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Lumbar disc degeneration (LDD) is age-related break-down in the fibrocartilaginous joints

between lumbar vertebrae. It is a major cause of low back pain and is conventionally

assessed by magnetic resonance imaging (MRI). Like most other complex traits, LDD

is likely polygenic and influenced by both genetic and environmental factors. However,

genome-wide association studies (GWASs) of LDD have uncovered few susceptibility

loci due to the limited sample size. Previous epidemiology studies of LDD also reported

multiple heritable risk factors, including height, body mass index (BMI), bone mineral

density (BMD), lipid levels, etc. Genetics can help elucidate causality between traits

and suggest loci with pleiotropic effects. One such approach is polygenic score

(PGS) which summarizes the effect of multiple variants by the summation of alleles

weighted by estimated effects from GWAS. To investigate genetic overlaps of LDD

and related heritable risk factors, we calculated the PGS of height, BMI, BMD and

lipid levels in a Chinese population-based cohort with spine MRI examination and

a Japanese case-control cohort of lumbar disc herniation (LDH) requiring surgery.

Because most large-scale GWASs were done in European populations, PGS of

corresponding traits were created using weights from European GWASs. We calibrated

their prediction performance in independent Chinese samples, then tested associations

with MRI-derived LDD scores and LDH affection status. The PGS of height, BMI,

BMD and lipid levels were strongly associated with respective phenotypes in Chinese,
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but phenotype variances explained were lower than in Europeans which would reduce

the power to detect genetic overlaps. Despite of this, the PGS of BMI and lumbar

spine BMD were significantly associated with LDD scores; and the PGS of height was

associated with the increased the liability of LDH. Furthermore, linkage disequilibrium

score regression suggested that, osteoarthritis, another degenerative disorder that

shares common features with LDD, also showed genetic correlations with height, BMI

and BMD. The findings suggest a common key contribution of biomechanical stress to

the pathogenesis of LDD and will direct the future search for pleiotropic genes.

Keywords: polygenic score, genetic correlation, causality, pleiotropy, lumbar disc degeneration, osteoarthritis

INTRODUCTION

Human intervertebral discs (IVDs) are fibrocartilaginous
structures that lie between adjacent vertebrae. These IVDs
hold the vertebrae together, facilitate some vertebral motion,
and act as shock absorbers to accommodate biomechanical
loads (Oxland, 2016). IVD is composed of a gel-like nucleus
pulposus surrounded by an annulus fibrosis and separated from
the vertebral body by a cartilaginous endplate (Humzah and
Soames, 1988). During one’s lifetime, due to excessive physical
loading, occupational injuries, aging, genetics, and other factors,
the IVDs may degenerate and display marked biochemical
and morphological changes (Buckwalter, 1995; Urban and
Roberts, 2003). Currently, magnetic resonance imaging (MRI)
is the gold-standard for evaluating disc degeneration. Based
on this imaging, numerous methods are available to grade
and summarize different features indicative of degeneration,
including signal intensity loss, bulging and herniation, as well as
disc space narrowing (Battié et al., 2004; Cheung et al., 2009).
Lumbar disc degeneration (LDD) is of clinical importance
because it is believed to be a major cause of low back pain
(Luoma et al., 2000; Livshits et al., 2011; Samartzis et al., 2011;
Takatalo et al., 2011). Its severe form lumbar disc herniation
(LDH), in which disc material herniates into the epidural space
and compresses a lumbar nerve root, can cause neuropathic
pains (sciatica) radiating to the lower extremity (Ropper and
Zafonte, 2015).

Twin studies have demonstrated a strong genetic contribution
to LDD (Sambrook et al., 1999; Battié et al., 2008). However,
searching for genetic variants associated with LDD has been
a challenge due to discrepancies and non-standardization of
phenotype definitions, inconsistencies with imaging technology,
and limited sample sizes in genome-wide association studies
(GWASs) (Eskola et al., 2012, 2014; Williams et al., 2013). Similar
to most other complex traits, LDD is likely to be polygenic with
thousands of trait-associated variants each of which has tiny
effect size.

In addition to age, sex, and environmental influences, LDD
is also associated with several heritable risk factors including
body mass index (BMI) (Liuke et al., 2005; Samartzis et al.,
2011, 2012; Takatalo et al., 2013), bone mineral density (BMD)
(Harada et al., 1998; Pye et al., 2006; Wang et al., 2011),
and serum lipid levels (Leino-Arjas et al., 2008; Longo et al.,
2011; Zhang et al., 2016). But it is not fully clear if there is

a genetic basis for these phenotype associations. Identifying
genetic overlaps between LDD and related traits will be useful
for elucidating cause and effect because genetic markers are not
subject to reverse causation or confounding and can be used as
an instrument to infer causality using Mendelian randomization
(Davey Smith and Hemani, 2014), and it can also suggest
pleiotropic loci that reveal novel insights into biology (Solovieff
et al., 2013).

Several methods have been developed to evaluate genetic
overlap between traits by exploiting the polygenic architecture
(Dudbridge, 2016). A polygenic score (PGS) of a trait is the
summation of alleles across loci weighted by their effect sizes
estimated from GWAS (Purcell et al., 2009). In its typical
application, GWAS of a base phenotype is first done in a
discovery sample. PGS can be calculated in an independent
testing sample using single-nucleotide polymorphisms (SNPs)
whose p-values are below some threshold in the GWAS of
discovery sample. It can then be used as a predictor of target
phenotypes in the testing sample using regression analysis.
PGS has been widely used to predict disease risk (Chatterjee
et al., 2016), evaluate genetic overlaps across traits (Krapohl
et al., 2016), and infer genetic architectures (Stahl et al.,
2012; Palla and Dudbridge, 2015). Because phenotyping of
LDD by MRI is expensive and labor intensive, sample sizes
are usually limited for well-phenotyped cohorts. PGS can
leverage GWAS meta-analysis results from large consortia to
maximize the power to detect genetic overlaps and is most
suitable for the current study of LDD. Some other methods,
such as bivariate linear mixed-effect model (Lee et al., 2012b;
Vattikuti et al., 2012) would require genotypes of individuals
of base and target phenotypes. Recently developed linkage
disequilibrium score (LDSC) regression (Bulik-Sullivan et al.,
2015) makes use of only summary-level association statistics and
can account for sample overlaps between different studies, but it
requires very large sample sizes that has not been available for
LDD.

