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Abstract
Background: Meiotic double-strand breaks occur at relatively high frequencies in some genomic
regions (hotspots) and relatively low frequencies in others (coldspots). Hotspots and coldspots are
receiving increasing attention in research into the mechanism of meiotic recombination. However,
predicting hotspots and coldspots from DNA sequence information is still a challenging task.

Results: We present a novel method for classification of hot and cold ORFs located in hotspots
and coldspots respectively in Saccharomyces cerevisiae, using support vector machine (SVM), which
relies on codon composition differences. This method has achieved a high classification accuracy of
85.0%. Since codon composition is a fusion of codon usage bias and amino acid composition signals,
the ability of these two kinds of sequence attributes to discriminate hot ORFs from cold ORFs was
also investigated separately. Our results indicate that neither codon usage bias nor amino acid
composition taken separately performed as well as codon composition. Moreover, our SVM based
method was applied to the full genome: We predicted the hot/cold ORFs from the yeast genome
by using cutoffs of recombination rate. We found that the performance of our method for
predicting cold ORFs is not as good as that for predicting hot ORFs. Besides, we also observed a
considerable correlation between meiotic recombination rate and amino acid composition of
certain residues, which probably reflects the structural and functional dissimilarity between the hot
and cold groups.

Conclusion: We have introduced a SVM-based novel method to discriminate hot ORFs from cold
ones. Applying codon composition as sequence attributes, we have achieved a high classification
accuracy, which suggests that codon composition has strong potential to be used as sequence
attributes in the prediction of hot and cold ORFs.

Background
Meiotic recombination occurs more frequently in some
regions of the eukaryotic genome than in others, with var-
iations of several orders of magnitude observed in fre-
quencies of meiotic exchange per unit physical distance

[1]. In Saccharomyces cerevisiae, meiotic recombination is
initiated by double-strand DNA breaks (DSBs) [1,2].
Some genomic regions in which meiotic DSBs occur at rel-
atively high frequencies are called hotspots, and by con-
traries, the regions with relatively low frequencies are
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called coldspots [2]. Although observations concerning
individual hotspots and coldspots have given clues as to
the mechanism of recombination initiation, the predic-
tion of hotspots and coldspots from DNA sequence infor-
mation is very limited [2]. So, several global mapping
studies have been performed to map DSB sites on chro-
mosomes in yeast to determine whether they share com-
mon DNA sequences and/or structural elements [2-5]. It
was found that, in S. cerevisiae, the position of hotspots
were nonrandomly associated with certain transcriptional
profiles and some feature of chromosome structure
related to GC-richness regions, while coldspots may asso-
ciate with the centromeres and telomeres [2,6]. Further
analysis showed that, in yeast, there is a significant corre-
lation between codon usage bias and recombination rate,
and the similar phenomenon was also observed in some
other organisms, such as Drosophila melanogaster, mouse
and human, which may be interpreted by biased genetic
conversion during meiosis and/or Hill-Robertson interfer-
ence [6-11].

Anyway, more mechanistic studies will be still critical in
predicting hotspots and coldspots and defining corre-
sponding operational rules [2]. Although experimental
techniques can be applied for this purpose, they are labo-
rious and time-consuming and therefore become infeasi-
ble for large numbers of genomic sequences [12]. Hence
efficient and reliable computational methods for discrim-
inating hotspots from coldspots are required.

An advanced method to this task employs statistical learn-
ing theory, typically the support vector machine (SVM),
which is a type of supervised machine learning algorithm.
Lin et al. have investigated the ability of SVM to discrimi-
nate ribosomal protein coding genes from all other genes
of known function based on codon usage in Escherichia
coli, Mycobacterium tuberculosis and Saccharomyces cerevisiae
[13]. Codon usage was also formerly used by Friedel et al.
as sequence attributes for separation of mixed plant-path-
ogen EST collections using SVM with high classification
accuracy [12]. In this paper, we present a novel method
for prediction of hot and cold ORFs located in hotspots
and coldspots respectively in S. cerevisiae using SVM based
on codon composition differences. Our method can accu-
rately differentiate hot ORFs from cold ORFs, which sug-
gests that codon composition is a satisfying sequence
attribute. Moreover, our SVM based method was applied
to the full genome: We predicted the hot/cold ORFs from
all selected ORFs in yeast genome by using cutoffs of
recombination rate and found that the performance of
our method for predicting cold ORFs is not as good as that
for predicting hot ORFs. Besides, in this study, we also
detected a significant correlation between meiotic recom-
bination rate and amino acid composition of certain resi-

dues in proteins encoded by the ORFs located in
recombination hot or cold spots.

