrease in AgRP cFos activity 2 hr after scheduled refeeding (Tan et al., 2014) or after

post-fast refeeding (Becskei et al., 2009).

Second, in the context of the instrumental feeding task in food-restricted mice, our direct

measurement of absolute spiking rates revealed that while spiking in AgRP neurons is reduced

following refeeding, even in epochs late in the meal when mice are not licking for liquid food, firing

persists and remains elevated (by approximately four fold) as compared to low levels of spiking

observed in AgRP neurons recorded from ad libitum-fed mice in the early stages of the light cycle

(∼5.9 ± 1.3 spikes/s vs ∼1.4 ± 0.3 spikes/s). These data further support the notion that additional

circuits downstream of AgRP neurons may prevent additional feeding, even in contexts where AgRP

neurons continue to fire at intermediate spike rates. Moreover, these data suggest that the rapid

decrease in AgRP firing, associated with food cues and meal-initiation (Figures 3, 4; Betley et al.,

2015, Chen et al., 2015), may be separable from the firing that persisted at intermediate spiking rates

during the meal, which may be associated with homeostatic signals of residual negative energy

balance.

We found that AgRP neurons responded with rapid and persistent decreases in activity to both

a food-predicting cue (lickspout placement near the snout) and to feeding onset, and that such

decreases were sustained at later periods (e.g., 15–45 min post-feeding onset). In contrast to AgRP
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neurons, ARCinh neurons—including putative POMC neurons—responded with fast and persistent

increases in firing to both food-predicting cues and food reward. Furthermore, acute modulation of

ARC firing rates even occurred down to a timescale of approximately 1 s. Such seconds-long

modulations could occur prior to, as well as during, individual licks or bouts of licking for food, which

Figure 7. Endogenous correlations between simultaneously recorded pairs of arcuate neurons. (A) Correlation

coefficients (at zero time-lag) across pairs of simultaneously recorded neurons within a class or across classes of ARC

neurons. While 7/10 pairs of AgRP neurons showed significant correlation coefficients (p < 0.05), the correlations

were modest (all <0.3). Similar results were observed for other pairs. To ensure that correlation coefficients did not

simply reflect slow concurrent changes in firing across neurons, we first removed slow trends in firing from each cell’s

spike-rate timecourse (slower than ∼100 s, by high-pass filtering firing rate timecourses above 0.01 Hz). (B) To

examine the timescale of correlation between pairs of neurons, we calculated correlations between pairs at lags up

to ±20 s. Most pairs with significant correlations (black lines) peaked near zero time-lag, with correlations falling off

by 5 s of lag. These data suggest that pairs of ARC neurons within and across classes can show modest but

significant correlations or anti-correlations at the timescale of ∼1 s.

DOI: 10.7554/eLife.07122.015

Mandelblat-Cerf et al. eLife 2015;4:e07122. DOI: 10.7554/eLife.07122 14 of 25

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.07122.015
http://dx.doi.org/10.7554/eLife.07122


themselves elicited a transient decrease in firing in several AgRP neurons. These fast changes in firing

that we observed on the timescale of minutes to seconds in classes of ARC neurons were surprising, as

these neurons were presumed, until recently, to be mainly driven by slow homeostatic signals

(Lu et al., 2002, Ellis et al., 2008, Kim et al., 2014). However, as reviewed by Berridge 2004, many

eating behaviors may ‘co-opt or pre-opt the cue-depletion detectors that trigger hunger in

emergency cases of real deficit’.

In the case of AgRP neurons, initial evidence of non-homeostatic influences was suggested based

on observations of a decrease in AgRP neuron c-Fos expression 2 hr after consumption of a calorie-

free meal (Becskei et al., 2009), though limited temporal resolution and an uncertain relationship

between c-Fos and in vivo firing limit the interpretation of these data. More recently, in vivo fiber

photometry was used to monitor bulk changes in population calcium activity, pooled from many ARC

AgRP neurons (Chen et al., 2015), while another recent study used epifluorescence measurements of

calcium activity in individual AgRP neurons in awake mice (Betley et al., 2015). Consistent with our

spiking data from individual neurons, these studies observed fast reductions in AgRP neuron calcium

activity (within <1 s) during presentation of food-predicting cues and of food (Betley et al., 2015,

Chen et al., 2015). Taken together, our direct measurements of spiking activity in AgRP neurons are

generally consistent with recent findings observed using measurements of calcium activity in the ARC

(see below for further comparison of these different technical approaches).