In this study, we applied PGS to investigate the genetic overlap
of LDD with four related risk factors using the GWAS data
of Hong Kong Disc Degeneration (HKDD) population-based
cohort (Cheung et al., 2009; Samartzis et al., 2012; Li et al., 2016)
and a Japanese case-control cohort of LDH that required surgery
(Song et al., 2013).We selected BMI, BMD and serum lipids levels
as base phenotypes, based on their previous reported associations
with LDD (Pye et al., 2006; Longo et al., 2011; Samartzis et al.,
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2012). Height was also included because its association with
chronic low back pain (Hershkovich et al., 2013; Heuch et al.,
2015). Two semi-quantitative scores that summarize different
aspects of LDD from lumbar spine MRI were used as target
phenotypes in the HKDD cohort; LDH affection status was used
as the third target phenotype in the Japanese case-control cohort.
Because GWASs of base phenotypes were done in European
populations whereas our testing samples were of East Asian
ancestry, the performance of PGS in predicting base phenotypes
was first evaluated in independent Chinese samples. Then we
applied the best performing PGS of the base phenotype to test
association with target phenotypes in testing samples (Figure 1).
Results were then interpreted in light of previous epidemiological
evidence and statistical power to detect association. To better
understand the mechanism implied by the genetic overlaps

and motivated by the suggestion that LDD and osteoarthritis
(OA) may share common pathophysiological features (Loughlin,
2011; Ikegawa, 2013), we further tested if the base phenotypes
that had genetic overlaps with LDD also showed genetic
correlations with OA using the GWAS summary data of the
arcOGEN study (Zeggini et al., 2012). Finally, we evaluated the
predictive power of trans-ethnic PGS to aid the design of future
studies.

MATERIALS AND METHODS

Study Samples
HKDD Cohort
The HKDD Study was a population-based cohort of
approximately 3,500 Southern Chinese initiated to assess spinal

FIGURE 1 | The analysis framework. GWAS summary statistics of base phenotypes were obtained from published studies in European populations. The polygenic

score (PGS) in a testing sample of East Asian population was calculated by weighted summation of alleles at approximately independent SNPs whose association

p-values fall below some threshold in the discovery GWAS done in European populations. The performance of PGS to predict the base phenotype in East Asians was

first evaluated in a validation sample. Then the best performing PGS of the base phenotype was used to test genetic overlap with lumbar disc degeneration (LDD) in

the testing samples. In this study, we selected height, body mass index (BMI), bone mineral density (BMD) and lipid levels as base phenotypes. The prediction

performance of PGS was evaluated in the HKDD cohort for height, BMI, and lipid levels, and in the HKOS cohort for BMD. Three LDD phenotypes were used as

target phenotypes, including disc displacement and disc degeneration scores in the HKDD cohort and affection status of lumbar disc herniation (LDH) in the Japanese

LDH case-control cohort.
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phenotypes and their risk factors. All participants underwent
T2-weighted MRI examination of the lumbar spine assessed by
expert physicians (JK and KMC). Sample recruitment and MRI
procedures have been described in detail previously (Cheung
et al., 2009; Samartzis et al., 2012; Li et al., 2016). For the current
study, we focused on two major aspects of LDD captured by
different MRI features (Figure 2a). The first was signal intensity
loss within nucleus pulposus, which may represents loss of water
content of IVD. Its presence and severity at each lumbar disc
was assessed by the Schneiderman’s grades (Schneiderman et al.,
1987). Based on this grading scheme each disc was given a score
of 0–3, whereby 0 indicated normal and higher scores indicated
increased severity. A disc degeneration score for each individual
was calculated by the summation of Schneiderman’s grades
over all five lumbar discs. We also assessed disc displacement,
represented as a bulging/protrusion or extrusion of disc material.
An ordinal grade from 0 to 2 was assigned to each lumbar
disc to indicate normal, bulge/protrusion or extrusion of disc
material; for each individual, a disc displacement score was

calculated by the summation of the grades over all five lumbar
discs (Cheung et al., 2009). Age, sex, physical workload based
on occupation, history of smoking, and history of lumbar spine
injury were obtained by a questionnaire for all participants. Body
height and weight were measured at the time when each subject
underwent MRI, and BMI was calculated by dividing weight by
height squared (kg/m2). A subset of the cohort (N = 815) also
had their blood metabolite profiles measured by quantitative
serum nuclear magnetic resonance (NMR) platform (Soininen
et al., 2009, 2015). Low-density lipoprotein cholesterol (LDL-C),
high-density lipoprotein cholesterol (HDL-C), triglycerides
(TG) and total cholesterol (TC) were obtained as part of NMR
metabolite measures. Association between LDD scores and
other covariates were analyzed using multiple linear regression
to account for correlations between predictor variables. The
best fitting model was selected using Akaike information
criterion.

A total of 2,373 individuals from the HKDD cohort were
genotyped by Illumina HumanOmni-ZhongHua-8 Beadchip.

FIGURE 2 | Summary of phenotypes in the HKDD cohort. (a) Examples of magnetic resonance imaging show two major aspects of LDD. Disc displacement (left) is

shown as bulging of disc material beyond confine of annulus fibrosus. The loss of proteoglycan and water content (right) within nucleus pulposus is reflected by the

signal intensity loss. The lumbar spine has 5 intervertebral segments, termed L1 through L5. S1 stands for the first segment of sacral that is intermediately below the

lumbar spine. (b) The prevalence of signal intensity loss and disc displacement at different levels of lumbar spine discs. Two ordinal grades (0–3 for signal intensity

loss, 0–2 for disc displacement) were assigned to each lumbar disc to indicate the presence and severity of LDD, where 0 indicated normal and higher scores

indicated increased severity. (c) The distribution of two LDD scores. The disc degeneration score and displacement score were defined by the summation of grades

over all disc levels for signal intensity loss and disc displacement respectively. The two LDD scores are correlated in the population. The age threshold divides the

HKDD cohort in two parts with roughly equal sample sizes. The older subjects tend to have higher disc degeneration scores and disc displacement scores.