Results and discussion
Classification of hot and cold ORFs based on different sets 
of attributes
We use codon use frequency (FCU) to measure codon
composition (see Methods section for details). As the
input for the SVM, the FCU values of each ORF in S. cere-
visiae were represented as a 61-dimensional vector. Ten-
fold cross-validation was chosen to estimate performance
of the SVM model. Table 1 indicates that, based on FCU,
the SVM learning technique was able to accurately differ-
entiate the hot ORFs from the cold ORFs with an accuracy
of 85.0%, which suggests that the hot ORFs has a unique
codon composition profile compared with the cold ORFs.

It was formerly suggested that the information contained
in codon composition is representative of both codon
usage bias and amino acid composition [13]. So, we eval-
uated these two attribute types separately on the same ran-
dom training and test splits as above. In our study, codon
usage bias and amino acid composition were measured by
relative synonymous codon usage (RSCU) and amino
acid use frequency (FAAU) respectively (see Methods sec-
tion for details). Using only RSCU values as sequence
attributes resulted in an average classification accuracy of
82.5%, while only considering amino acid composition
for prediction, the SVM performed more poorly with an
accuracy of 65.8% (see Table 1).

Compared with the original codon use frequency (FCU),
neither RSCU nor FAAU contributed any new information
for classification and these additional attribute sets taken
separately did not have the same excellent performance as
codon composition. And, according to McNemar's test,
the FCU based method shows significant difference with
respect to the other two methods (P < 0.05). Therefore, we
can conclude here that codon composition has strong
potential to be used as sequence attributes in the classifi-
cation of hot and cold ORFs.

Table 1: The performance of SVM for differentiating the hot 
ORFs from the cold ORFs. The SVM models were trained using 
codon composition, codon bias and amino acid composition as 
sequence attributes respectively.

Attributes Sensitivity (%) Specificity (%) OP (%) Accuracy (%)

FCU 86.6 75.0 80.8 85.0
RSCU 84.2 71.9 78.1 82.5
FAAU 66.3 62.5 64.4 65.8
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Contribution of amino acid composition for classification
Since both amino acid composition and codon bias con-
tribute to the uniqueness of the codon composition, now
we were interested to determine the relative contribution
of the amino acid composition signal to the ability of clas-
sification. So we took together the recombination rate and
FAAU of each ORF into account. It was found that there
were considerable positive correlations between recombi-
nation rate and the composition of positively charged
amino acid His (r = 0.11, P < 0.05) and Arg (r = 0.13, P <
0.05), as well as significant negative correlations between
recombination rate and the composition of polar amino
acids Asn (r = -0.11, P < 0.05) and Ser (r = -0.12, P < 0.05),
which means that there should be a marked enrichment
in amino acids His and Arg whereas a notable depletion
in Asn and Ser among the proteins coded by hot ORFs. To
test the contribution of this skewed amino acid composi-
tion on the SVM classification, we trained our SVM mod-
els on all above sequence attributes separately again,
excluding the amino acid His, Arg, Asn and Ser. The accu-
racies of these models, understandably, were not as good
as those trained based on the data set without exclusion
(see Table 2). However, it is evident that the accuracy of
the model based on amino acid composition decreased
much more significantly than those of the models based
on FCU and RSCU. Moreover, applying McNemar's test,
we detected a significant difference between the SVM
model based on FAAU of all amino acids and the model
with exclusion of the four amino acids mentioned above
(P < 0.05), which strongly suggests the importance of this
set of residues for the uniqueness of amino acid composi-
tion in both groups.

The difference in amino acid composition between the
proteins coded by hot and cold ORFs probably reflects the
structural and functional dissimilarity in these two
groups. Gerton et al. have observed several correlations
between hot or cold ORFs and gene functions: there was a
very significant over-representation of the hotspot ORFs
in the metabolism and ionic homeostasis functional
classes, as well as an overrepresentation of coldspot ORFs
in the categories of transport facilitation and intracellular
transport, which may be due to an association of certain
categories of genes with a particular chromatin structure
that is favorable or unfavorable for initiating meiotic
recombination [2]. At the same time, several previous
studies have shown that proteins with similar function
may share a similar amino acid composition [14-16].
Therefore, it is understandable that there is a skewed
amino acid composition between the proteins coded by
hot and cold ORFs. However, why amino acid composi-
tion is associated with the variation in meiotic recombina-
tion rate has not been solved unambiguously.