The full complement of feeding-related behaviors includes sensing caloric deficiency, initiation of

food-seeking, consummatory activity, and, ultimately, cessation of feeding. While manipulations of

several different brain areas can produce initiation or cessation of food consumption, it remains

unknown whether neurons exist whose endogenous in vivo spiking activity parallels the slowly

increasing and rapidly terminating drive state associated with food seeking. The motivational drive to

Figure 8. ARC neurons are modulated on multiple timescales. We observed slow, likely homeostatic, changes in

ARC neuron activity, consistent with the established role for ARC AgRP and pro-opiomelanocortin (POMC) neurons

in regulating energy balance. However, we also demonstrated fast changes, on the order of minutes and even

seconds, in response to feeding, food-associated cues, and licking behavior. Differential modulation of these

opposing populations of neurons on these timescales may enable both homeostatic and more rapid adjustment of

downstream circuits that underlie complex feeding-related behaviors, including food-seeking and food

consumption. PVH: paraventricular hypothalamus; DMH: dorsomedial hypothalamus; LH: lateral hypothalamus.

DOI: 10.7554/eLife.07122.016
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find food grows during periods of increasing energy deficit (Saper et al., 2002). During appropriate

contexts, this drive should bias actions towards food-seeking, as demonstrated in rodents with

increased exploration at the time of scheduled feeding (Moran and Tamashiro, 2007, Mistlberger,

2009, Tan et al., 2014). This behavior persists until a source of food is secured, at which point seeking

must stop so that feeding can begin (Craig, 1917, Berridge, 2004). Our findings of slow diurnal

increases and fast feeding-related decreases in AgRP neuron firing support the hypothesis that AgRP

neurons may also encode a food-seeking drive that can be transiently shut off when food becomes

available (Tan et al., 2014), possibly to avoid further ‘appetitive phase’ food-seeking in lieu of

consummatory behavior (Craig, 1917, Berridge, 2004). Similar to our recordings in AgRP neurons,

previous studies involving a neural circuit that regulates drinking reported rapid reductions in firing of

vasopressin-secreting supraoptic neurons during drinking of water (Arnauld and du Pont, 1982,

Stricker and Hoffmann, 2007). These findings suggest that rapid reductions in firing of neurons

promoting specific motivational drives during consumption may be a general mechanism. It is also

possible that the fast modulation in spiking activity represents the anticipation of future meal-induced

restoration of caloric deficit. To further distinguish between contributions of AgRP neurons to

appetitive, consummatory, and/or anticipatory feeding behaviors, it will be instructive, in future

studies, to (i) employ larger delays between delivery of food rewards (Cohen et al., 2012; currently

inter-reward interval was ≥ 2.5 s), (ii) use lever pressing rather than instrumental licking in order to

distinguish requests for food from food consumption (Histed et al., 2012), and (iii) use virtual reality

methods in head-fixed mice (Dombeck et al., 2007) to study simulated foraging activity with precise

behavioral control and monitoring. Our demonstration that AgRP neuron activity recorded in awake,

head-restrained mice shows similar changes as observed in freely moving mice (Betley et al., 2015,

Chen et al., 2015), and that activation of AgRP neurons in head-fixed mice has similar effects on

consummatory behaviors as previous studies in freely behaving mice (Aponte et al., 2011, Krashes

et al., 2011), sets the stage for using head-fixation as a means to probe this feeding circuit during

well-controlled behaviors with precise behavioral monitoring, large numbers of trials, and easier

experimental access to stable, dense recordings using electrophysiology or two-photon calcium

imaging with fewer weight restrictions.