(d) Pairwise Pearson correlations between original phenotypes (upper triangle) and between residual phenotypes after adjusting for age and gender (lower triangle).
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Basic genotyping and quality control (QC) procedures have been
described in our previous study (Li et al., 2016). In this study, we
used more stringent QC criteria that keep only individuals with a
call rate >99% and common SNPs with minor allele frequency
(MAF) >0.01. The genotypes were imputed to over 8 million
common variants in Phase 3 of 1,000 Genomes reference panel
using the Michigan Imputation Server (Das et al., 2016) and
filtered to keep only common bi-allelic SNPs (MAF>0.01) with
imputation quality metrics r2 ≥ 0.3.

LDH Case-Control Cohort
The Japanese LDH case-control cohort was part of our previous
genetic study of LDD (Song et al., 2013). Hospitalized patients
LDH were ascertained on the basis of sciatica or severe low
back pain requiring surgical treatment and confirmed by lumbar
spine MRI. The controls were unrelated individuals from
general Japanese population as part of Japan Biobank Project.
All individuals were genotyped by Illumina HumanHap550v3
BeadChip. A total of 366 cases and 3,331 controls passed QC and
were used in the association analysis. Genotypes were imputed
to 2.5 million SNPs in Phase 2 HapMap Project using IMPUTE2
(Howie et al., 2009), and association analysis at each SNP was
performed by logistic regression assuming an additive model
using SNPTEST (Marchini et al., 2007).

HKOS GWAS
Hong Kong Osteoporosis Study (HKOS) was a prospective
cohort study of over 9,000 Southern Chinese residents in Hong
Kong (Cheung et al., 2017). BMD of the lumbar spine (LS-BMD)
and femoral neck (FN-BMD) were measured by dual-energy X-
ray absorptiometry. The age-corrected and standardized BMD
was generated for each gender. A total of 800 unrelated females
with extreme BMD were selected in the previous GWAS (Kung
et al., 2010). The low BMD subjects were those with BMD Z-
score≤−1.28 at either the LS or FN; the high BMD subjects were
those with BMD Z-score ≥1.0 at either of the two skeletal sites.
All individuals were genotyped by Illumina HumanHap610Quad
Beadchip, whereby 780 individuals passed QC. Association
analysis at each SNP was performed by linear regression using
PLINK (Purcell et al., 2007). Detailed genotyping, QC, and

imputation procedures have been described elsewhere (Kung
et al., 2010; Xiao et al., 2012).

arcOGEN Study
The arcOGEN study (http://www.arcogen.org.uk/) was a
collection of unrelated, UK-based individuals of European
ancestry with knee and/or hip OA from the arcOGEN
Consortium (Panoutsopoulou et al., 2011; Zeggini et al.,
2012). Cases were ascertained based on clinical evidence with a
need of joint replacement or radiographic evidence of disease
(Kellgren-Lawrence grade ≥2), controls were from ancestry-
matched (UK) population. A GWAS meta-analysis that included
7,410 cases and 11,009 controls as the discovery sample has
been described previously (Zeggini et al., 2012). The summary
statistics of the discovery GWAS were obtained by application to
the consortium.

All studies were approved by local ethical committees.Written
informed consent was obtained from all participants.

Statistical Analysis
Polygenic Score Regression
We selected height, BMI, BMD, and serum lipid levels as base
phenotypes, and obtained GWAS summary data (Table 1). PGS
was created by the two strategies as described below and used
to predict phenotypes through linear regression after accounting
for other covariates. The non-genetic covariates were selected
based on their association with each phenotype in the baseline
multiple linear regression model (listed in footnotes of Table 3
and Table S7). We validated the prediction performance of
PGS on base phenotypes in the HKDD cohort (for height,
BMI, and lipid levels) and HKOS cohort (for LS- and FN-
BMD). Then, the PGS with best prediction performance for
each base phenotype was used to test genetic overlap with LDD
by predicting two LDD scores in the HKDD cohort and the
LDH affection status in the Japanese case-control cohort. When
individual-level genotype data in the testing sample were not
available (for the HKOS GWAS and LDH case-control cohort),
PGS regression was performed using summary statistics based
algorithm implemented in gtx R package (Johnson, 2012), and
SNP genotypes of HapMap 3 East Asian samples were used as the
reference panel for SNP clumping.

TABLE 1 | GWAS summary statistics used in this study.

Phenotype Study Publication Sample size Population Availability

Height GIANT Consortium Wood et al. (2014) 253,000 European Public

BMI§ Locke et al. (2015) 234,000∼322,000# European Public

Serum lipids GLGC Willer et al. (2013) 95,000∼189,000# European Public

BMD GEFOS Consortium Estrada et al. (2012) 33,000 European Application to the consortium

HKOS¶ Kung et al. (2010) 780 Chinese Contributed by the collaborator

OA arcOGEN Consortium Zeggini et al. (2012) 7,400 cases, 11,000 population controls European Application to the consortium

Hospitalized LDH Japan LDH Song et al. (2013) 366 cases, 3,331 population controls Japanese Contributed by the collaborator

BMI, body mass index; BMD, bone mineral density; OA, osteoarthritis; LDH, lumbar disc herniation; GLGC, Global Lipids Genetics Consortium; HKOS, Hong Kong Osteoporosis Study.
§The GIANT consortium’s BMI GWAS included samples from multiple ethnicities; only the result of the European samples was used.
#BMI and lipids summary data were generated from GWAS+Metabochip joint analysis, so sample sizes can vary across different SNPs.
¶The HKOS GWAS was part of the GEFOS meta-analysis and was the only study of non-European population in that study.
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The first strategy for calculating PGS only used known
trait-associated SNPs that reached genome-wide significance in
previous studies (GWAS hits). Individual PGS profiles were
calculated by summing up the dosage of trait-increasing alleles
from imputed genotypes weighted by the reported effect sizes.
This strategy has the advantage of including secondary signals
within the same locus and increased accuracy of effect size
estimates from a larger independent replication sample (for LS-
and FN-BMD).