Contribution of codon bias for classification
To determine the relative contribution of the codon bias
signal to the ability of SVM to distinguish the hot ORFs
from the cold ORFs, we conducted a principal component
analysis (PCA) of RSCU values on all selected ORFs. Fig-
ure 1 shows the position of the ORFs on the plane defined
by the first and second major axes generated by PCA. The
two major axes account for 15.9% and 12.5% of all varia-
tion of codon usage bias among genes respectively,
whereas the other axes account for no more than 4%. It is
evident that the second axis discriminates the genes in
both hot and cold groups, although there is a considerable
overlap between the two clusters: almost all cold ORFs
cluster in the lower quadrants while majority of the hot
ORFs are located in the upper quadrants.

In S. cerevisiae, it was thought that the codon usage bias
strongly correlates with gene expression [17]. In this
study, we used the codon adaptation index (CAI) to meas-
ure the gene expression level [18]. High CAI genes are pre-
sumed to be highly expressed while low CAI genes are
presumed to be lowly expressed. As observed in previous
studies, we found that there is a significant negative corre-
lation between the first axis and CAI (r = -0.92, P <
0.00001), which means that the first axis can discriminate
genes with different expression level [17]. This kind of
correlation between codon usage and gene expression
reflects the nature selection acting at translational level.

Besides, a considerable positive correlation was also
found between the second axis and recombination rate (r
= 0.39, P < 0.00001) in yeast. This kind of correlation was
also observed in D. melanogaster, which has been
explained by two proposed models [7-9]. In the first
model, it is proposed that the reduction of codon bias in
the regions with limited recombination is consistent with
Hill-Robertson interference [7,19]. The effectiveness of
nature selection on one target due to stochastic effects of
selection on linked targets is expected to be reduced by
this conflict [6]. Computer simulation also suggests that
the effect of genetic linkage should be particularly damag-
ing in the case of weak selection, including the selection
acting on codon usage [8,9,19,20]. The second model pro-

Table 2: The performance of SVM with exclusion of certain 
amino acids. The SVM models were trained using codon 
composition, codon bias and amino acid composition as 
sequence attributes respectively, excluding His, Arg, Asn and Ser 
from the training datasets.

Attributes Sensitivity (%) Specificity (%) OP (%) Accuracy (%)

FCU 86.1 68.8 77.5 83.8
RSCU 84.2 65.6 74.9 81.6
FAAU 61.4 50.0 55.7 59.8
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poses that the correlation between codon usage pattern
and recombination rate is caused by recombination-
related mutational bias [8,9]. There is a positive correla-
tion between G+C content and recombination rate in the
organisms, such as D. melanogaster, S. cerevisiae, mouse
and human [2,6-11], which probably can be interpreted
by biased genetic conversion during meiosis [9].

To examine whether Hill-Robertson interference has sig-
nificant influence on the codon usage in yeast, the RSCU
values in the hot and cold data sets was compared using
χ2 test. Several previous studies have shown that nearly
half of the translationally preferred codons are ended in G
or C in this organism [6,21,22]. So, if Hill-Robertson
really plays an important role in shaping the codon usage,
the preferred codons in the hot data set should contain
the codons not only end in G or C, but also end in A or U,
because the selection on hot spots is thought to be more
effective than on cold spots due to Hill-Robertson inter-
ference. In present study, 26 codons, for 18 amino acids,
were identified as significantly (P < 0.05) more frequent
in the hotspot ORFs while another 21 triplets were used at
the higher frequency in the coldspot ORFs (shown in Fig-
ure 2). However, in the 26 codons which are preferred in
the hot ORFs, none is A or U ended translationally pre-
ferred codon, which suggests that Hill-Robertson interfer-
ence only partially accounts for the correlation between
codon bias and recombination rate in S. cerevisiae.