In contrast to AgRP neurons, ARCinh neurons, a group that likely includes POMC neurons that exert

opposite effects to AgRP neurons on common downstream targets, demonstrated concomitant

increases in firing (Figure 8) that may act synergistically with decreases in AgRP firing to more

effectively drive these common targets. The recent observations of a rapid increase in population

POMC calcium activity in response to food cues, to sustained feeding, as well as during brief

individual bouts of licking of liquid food (Chen et al., 2015) are consistent with our spiking data in

ARCinh neurons. Optogenetic photostimulation of POMC neurons results in reduced food

consumption, although this effect is only evident at longer timescales (Aponte et al., 2011, Zhan

et al., 2013). Our data suggest that at least some POMC neurons may act on faster timescales to

reduce the drive to seek food. It remains an open question whether these opposing changes in firing

are primarily driven by direct inhibition by AgRP neurons (Cowley et al., 2001, Atasoy et al., 2012),

or by additional sources of fast input to these neurons (see above). Future studies can begin to

elucidate which of the local and long-range sources of fast synaptic input to AgRP and POMC neurons

(Figure 8; Krashes et al., 2014) are responsible for various fast and slower changes in firing that we

have observed, using optetrode recordings from these inputs as well as by combining ARC recordings

with methods for selective silencing of each source of input.

The current study benefited from single-spike resolution to monitor spiking of AgRP neurons in

awake mice, down to a timescale of milliseconds. This allowed sub-second measurements of

correlations between ARC neuron firing and lick microstructure, as well as sub-second correlations in

firing between ARC neurons. Optetrode methods present some challenges, particularly in the ARC:

the optetrode (∼300 μm in diameter, with 4–8 70 μm diameter tetrodes extending into the ARC) must

penetrate approximately 5.5 mm into the brain to gain access to the relatively small ARC nucleus,

likely resulting in lower yield. Similar to previous optetrode studies (e.g., Cohen et al., 2012), some

actual AgRP neurons may be classified as ARCother neurons in cases of insufficient photostimulation.

While a previous study found that AgRP neurons almost exclusively decrease their calcium activity

upon food presentation (Betley et al., 2015), we only observed significant decreases in spiking in

approximately two-thirds of AgRP neurons and noted increases in firing in 14–23% of AgRP neurons.

These differences may reflect real heterogeneity across AgRP neurons, as previous studies have
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demonstrated anatomically and functionally distinct populations of AgRP neurons in the ARC (Betley

et al., 2013). Alternatively, experimental differences (e.g. different states of baseline meal

expectation across paradigms) and/or a possible misclassification of a small number of non-AgRP

cells as AgRP neurons could explain the heterogeneity in our data (for additional discussion, see

‘Materials and methods’). As discussed above, recordings of GCaMP6 activity in populations of ARC

neurons (Chen et al., 2015) and single cells (Betley et al., 2015) provide powerful complementary

approaches to the method described here. Recordings using calcium indicators allow chronic

monitoring of calcium activity in AgRP neurons, albeit with some caveats including temporal

resolution, estimation of relative contributions of spike-evoked vs intracellular release of calcium, and

the potential for neuropil contamination during single-cell recordings. By contrast, our current

approach provides robust sensitivity to single action potentials, information regarding inter-spike

interval structure of tonic vs bursting ARC neurons, and the capacity to record from both AgRP

neurons and other ARC neurons simultaneously. In addition, our recordings of absolute spiking levels

(in contrast to relative changes in calcium activity) revealed differences in baseline firing across times

of day and across satiety states following refeeding as compared to free-feeding conditions.

Together, these mutually informative studies demonstrate consistent changes in the activity of classes

of ARC neurons across timescales and feeding behaviors, leading to refinements in the hypotheses

regarding the potential roles of these neurons in feeding, food-seeking, valence coding and

reinforcement learning, and suppression of competing drive states (Betley et al., 2015, Chen et al.,

2015, Garfield et al., 2015, Palmiter, 2015, Seeley and Berridge, 2015) across multiple timescales

and behavioral paradigms.