As a second strategy, we performed genome-wide PGS
analysis using PRsice (Euesden et al., 2015). Briefly, summary
statistics of base GWAS was first aligned with genotyped SNPs
of the testing sample. Then SNPs were pruned based on p-
value informed clumping algorithm [linkage disequilibrium (LD)
r2 < 0.1 across 500 kb] that selected SNPs most associated with
the base phenotype in a locus to generate sets of independent
SNPs. PGS was created using clumped SNPs whose p-value
in the base GWAS were below pre-specified threshold. We
varied p-value thresholds (1.0E-7, 1.0E-5, and from 1.0E-4 to
0.5 with a step of 0.0001) to select the one that maximized the
variance explained (R2) for the base phenotype in the validation
sample.

Correcting Sample Overlap and Extreme Selection
The HKOS GWAS was part of BMD GWAS meta-analysis
conducted by the GEFOS consortium. Tomake it an independent
testing data, we inverted the fixed effect meta-analysis to subtract
the contribution of HKOS from the GEFOS summary statistics
(Appendix 1 in the Supplementary Material). When calculating
PGS using the BMD GWAS hits, we used effect estimates from
the stage II replication sample to avoid the issue of overlapping
sample.

The HKOS GWAS adopted an extreme phenotype design to
increase association power, which also resulted in upward biased
estimates of R2 by PGS using linear regression. To get an estimate
of R2 in the unselected sample (R̂2) for comparing with the
previous report, we corrected the R2 estimate in the selected
sample (R̂2

′
) by:

R̂2 ≈
R̂2

′

f −
(

f − 1
)

R̂2
′

where f is the increased phenotype variance due to extreme
phenotype selection (=2.739 in the HKOS GWAS sample). The
derivation and validation of this approximation formula is given
in Appendix 3 (Supplementary Material).

R2 for Case-Control Data on the Liability Scale
For the case-control data, it is meaningful to estimate the disease
liability explained by PGS under the liability threshold model
(Falconer and Mackay, 1996), so that the result can be compared
to the heritability of LDH (Heikkila et al., 1989). We first
converted summary statistics generated by the logistic regression
to those of linear regression by first-order approximation. Then
we used summary statistics based PGS regression to obtain an
estimate of R2 on the observed scale. Finally, the observed R2

was converted to the liability scale using the transformation

formula by Lee et al. (2012a) assuming the disease prevalence of
0.02 (Jordan et al., 2009). More details are given in Appendix 4

(Supplementary Material).

Inference of Genetic Architecture and Projecting

Prediction Performance
We applied AVENGEME (Palla and Dudbridge, 2015) to
estimate parameters of genetic architecture of height and
BMI from the PGS results. The procedure is described in
Appendix 2 (Supplementary Material). Briefly, for a presumed
SNP heritability h21, the method estimated the fraction of markers
that are null (π̂0) and genetic correlation between the discovery
and testing samples (σ̂12). If the genetic architectures of the
discovery and testing sample are the same, then the genetic
correlation between two samples can be estimated as ρ̂G =

σ̂12/h
2
1.

The same model was also applied to predict the expected
R2 for height and BMI in Chinese population under different
study designs. To project R2 using PGS created by weights from
European GWAS, model parameters were set to the maximum
likelihood estimates fitted to the observed PGS results. We also
increased the discovery sample size by 500,000 to evaluate the
increase of R2 in the future. To predict R2 using PGS created
by weights from East Asian GWAS, we used the same set of
model parameters, but set the discovery GWAS sample size to
match the published study of East Asians (Wen et al., 2014; He
et al., 2015) and assumed no heterogeneity of effect sizes between
the discovery and testing samples (σ12 = h21). To incorporate
between-sample heterogeneity within East Asians, we changed
between population genetic correlation to 0.9 (so σ12 = 0.9h2),
which is a lower bound for height and BMI in Europeans (de
Vlaming et al., 2017) and in different Chinese GWAS samples
(data not shown).

SNP Heritabilities
Phenotypes analyzed in the HKDD cohort were adjusted by
covariates that are associated with the phenotype (listed in
Table 2) by linear regression; and residues were inverse normal
transformed when necessary. SNP heritabilities of the adjusted
phenotypes were estimated using GCTA v1.25 (Yang et al., 2011a)
after excluding individuals so that no pair of individuals had
estimated coefficient of relatedness >0.05 as recommended by
the GCTA developers (Yang et al., 2017).

Estimating Genetic Correlation Between

Anthropometric Traits and OA
To test the genetic overlaps of OA with height, BMI and
BMD, we applied LDSC regression (Bulik-Sullivan et al., 2015)
to the GWAS summary statistics following the recommended
procedure. BMD summary statistics were corrected to remove
the contribution from the HKOSGWAS (the only non-European
study) as in PGS regression.

Due to sample overlaps in different European GWASs, PGS
could not have been applied to the genome-wide summary data.
But for known BMD associated SNPs whose effect size estimates
from an independent replication sample were available (Estrada
et al., 2012), we also used PGS regression under summary statistic
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TABLE 2 | SNP heritability estimates of phenotypes analyzed in the HKDD cohort.

Phenotype Adjustment and

transformation

ĥ2(SE) p-value

Height Age, sex; inverse normal

transformation

0.533 (0.170) 6.75E-05

Age, sex, first two PCs;

inverse normal transform

0.383 (0.182) 1.67E-02

BMI Age, age2, sex; inverse

normal transformation

0.285 (0.171) 2.97E-02

Age, age2, sex, first PC;

inverse normal

transformation

0.249 (0.174) 6.03E-02

Disc

degeneration

score

Age, sex, lumbar injury 0.218 (0.163) 6.50E-02

Age, sex, lumbar injury,

height

0.232 (0.169) 6.43E-02

Age, sex, lumbar injury, BMI 0.226 (0.170) 7.26E-02

Age, sex, lumbar injury,

height, BMI

0.219 (0.171) 8.40E-02

Age, sex, lumbar injury,

weight

0.225 (0.171) 7.80E-02

Disc

displacement

score

Age, sex, lumbar injury 0.291 (0.176) 4.26E-02

Age, sex, lumbar injury,

height

0.269 (0.180) 6.20E-02

Age, sex, lumbar injury, BMI 0.238 (0.181) 9.17E-02

Age, sex, lumbar injury,

height, BMI

0.216 (0.182) 1.21E-01

Age, sex, lumbar injury,

weight

0.213 (0.182) 1.22E-01

mode to assess the genetic correlation between osteoarthritis and
BMD.

Power Analysis
Power calculation was done assuming the test statistics follows
non-central chi-squared distribution under the alternative
hypothesis. The non-centrality parameter for quantitative trait

is NR2

1−R2
, where N is the sample size and R2 is the phenotype

variance explained by PGS. For binary trait, R2 in the above
formula is on the observed scale and can be converted from
liability scale using Lee et al. (2012a)’s formula as described in
Appendix 4 (Supplementary Material).

RESULTS

Phenotype Summary of the HKDD Cohort
A total of 2,054 unrelated Chinese subjects in the HKDD
cohort (60% were females) were included in polygenic analysis.
The basic demographic and phenotype summary are shown
in Table S1. Both signal intensity loss and disc displacement
showed a higher prevalence and severity at lower lumbar
levels (Figure 2b). The disc degeneration and disc displacement
scores for each individual were calculated by the summation
of grades over all levels. Consistent with a major effect of
aging, older individuals tend to have higher disc degeneration
and displacement scores (Figure 2c). The two LDD scores
were correlated with each other (r = 0.57; Figure 2c). Both

of them were also positively correlated with height, body
weight, BMI, and lumbar spine injury (P < 0.001; Figure 2d,
Table S2A); the correlation remained significant for all except
injury after correcting for the effect of age and gender (Figure 2d,
Table S2B). Multiple linear regression analysis showed that the
best fitting models for both disc degeneration and displacement
scores included age, sex, lumbar injury, height and BMI as
covariates (Table S3), which together explained 21.5 and 9.6%
phenotype variances respectively. The SNP heritability estimates
for height and BMI in the HKDD cohort were 0.38 (±0.18) and
0.25 (±0.17), similar to the previous reports in Europeans (Yang
et al., 2010, 2011b). For disc degeneration and displacement
scores, after adjusting for known covariates, SNP heritability
estimates were about 0.2∼0.3 (Table 2).

Evaluating the Prediction Performance of
PGS of Anthropometric Traits
We first evaluated prediction performance of PGS in Chinese
samples and compared them with Europeans. PGS profiles of
height and BMI were created in the HKDD cohort using known
trait-associated SNPs identified by the GIANT consortium
GWASmeta-analyses. They explained 5.7 and 1.2% of height and
BMI variances respectively (P < 1.0E-10 for height, P = 1.6E-07
for BMI), after adjusting for age, sex and principle components. It
is 2∼3-fold lower than previous reports in independent European
samples, which were 16% for height (Wood et al., 2014) and
2.7% for BMI (Locke et al., 2015). The prediction performance
of BMD associated SNPs reported by GEFOS consortium were
tested in the HKOS GWAS sample (Kung et al., 2010). After
correcting for extreme phenotype selection (Appendix 3 in the
Supplementary Material), the known BMD-associated SNPs
explained 3.4% and 3.0% variance of LS-BMD and FN-BMD
in Chinese population (P < 1.0E-10), also lower than previous
reported∼5% in Europeans (Estrada et al., 2012).

Since GWAS hits may only explain a small proportion
of phenotype variance, we extended PGS analysis to make
use of whole-genome summary statistics (Figure 3). As the
p-value threshold of the discovery GWAS increases, both
true and false positive SNPs will be included in the PGS.
The p-value threshold that optimized phenotype prediction
depends on the discovery sample size and unknown genetic
architecture (Chatterjee et al., 2013; Dudbridge, 2013), and
should be determined empirically. At the optimal p-value
threshold, we found the phenotype variance explained is
similar to that using GWAS hits for FN-BMD, marginally
improved for height, slightly worse for LS-BMD, and more
than doubled for BMI (R2 = 2.6%, P < 1.0E-10). Theoretical
model fitting under a range of plausible parameters (Table S4)
suggested that BMD had smaller fraction of trait associated SNPs
(0.5∼0.6%) with larger effect sizes compared with BMI and
height (estimated fraction of non-null markers: 14∼17%), which
explained why sparse PGS models showed better prediction
performance for BMD. The trait variances explained by PGS
predicted by the models generally captures the trend of
empirical observations at different p-value thresholds (Figure 3).
The estimate of between-population genetic covariance for
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FIGURE 3 | Prediction performance of polygenic scores (PGS) on four base phenotypes in Chinese population. Phenotype variances explained (R2) are shown at

different p-value thresholds. The gray lines are the predicted R2 based on the theoretical model of Dudbridge (2013) with parameters given in Table S4. Different

parameter sets of each model give similar results. PGS of height (A) and BMI (B) were tested on HKDD cohort; PGS of bone mineral density at the lumbar spine

(LS-BMD, C), and femoral neck (FN-BMD, D), were evaluated on HKOS sample.

each phenotype was consistently lower than the presumed
heritability (Table S4), reflecting trans-ethnic heterogeneity in
effect sizes.

Testing Genetic Overlap Between
Anthropometric Traits and LDD
We then applied PGS to test genetic overlaps between
anthropometric traits and LDD (Table 3). In the HKDD cohort,
the BMI PGS at its optimal threshold was positively associated
with both disc displacement score (R2 = 0.29%, P = 0.015) and
disc degeneration score (R2 = 0.31%, P = 0.011) after adjusting
for sex, age and lumbar injury. The results are consistent
with obesity as a major risk factor for LDD development
and progression (Hassett et al., 2003; Hangai et al., 2008).
The associations remained significant (P < 0.05) after further
adjusting for height but disappeared after adjusting for BMI or
body weight (Table S5). The PGS of LS-BMD were positively

associated with disc displacement score (R2 ≈ 0.2%; P<0.05)
and remained significant (P < 0.05) after further adjusting
for height, BMI or weight (Table S6). The same trend was
also observed for FN-BMD but did not reach significance.
The finding supports the previous reported genetic correlation

between BMD and disc bulge in a twin study (Livshits et al.,
2010). The lack of association with disc degeneration score is also

consistent with the previous study that showed a smaller effect

size between BMD and disc signal intensity on MRI (Livshits

et al., 2010).
In addition to LDD scores in the general population, we also

applied PGS to predict case-control status of symptomatic LDH
(Song et al., 2013). The height PGS was positively associated
with LDH (P < 0.01) and explained 0.35% of disease liability.
The association cannot be explained by body weight, because
the BMI PGS is better associated with weight but does not
show association with LDH (P > 0.5). The result provides
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a genetic basis to the previous epidemiological observation
that being tall is a risk factor for hospitalization due to LDH
(Wahlstrom et al., 2012) and back surgery (Coeuret-Pellicer et al.,
2010).