In summary, our recordings of spiking activity from identified classes of ARC neurons in awake mice

provide direct support for previous hypotheses, based on in vitro recordings and in vivo

manipulations, of slow, opposite changes in AgRP and POMC neuron spiking across hours, during

slow changes in energy balance. In addition, our data suggest that AgRP and POMC neurons can be

modulated on timescales inconsistent with a purely homeostatic role in feeding. In particular, the

rapid drop in spiking activity of AgRP neurons at meal onset may reflect a termination of the drive to

seek sources of food, while residual, persistent spiking in these neurons may reflect a sustained drive

to consume food.

Materials and methods

Animals
All animal care and experimental procedures were approved by the Beth Israel Deaconess Medical

Center Institutional Animal Care and Use Committee. We used 12 adult male mice, heterozygous for

Cre recombinase under the control of the Agrp gene (Agrp-Ires-cre; Tong et al., 2008). Animals were

housed at 22˚C–24˚C on a 12:12 light/dark cycle (light cycle: 6:00 am to 6:00 pm) with standard mouse

chow and water provided ad libitum, unless specified otherwise.

Surgery and viral injections
To selectively express channelrhodopsin-2 (ChR2) in AgRP neurons, we injected Agrp-Ires-cre mice

with 200 nl of adeno-associated virus, serotype 9, carrying an inverted ChR2-mCherry flanked by

double loxP sites (UPenn Vector Core, Philadelphia, PA) into the arcuate nucleus of the hypothalamus

(ARC; coordinates relative to Bregma: anterior-posterior, −1.50 mm; dorsal-ventral, −5.80 mm;

lateral, 0.25 mm). 3 weeks after viral injection, mice were prepared for awake, head-fixed

electrophysiology recordings by surgical implantation of a head post and an optetrode microdrive

(See ‘Optetrode electrophysiology’ section, below; see also Cohen et al., 2012) as follows: first, mice

were anesthetized using isoflurane in 100% O2 (induction, 3%–5%; maintenance, 1%–2%) and placed

into a stereotaxic apparatus (Kopf, Model 940 Small Animal Stereotaxic Instrument with Digital

Display Console) on a heating pad (CWE). Ophthalmic ointment (Vetropolycin) was applied to the

eyes. Using procedures identical to those described previously (Goldey et al., 2014), a two-pronged

head post was affixed to the skull using C&B Metabond (Parkell; cat. no. 242-3200), and a 0.5-mm

diameter burr hole was drilled over the mouse ARC. The optetrode was then implanted with distal

electrode tips ending well above the arcuate nucleus (4.8 mm ventral to Bregma), and the implant was

secured in place using a light-cured glue (FLOW-IT ALC part #N11VH, Pentron Clinical) around the

craniotomy, followed by metabond and dental cement (Grip cement kit, powder and solvent;
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Dentsply; cat. no. 675570). Analgesia (0.5 mg/kg meloxicam, s.c) was administered post-operatively

and on the following day.

Post-surgery
Following recovery from surgery, mice were habituated to tolerate 1–2 hr of head restraint (typically

requiring 3–4 days). Note that physiology studies in mice and primates commonly employ head-

restraint, which enables more precise control and monitoring of feeding behavior and other

behavioral and neurophysiological parameters (Paz et al., 2003, Niell and Stryker, 2010). It was

previously shown that stress responses largely normalize after 3–4 days of habituation to restraint

stress (Ma and Lightman, 1998). Furthermore, the fast changes in spiking activity we report cannot be

explained by stress, since spontaneous activity over the course of tens of minutes (during experiments

in Figure 2 in mice fed ad libitum, see below) was relatively stable under near-identical conditions.

Free-feeding paradigm
A cohort of 9 mice, used to investigate diurnal rhythms of ARC neurons (Figure 2), had free access to

food and maintained normal, ad-libitum feeding weight. In a typical session, recordings began with

spontaneous activity for ∼5 min followed by a laser stimulation protocol (∼5–10 min). We then

recorded spontaneous activity as long as recordings were stable. To minimize stress, head-fixation of

habituated mice was restricted to <3 hr. Therefore, we restricted our daily recordings to either

morning or afternoon, and advanced the electrodes between recordings to ensure that different

neurons were recorded in each daily session.

Instrumental feeding paradigm
A cohort of 5 mice, used to investigate feeding effects on ARC neurons (Figures 3–6), was maintained

between 85 and 90% of ad-libitum weight (median across mice: 87.5%; averaged weight fluctuation

within a mouse across sessions: 3.2 ± 1.8%). Mice were trained to consume a high-calorie liquid meal

replacement (Ensure) from a lickspout, while head-fixed on a spherical treadmill. Licking was detected

via disruption of an infrared beam positioned in front of the lickspout. Upon detection of a lick, a 10 μl
drop of Ensure was released using a solenoid and MonkeyLogic software (Asaad and Eskandar,

2011) in Matlab. After ∼2–4 days of training, food-restricted mice would readily consume large

quantities of Ensure. In a typical session, recordings began with spontaneous activity for

∼5 min followed by a laser photostimulation protocol (∼5–10 min). After a variable period of time

(5–10 min), a lickspout was positioned in front of the mouse’s snout. After an additional variable

period of time (3–15 min), Ensure was made available, and the mouse subsequently engaged in

instrumental licking for food reward (delivered in 10-μl increments). We then recorded activity as long

as the mouse continued to eat (typically 1 hr, with consumption of 3–5 ml of Ensure, equivalent to

4.5–7.5 Cal). The hour-long recording typically includes ∼30 min of constant feeding, during which

mice lick almost continuously and delivery of Ensure was contingent on detection of a lick. Of note,

a minimal duration between Ensure drops was defined to be 2.5 s, even in periods of near-continuous

licking behavior. This period of continuous feeding was then typically followed by more sparse bouts

of feeding (Figure 6A, orange highlights). If the mouse stopped drinking for a substantial period of

time, the software delivered a drop of Ensure to encourage additional licking. However, these Ensure

drops constituted <15% of all drops delivered. When feeding further diminished, a second round of

laser stimulation was performed to help with cell identification (Figure 5A). Mice were additionally

given chow in their home cage (1.5–2 g, given between the hours of 6–8 PM) to help maintain a weight

of approximately 87% of free-feeding weight. We confirmed that the chow was fully consumed by 8

AM the following morning, such that the subsequent recordings took place after at least 8 hr without

access to food. In practice, since 2 g of chow is typically consumed within 4–5 hr, it is more likely that

these recordings took place following at least 16 hr without feeding.

Note that we deliberately randomized the time until lickspout placement and the time from

lickspout placement until the onset of Ensure availability, as well as occasionally interleaving feeding

sessions with sessions of head-fixation without feeding, in order to avoid having the onset of lickspout

placement and food delivery be perfectly predictable by prior cues (e.g., initial head restraint prior to

recording), though it is likely that such cues nevertheless induced ‘predictive’ changes in firing.
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Optogenetic activation of AgRP neurons in head-fixed mice
A cohort of 5 mice was used to investigate whether optogenetic activation of AgRP neurons induced

food consumption under head-fixed conditions (Figure 5). Mice were trained to consume Ensure from

a lickspout, while head-fixed on a spherical treadmill. To this end, mice were first habituated for 1–2

days to head-fixation on the trackball. They were then mildly food restricted until their body weight

decreased to 95% of their free-feeding weight. After another 1–2 days of habituating to feeding while

head-fixed, mice were returned to their free-feeding weight. After at least 5 additional days, mice

were tested. Each session began with spontaneous licking and consumption of up to 0.5 ml Ensure.

After 30 min of baseline activity (during which mice rarely licked; Figure 5B), we photostimulated

AgRP neurons for 30 min (20-ms pulses at 20 Hz; 1 s on / 3 s off), followed by an additional

30 min without photostimulation. During the session, licking and the delivery of Ensure were

continuously recorded.