Testing Genetic Overlap Between Lipid
Levels and LDD
Previous studies also reported that increased level of LDL-C, TC,
and TG were associated with increased risk of LDH (Leino-Arjas
et al., 2008; Longo et al., 2011; Zhang et al., 2016). To test if serum
lipid levels have genetic correlation with LDD, we did similar PGS
analysis using known lipid associated SNPs and GWAS summary
data from the Global Lipids Genetic Consortium (Willer et al.,
2013). Prediction performance of PGS was first evaluated in a
subset of theHKDD cohort (N = 620with genotypes) whose lipid
levels weremeasured by the high-throughput NMR approach. All
PGS were significantly associated with the corresponding lipid
levels. Except for LDL-C, the PGS of known lipid loci showed
the best prediction performance (Figure S1). However, none
of them was significantly associated with LDD scores with the
expected direction in the HKDD cohort or LDH in the Japanese
case-control cohort (Table S7). Directly testing the phenotype
association in the HKDD cohort by multiple linear regression
also showed no association (Table S8). Therefore, our data does
not support the previously suggested role of atherosclerotic lipids
in LDD.

Power Consideration
Given sample sizes and study designs, the two testing samples
used in this study show similar profiles of statistical power
(Figure 4). We have >50% power (at significance level α = 0.05)
to detect genetic correlation if PGS explains >0.2% variance
of adjusted LDD scores (or LDH disease liability). To achieve
the same power at α = 0.01, it would require PGS to explain
>0.33% phenotype (liability) variance. But the current study does
not have enough power to detect genetic overlap if the PGS
explain less than 0.2% variance of LDD scores (or LDH liability).
Therefore, we designed this study to only test phenotypes with
previous epidemiological evidence for association with LDD. To
further reduce the multiple testing burden, we had only used the
PGS which was optimal in predicting the corresponding base
phenotype to test the genetic overlap with LDD. The results
that were nominally significant and consistent with the expected
phenotype correlations can be interpreted as supportive evidence
of genetic overlaps.

The Association of a Height Associated
SNP rs6651255 With LDD Scores
The current study has no power to search for individual SNPs
showing pleiotropic associations with LDD and related traits.
But we noted that a recent GWAS of LDH with lumbar spine
surgery in Iceland population (Bjornsdottir et al., 2017) identified
a genome-wide significant SNP rs6651255, which was also a
known height associated SNP (Wood et al., 2014). The risk
allele T showed an odds ratio of 1.23 and associated with
increased height. The same study also reported that increase in
the genetically determined height increased the risk of LDH with
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FIGURE 4 | Power to detect association with polygenic score (PGS) in two testing samples. (A) For the HKDD cohort (N = 2,054), given significance level (at

α = 0.01 or 0.05), the power is determined by the phenotype variance explained by PGS. (B) For the Japanese case-control cohort (366 cases, 3,331 controls),

assuming the disease prevalence of 0.02, the power is a function of the disease liability explained by PGS.

surgery, but the effect of rs6651255 on LDH was not mediated by
height. To replicate this finding in our cohorts, we found an LD
proxy rs4733724 (LD r2 = 1 with rs6651255 in 1000 Genomes
CEU population) was directly genotyped in the HKDD cohort
and reliably imputed in the Japanese case-control cohort. The
allele A was coupled to the LDH risk allele and significantly
increased both disc displacement and disc degeneration scores
(P < 0.05; Table 4). The effects remained significant after further
adjusting for height, BMI or body weight. The same allele was
also weakly associated with increased height and increased risk of
LDH requiring surgery (odds ratio = 1.11), but the results were
not significant as the sample sizes limited the power to detect
associations with small effect sizes.

Genetic Correlation Between
Anthropometric Traits and OA
Finally, LDD has been suggested to share common features
with OA which is also known as degenerative joint disease
(Loughlin, 2011; Ikegawa, 2013). To test if osteoarthritis also
showed genetic overlaps with the same set of traits as LDD,
we assessed the genetic correlations of BMI, BMD and height
with osteoarthritis using LDSC regression (Table 5). Significant
positive genetic correlation was found between BMI and
osteoarthritis (r̂G = 0.255, P = 4.0E-07), which is expected given
the strong evidence for a causal role of BMI (Panoutsopoulou
et al., 2014). Suggestive positive genetic correlations with
osteoarthritis were also observed for height (P = 9.5E-03) and
LS-BMD (P = 0.012) but not for FN-BMD (P > 0.1).

The genetic correlation between osteoarthritis and LS-BMD
was less significant though its effect was stronger than between
osteoarthritis and height, which was possibly due to smaller

sample size of the BMD GWAS. Since the genetic architecture
of BMD was dominated by fewer number of causal SNPs with
larger effect sizes (Table S4), it is also possible that LDSC which
assumed an infinitesimal model may be less optimal to detect
genetic correlations for BMD and other traits. To support this,
we calculated PGS of BMD GWAS hits using weights from
the second stage replication sample of the GEFOS consortium
(Estrada et al., 2012) to predict OA. The PGS of both LS-BMD
and FN-BMD were strongly associated with OA case-control
status in the acrOGEN sample (R2 = 0.13%, P = 7.8E-07 for
LS-BMD and R2 = 0.12%, P = 2.5E-06 for FN-BMD). Taken
together, the results suggest that like LDD, OA also shares genetic
overlaps with height, BMI and BMD.