Optetrode electrophysiology
We recorded extracellularly from multiple neurons simultaneously using a custom-built, 200-μm
diameter optic fiber-coupled microdrive (an ‘optetrode’) with between four and eight manually

constructed tetrodes (comprising of 4 twisted strands of electrode wire) attached to the sides of the

fiber (Cohen et al., 2012). In the days following optetrode insertion (to depth of 4.8 mm ventral to

Bregma), and prior to the beginning of recordings, tetrodes were gradually lowered by 0.5 mm (0.15

mm/day). All tetrodes were glued to the fiber with epoxy, such that the ends of the tetrodes were

400–600 μm beyond the end of the fiber. Each tetrode was then gold plated (Gold NC Solution,

Neuralynx Inc), to reach a final impedance between 500 and 800 KΩ. Neural signals and time stamps

for behavior were recorded using a Digital Lynx SX recording system (Neuralynx). Broadband signals

from each wire, filtered between 0.1 and 9000 Hz, were recorded continuously at 32 kHz. To extract

the timing of spikes, signals were band-pass filtered between 400 and 6000 Hz. Spikes were detected

whenever a signal crossed a selected threshold value. For each electrode, the threshold was defined

as four times an estimated noise level. The standard deviation of the background noise was estimated

as the median of the absolute value of the band-pass filtered recording, divided by 0.6745 (Donoho

and Johnstone, 1994, Quiroga et al., 2004). Spike waveforms for each electrode within a tetrode (a

1-ms epoch around each time stamp) were extracted using a broadband signal (300–9000 Hz)

sampled at 32 kHz. This ensured that minimal information about spike waveform was lost to

additional filtering.

Waveform spikes were then sorted offline using Neuralynx spike sorting software (SpikeSort) as

follows: first, each spike waveform consisted of a 1-ms window surrounding its peak amplitude.

Second, for each spike, we defined two features, amplitude of the peak and amplitude of the valley,

for each of the four electrodes within a tetrode (a total of 8 features). Clusters were then defined

according to these feature distributions, manually selecting the dimensions that best separated

different clusters. We used several criteria to include a neuron in our data set. First, we inspected the

ISI distribution. A histogram of the ISI distribution for the spikes within each cluster is expected to

show a refractory period, that is, a dearth of spikes that occur within milliseconds of each other (Hill

et al., 2011). Therefore, only clusters in which none of the ISIs were less than 1 ms and less than 5% of

the ISIs were smaller than 5 ms were considered for further examination as candidates for single-units,

thus ensuring minimal contamination. Second, the clustered waveforms were also inspected by eye to

exclude those with aphysiological shapes. The waveform shape and amplitude were examined across

the duration of the recording to ensure stability and reject the possibility of contamination by multiple

neurons or potential loss of a neuron at an intermediate time within the recording. Finally, we

performed cross-correlation between each spike waveform and the averaged waveform, and specified

that the averaged correlation coefficient must exceed 0.95. To ensure stable recordings, we

confirmed that the correlation coefficients between spikes in the first and last 5 min of recordings

were not significantly different than those between the same number of randomly selected spikes

across the recording. Recording sites were also verified histologically with electrolytic lesions at the

termination of the experiment, when possible, using 15–20 s of 100 μA direct current, or by visualizing

the optical fiber track (Figure 1A).

We adapted recent methods for optogenetic identification (Lima et al., 2009, Cohen et al., 2012,

Kravitz et al., 2013) of well-isolated single-units, to classify these units into three categories, as
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follows. First, to classify AgRP neurons, we delivered blue-light photostimulation pulses at 20 Hz,

a stimulation frequency shown to elicit feeding and as well as sustained spiking in ChR2-expressing

AgRP neurons in vitro (Aponte et al., 2011). Specifically, we delivered 1-s-long trains of 20-ms light

pulses at 20 Hz (wavelength: 473 nm; intensity: 5–20 mW/mm2), with 3 s between pulse trains (typically

50–100 trains were used at a given laser intensity). The laser beam was passed through a Pockels cell

to ensure accurate control of laser pulse shape (<0.2 ms timing accuracy) and amplitude (calibrated

with a power meter and a photodiode). To ensure that spontaneous and light-evoked waveforms

originated from the same cell, we validated that the correlation coefficients of the cross-correlations

between spontaneous and light-evoked waveforms were above 0.95 and were not significantly

different than the correlation between pairs of spontaneous spike waveforms (see also

Figure 3—figure supplement 2).

To determine whether a neuron showed a significant light-evoked response, we used a paired sample

t-test comparing firing rates in the 2 s prior to a 20-Hz pulse train with the first half or the second half of the

pulse train (p < 0.025, corrected for number of tests). This method was chosen because some clearly

driven neurons showed more pronounced excitation after a delay of several 100’s of milliseconds (see

Figure 1—figure supplement 1; peri-stimulus time histograms show binned firing rates relative to laser

train onset; estimated with 100-ms bins). For neurons that fired significantly below pre-train baseline

(inhibited by AgRP neuron photostimulation) according to the above t-test, we added an additional

criterion that the cells be suppressed by greater than 20% relative to baseline, which removed a subset of

weakly but significantly inhibited cells (7% of all recorded cells). This class of cells was labeled ‘ARCinh’.

Cells not significantly modulated according to the t-test were assigned to the ‘ARCother’ category. Finally,

we noticed that in a small subset of recordings (<10%), the initial trial of a 1-s laser pulse train in the series

of 1-s trains could lead to a sharp increase or decrease in firing that did not return to pre-photostimulation

baseline until 0–2 min after the end of the final laser photostimulation trial. We reasoned that these effects

were clearly laser-evoked (two-sample Kolmogorov–Smirnov (KS) test, p < 0.05), and thus, we also used

this information in our classification. This additional criterion only changed the cell classification in 7%

(2/33) of AgRP neurons and 12% (3/25) of ARCinh neurons and did not affect the main conclusions of the

study. While histology showed reasonably high penetrance of ChR2 expression in AgRP neurons, the

ARCother category may include a small subset of AgRP neurons lacking sufficient or any ChR2 expression,

or that an insufficient intensity of light reached the tetrode on which the unit was recorded. Note that

ARCother and ARCinh neurons were only included from recordings during or subsequent to identification of

a putative AgRP neuron, to ensure that no neurons from regions dorsal to the ARC were included.

While many AgRP neurons showed classical entrainment to the pulse train at 20 Hz, some clearly laser-

driven AgRP neurons did not show strong entrainment. Neurons with low excitability and low-spontaneous

firing rates in vivo may be unsuitable for identification protocols demanding entrainment at high

frequencies (Kravitz et al., 2013). This may be the case with AgRP neurons, whose excitability we found to

be low in the morning (in ad libitum-fed mice, Figure 2) and following feeding (in food-restricted mice,

Figure 3). Further, the intrinsic membrane properties of AgRP neurons have themselves been shown to be

state dependent (Baver et al., 2014), thus providing an additional source of in vivo variability that may

affect entrainment, but that is not present during most in vitro recordings (e.g., Aponte et al., 2011).

Moreover, AgRP neurons might also not show entrainment due to other cell-intrinsic mechanisms that

would only be influential in certain in vivo contexts, in the presence of strong, summating synaptic input (Jo

et al., 2005). To quantify fast entrainment of spiking activity to each laser pulse, 50-ms cycle histograms

were calculated in 5-ms bins (Figure 1—figure supplement 1C). To determine significant laser

entrainment, a shuffling procedure was applied to spikes during individual laser cycles (20 ms of laser

stimulation followed by 30 ms of no laser stimulation). We created a distribution of shuffled cycle

histograms by shuffling the spikes within a given cycle 5000 times while maintaining the same total number

of spikes per cycle. We compared the firing rate in our cycle histogram of individual 5-ms bins with the

distribution of shuffled cycle histograms to determine if any bins were significantly modulated by

photostimulation (p < 0.0001, corrected for number of neurons and number of bins).