DISCUSSION

Between-Population Heterogeneity and Its
Impact on Prediction Performance of PGS
In this study, we adopted a trans-ethnic PGS strategy to evaluate
the genetic overlaps between different traits where GWAS
of base phenotypes were done in Europeans and validation
and testing samples were East Asians. Although most GWAS
findings were generally replicated in populations different from
the initial discovery, heterogeneity commonly existed in the
estimated effect sizes (e.g., Carlson et al., 2013; Marigorta and
Navarro, 2013), which would reduce the power of PGS to
predict phenotypes in populations from a different ethnicity
(e.g., Johnson et al., 2015). Consistent with this, we found
in Chinese validation samples that variance of height, BMI
and BMD explained by the PGS of corresponding GWAS
hits were all lower than in Europeans. For height and BMI,
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TABLE 4 | Association of rs4733724-A allele with lumbar disc degeneration and

height in East Asian samples.

Phenotype Covariates β̂ (SE) p-value

Disc displacement

score (N = 2,054)

Age, sex, lumbar injury 0.078 (0.032) 1.61E-02

Age, sex, lumbar injury,

BMI

0.074 (0.033) 2.28E-02

Age, sex, lumbar injury,

height

0.074 (0.033) 2.43E-02

Age, sex, lumbar injury,

weight

0.072 (0.032) 2.68E-02

Age, sex, lumbar injury,

height, BMI

0.071 (0.032) 2.91E-02

Disc degeneration

score (N = 2,054)

Age, sex, lumbar

injury

0.182 (0.089) 4.16E-02

Age, sex, lumbar injury,

BMI

0.187 (0.090) 3.73E-02

Age, sex, lumbar injury,

height

0.183 (0.090) 4.16E-02

Age, sex, lumbar injury,

weight

0.180 (0.089) 4.33E-02

Age, sex, lumbar injury,

height, BMI

0.176 (0.089) 4.83E-02

Hospitalized LDH

(366 cases, 3,331

controls)

NA 0.105a (0.081) 1.96E-01

Height (N = 2,050) Age, sex, PC1, PC2 0.032 (0.035) 3.59E-01

The SNP rs4733724 was genotyped in the HKDD cohort and reliably imputed in the

Japanese LDH case-control cohort. The A allele was previously reported to be associated

with increased height in Europeans (Wood et al., 2014). The rs4733724-A allele is

coupled to rs6651255-T, the latter of which was recently found to increase the risk

(odds ratio = 1.23) of LDH requiring surgery in Icelanders (Bjornsdottir et al., 2017). The

frequency of rs4733724-A allele is 0.72 in East Asians and 0.23 in Europeans.
aOdds ratio = 1.11.

TABLE 5 | Genetic correlations estimated by LD-score regression.

Trait 1 Trait 2 r̂G (SE) p-value

GENETIC CORRELATIONS BETWEEN ANTHROPOMETRIC TRAITS

Height BMI −0.055 (0.022) 1.36E-02

Height LS-BMD 0.071 (0.032) 2.72E-02

Height FN-BMD 0.036 (0.033) 2.83E-01

BMI LS-BMD 0.067 (0.028) 1.75E-02

BMI FN-BMD 0.071 (0.028) 9.90E-03

LS-BMD FN-BMD 0.669 (0.032) 4.64E-96

GENETIC CORRELATIONS BETWEEN OA AND ANTHROPOMETRIC

TRAITS

OA BMI 0.255 (0.050) 4.02E-07

OA Height 0.117 (0.045) 9.50E-03

OA LS-BMD 0.192 (0.076) 1.18E-02

OA FN-BMD 0.094 (0.068) 1.63E-01

BMI, body mass index; BMD, bone mineral density; LS, lumbar spine; FN, femoral neck;

OA, osteoarthritis.

assuming the genetic architecture is the same between European
and Chinese, the observed PGS results suggest that between-
population genetic correlations are about 0.4∼0.6 (Table S4,

Materials and Methods). The rough estimations are within the
range of previous estimate for type 2 diabetes and rheumatoid
arthritis between European and East Asian using a different
methodology (Brown et al., 2016).

The use of European GWAS in the current study is mainly due
to large sample sizes and publicly available summary statistics.
GWAS meta-analyses of height and BMI were also conducted
in East Asians (Wen et al., 2014; He et al., 2015). Although
sample sizes are much smaller (N≈36,000 for height, 87,000
for BMI), they are expected to have more similar effect sizes to
the Chinese sample. To evaluate the tradeoff between sample
size and effects heterogeneity, we projected expected prediction
performance (R2) of height and BMI using a theoretical model
with parameters of genetic architecture compatible with the
observed PGS results (Materials and Methods). Despite smaller
sample sizes, using East Asian GWAS as the discovery sample
is expected have comparable maximum R2 as European GWAS
to predict height in the Chinese population (Figure 5). For BMI,
depending on the presumed SNP heritability, using East Asian
GWAS shows comparable or better maximum R2 (Figure 5,
Figure S2). Further increase the European GWAS sample sizes
by half a million, a scale similar to the on-going UK biobank
study, the increase in R2 for height is capped at 8% but roughly
doubles for BMI. Notably, when using East Asian GWAS as the
discovery sample, the best prediction performance can only be
achieved at p-value thresholds >0.01. However, whole-genome
summary statistics of East Asian GWASs were not publicly
available for us before the start of this study. Also consistent with
the theoretical predictions, incorporating East Asian GWAS top
hits to the PGS of GWAS hits only marginally increased R2 in
predicting height and BMI, and their associations with the LDD
scores remained insignificant (Table S9).

Given genetic architecture and sample sizes, the power of
PGS in detecting genetic overlaps is mainly determined by
the performance PGS in predicting the corresponding base
phenotype. Therefore, the theoretical results suggest that the
use of European GWAS as discovery sample in PGS analysis
can still be a favorable approach in cross-trait analysis in the
East Asian population. But we caution that the trans-ethnic PGS
strategy may not be suitable for other populations like African.
Nevertheless, whenever possible ancestry-matched GWAS of
base phenotype with large sample sizes should be used to improve
the power. Since summary data from large scale GWAS in
non-European populations have started to become available
recently (e.g., Akiyama et al., 2017), new method will be needed
to integrate GWAS data from multiple ethnicities to further
improve the PGS prediction performance.

The Influence of Phenotype Definition
In this study, we analyzed three LDD phenotypes, including
two semi-quantitative scores derived from MRI assessment and
one clinically defined symptom. The PGS of height, BMI and
BMD were associated with at least one LDD phenotype. It
highlights the complexity in operationally defining LDD, as the
current diagnostic approach only captures certain aspects of the
degenerative process. Therefore, comparison between different
studies should clarify how phenotypes are defined. And it will be
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FIGURE 5 | Comparing the prediction performance of polygenic score (PGS) in Chinese sample using GWAS of European and East Asian. Expected phenotype

variances explained by PGS (R2) were calculated using the theoretical model of Dudbridge (2013) with parameters compatible with the observed PGS results of height

and BMI. (A) For height, the latest European GWAS has sample size 252K. Assuming SNP heritability of 0.42 in both populations, expected R2 in Chinese population

(red line) was calculated using the parameters best fit to Figure 3. In comparison, the latest East Asian GWAS has sample size only 36K, expected R2 was calculated

using the same set of parameters except that we assumed no heterogeneity in effect sizes (i.e., genetic correlation = 1) between discovery and testing sample (blue

line). To predict the gain in R2 when using even larger European GWAS in the future, we further increased the discovery GWAS sample size by 500K (red dashed line).

We also relaxed the assumption of no heterogeneity within East Asian and calculate expected R2 assuming genetic correlation of 0.9 (blue dashed line). (B) For BMI,

European GWAS has sample size 234K; East Asian GWAS has sample size 87K. Expected R2 were calculated similarly as height, assuming SNP heritability of 0.22.

fruitful to jointly evaluate multiple MRI features in future genetic
studies. However, although MRI is the current gold standard that
gives best resolution in defining LDD, it is too expensive to be
carried out in large samples.

An alternative strategy is to use the a “proxy phenotype”
such as patient-based LDH in which large number of cases can
be identified based on electronic medical records. Use of proxy
phenotype has been demonstrated to improve the power in
GWAS (e.g., Okbay et al., 2016). Increase in sample sizes can
outweigh the dilution of genetic effects, but it may also capture
certain aspects of the trait that is irrelevant to the phenotype
of interest (e.g., Kong et al., 2017). In the current and our
previous study (Song et al., 2013), LDH requiring surgery was
presumed to represent an extreme end of disc displacement in the
population. In this regard, it is surprising that the PGS of height
strongly associated with LDH but not LDD scores, and PGS of
BMI and BMD were associated with LDD scores but not LDH.
Although the lack of expected associations can be false negatives
due to insufficient power, we cannot rule out the possibility that
ascertainment of LDH patients based on severe low back pain or
sciatica may enrich polygenic factors other than LDD.

Biological Interpretations
The observed genetic overlaps can be explained by either
causality or genetic pleiotropy or both. Interestingly, BMI, BMD
and height also showed suggestive evidence of positive genetic

correlation with OA. It is possible that they can be explained
by some common mechanisms. Although formal assessment of
causality could utilize the Mendelian randomization paradigm
in larger sample sizes, PGS can be used to nominate candidate
phenotypes (Evans et al., 2013). Overweight or obesity has been
established as one of the major risk factors for the development
and progression of both LDD (Hassett et al., 2003; Hangai et al.,
2008) and OA (Bierma-Zeinstra and Koes, 2007). It is commonly
believed that increased body weight or BMI exerts more physical
loading to the IVD and vertebral endplate (Videman et al.,
2007) or joint cartilage (Guilak, 2011), and leads to increased
wear and tear of the structures. For BMD, in addition to its
correlation with LDD, previous studies also found the increase
in BMD in OA patients and an inverse association between OA
and osteoporosis (Hannan et al., 1993; Arden et al., 1996). It
was postulated that increased BMD is associated with a loss of
resilience of subchondral bone which may results in increased
mechanical stress on joint cartilage (Foss and Byers, 1972; Radin
and Rose, 1986) and similarly on IVD (Harada et al., 1998).
The causal mechanism of tall stature on LDH that leads to
hospitalization or surgery remains unclear. One possibility may
be related to increased disc height, because a previous study
using finite element modeling demonstrated that discs with
taller height and smaller area were prone to larger motion,
higher annular fiber stress and larger degree of disc displacement
(Natarajan and Andersson, 1999). Another possibility may be
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altered spinal alignment in taller individuals that predispose them
to lumbar spine injury. Notably, the postulated mechanisms all
point to the pathophysiological role of biomechanical stress.
Some other mechanisms have also been proposed (Katz et al.,
2010; Samartzis et al., 2013). For example, obesity is also believed
to lead to local inflammatory response of secondary mediators
secreted by adipocytes known as adipokines. The causal role
of adipokines and inflammatory markers can also be tested
using their genetic predictors as instrumental variables in future
studies.

Alternatively, the observed genetic correlations are also
consistent with the genetic pleiotropy and shared pathways
among skeletal phenotypes. In supporting this notion, several
individual OA associated SNPs were associated with height or
BMD (Reynard and Loughlin, 2013; Hackinger et al., 2017),
and OA and LDD were found to share some common genetic
risk factors (Song et al., 2008; Williams et al., 2011). At single
SNP level, we also replicated the recent finding of Bjornsdottir
et al. (2017) and showed that the height-increasing allele SNP
rs6651255 was associated with the increase of two LDD scores
in the HKDD cohort. The previous study did not find association
of the same SNP with other related skeletal phenotypes like OA
of the spine or osteoporotic vertebral fractures and suggested
that the association was driven by the neuropathic pain rather
than herniated lumbar discs. However, they did not examine
the association of the SNP with radiologically defined LDD
phenotypes. Our results in the large population-based cohort
with MRI assessment suggest that the same SNP also influences
the changes in composition and morphology of lumbar discs.
Future genetic studies on LDD with larger sample sizes should
search for additional pleiotropic SNPs to better understand bone-
cartilage relationships.

In summary, the current study is the first attempt to evaluate
genetic overlap between LDD and related traits using GWAS
data. Our trans-ethnic polygenic analysis supports the genetic
correlations of height, BMI and BMD with LDD, and sheds
new light on understanding the pathological mechanism of
degenerative skeletal disorders.
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