Data analysis
To identify whether ARC neurons were tonic firing, or had burst-like behavior involving occasional,

short ISIs between longer ISIs, we used the Hartigan’s dip test of unimodality on the distribution of the

logarithm (to base 10) of each ISI (Figure 2—figure supplement 1; p < 0.05).
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To quantify the changes in firing rate (estimated in 5-s bins) during the feeding paradigm, auROC

timecourses (Cohen et al., 2012) were calculated for each cell (Figure 3D). This analysis compares the

distribution of firing rates during a baseline period (up to 5 min prior to lickspout placement) with the

distribution of firing rates post baseline, using a sliding window of 1 min. This analysis quantifies how

discriminable these two distributions are. For example, if the two distributions of firing rates are completely

non-overlapping, the auROC reflects an estimate of 1 (clear increase in firing; all post-baseline firing rate

values are larger than all baseline firing rate values; red in Figure 3D) or 0 (clear decrease in firing; all post-

baseline firing rate values are smaller than all baseline firing rate values; blue in Figure 3D), while an auROC

estimate of 0.5 indicates that the distribution of baseline and post-baseline firing rates is indistinguishable

(white in Figure 3D). This analysis effectively normalizes the responses across a population, allows

concurrent visualization of neurons with very different firing rates, accounts for local firing rate variability,

and speaks to the reliability of the difference between baseline and post-baseline time windows.

To quantify the percentage of AgRP, ARCinh, and ARCother neurons modulated by placement of the

lickspout or feeding, we compared the distribution of firing rates (estimated in 5-s bins) before

lickspout placement (up to 5 min prior to lickspout placement) with the distribution of firing rates

post-lickspout placement (‘food cue predictive responses’; up to 5 min post lickspout, but only

including time bins prior to food availability; Figure 4) or post-Ensure delivery (early-feeding

responses: 0–5 min following onset of Ensure availability; mid-feeding response: 5–15 min following

onset of Ensure availability; late-feeding response: 15–45 min following onset of Ensure availability;

Figure 3) via a two-sample KS-test (Figure 3E; p < 0.025).

For analyses of the relationship between firing rate and licks or lick bouts, we use multiple linear

regression analysis. Simply stated, this analysis assumes a linear relationship between a neuron’s firing

and the occurrence of individual licks or lick bouts and estimates this relationship. The main advantage

of this approach over the generation of lick-triggered (or bout-triggered) average firing rate

histograms is that it assesses the impact of each lick or lick bout, irrespective of the occurrence of

other prior or future licks or bouts. The analysis determines the linear ‘kernel’ (one for the relationship

between firing and licking, another for the relationship between firing and lick bouts)—a set of

coefficients that adjust the firing rate up or down at each moment in time relative to the occurrence of

each individual lick or lick bout. If the relationship is indeed linear, then one should be able to perfectly

predict the moment-by-moment firing of the neuron as the sum of the following three terms: (i) a fixed

constant firing rate (in spikes/s), (ii) the convolution of the ‘lick’ kernel (units: spikes/s/lick; Figure 6C,

left panels) with each individual lick, and (iii) the convolution of the ‘lick bout’ kernel (units: spikes/s/

lick; Figure 6C, left panels) with each individual lick bout. Note that these kernels include coefficients

at times both prior to and following onset of the lick or lick bout, to estimate changes in firing that

precede and follow the licking event, respectively. The F-statistic assesses whether a given kernel

coefficient at a given time relative to lick/bout onset explains a significant amount of variance.

P-values were corrected for multiple comparisons (p < 0.05/19 = 0.0026, corrected for time bins,

reflecting the 19 time bins at 2-Hz sampling rate, from −4.5 s to 4.5 s relative to lick or lick bout onset).

All statistical tests and analyses were performed using Matlab.

Histology
At the conclusion of recordings, which lasted between 10 and 60 days, we performed histological

verification of the recording site. In a subset of mice (5/12), an electrolytic lesion was made

400 μm above the final recording location by passing a mild current between two electrodes (25 mA

for 30 s). Mice were given an overdose of tribromoethanol, perfused with 10% formalin, and brains

were cut in 50-μm coronal sections. Sections were stained with 4′,6-diamidino-2-phenylindole (DAPI)

to visualize nuclei. Recording sites, identified by the presence of the fiber tract and/or electrolytic

lesion, were all verified to be among ChR2-mCherry-expressing AgRP neurons.
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