In fact, there is a significant positive correlation between
the frequency of G+C at the synonymous third codon
position (GC3S) and the second axis (r = 0.96, P <
0.00001). At the same time, the recombination rate for
each ORF is greatly positively correlated with GC3S in
yeast (r = 0.40, P < 0.00001). Given that GC3S may reflect
regional base compositional bias, the second model we
mentioned above might explain the association between
codon usage and recombination rate much better. In
other words, biased genetic conversion between parental
chromosomes during meiosis might mainly account for
the correlation between codon usage variation and recom-
bination in S. cerevisiae.

In addition, we have mentioned above that there are cor-
relations between hot or cold ORFs and gene function.
And it has also been reported that there is a relationship
between gene function and codon usage pattern in
eukaryotic organisms [23,24], which may partially
account for the correlation between codon bias and
recombination rate in yeast.

To evaluate the contribution of the codons listed in Figure
2 on the SVM classification, we trained our SVM models
only on codon composition and codon usage bias of these
47 codons respectively again. As expected, there was no
significant drop in accuracy whether we applied FCU or
RSCU values as sequence attributes (see Table 3). Moreo-

A comparision of the average RSCU values of hot ORFs with that of cold ORFsFigure 2
A comparision of the average RSCU values of hot 
ORFs with that of cold ORFs. From left to right, the first 
26 codons are statistically more frequent in the hot ORFs 
while the last 21 triplets are used at the higher frequency in 
the cold ORFs (P < 0.05). The RSCU values of hot group are 
marked with filled red squares, while those of cold group are 
marked with filled blue circles.

Plot of the two most dominant axes generated by PCAFigure 1
Plot of the two most dominant axes generated by 
PCA. Hot ORFs are represented by the red asterisks, while 
cold ORFs are represented by the filled blue circles.
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ver, according to McNemar's test, we didn't detect any sig-
nificant difference between the original SVM models
trained on FCU or RSCU values without exclusion and the
corresponding models based only on the 47 codons
respectively, which proves the importance of these key
codons for classification.

Applying the SVM based method to full genome analysis
Our above analysis is only focused on the ORFs located in
hot and cold spots which were detected by Gerton et al.
Now, we will take all the ORFs in S. cerevisiae genome into
account, including the neutral ORFs.

To examine the ability of our SVM based method for iden-
tifying hot ORFs from the full genome, we set a cutoff to
measure recombination rate. The ORFs with relative
recombination rate greater than the given cutoff were
regarded as hot ORFs and positively labelled, while the
other ORFs were negatively labelled. All the parameters of
SVM were the same as our above analysis. Ten-fold cross-
validation was used for performance estimation. Figure 3
shows the true positive rate and false positive rate of our
method applying to the full genome at 5 different cutoffs.
It is evident that when using FCU as sequence attribute,
the performance of SVM model is better than the models
based on RSCU and FAAU at each cutoff. Especially at the
cutoff 1.8, the true positive rate is near 80% while the false
positive rate is less than 30%.

We also examined the ability of our method for detecting
cold ORFs from the full genome. We classified the ORFs
as either cold or non-cold by using a cutoff on the meas-
ured recombination rate. The ORFs with relative recombi-
nation rate less than the given cutoff were regarded as cold
ORFs and positively labelled, while the other ORFs were
negatively labelled. Ten-fold cross-validation was used for
performance estimation again. Figure 4 shows the true
positive rate and false positive rate of our method for
detecting the cold ORFs from the full genome at 3 differ-
ent cutoffs. Although the FCU based model behaves better
than the models based on RSCU and FAAU, it is obvious
that the performance of our SVM based method for pre-
dicting cold ORFs is not as good as that for predicting hot

ORFs, which may imply that it is more difficult to detect
coldspots than to detect hotspots using computational
method. The detailed predicted results when using cutoffs
1.2 and 0.8 to measure hot and cold regions respectively
are listed in Additional file 1.

Conclusion
Prediction of meiotic recombination hot/cold spots in
eukaryotic genomes based on computational technique is
a challenging problem, partially because of current lim-
ited scale of published experimental data and few models
to represent the training data. In this paper, we have intro-
duced a SVM-based novel method to discriminate hot
ORFs from cold ones. Using codon composition as
sequence attributes, we have achieved a high classification
accuracy. Since codon composition is a fusion of codon
usage bias and amino acid composition signals, the ability
of these two kinds of sequence attributes for classification
was also investigated separately. Our results indicate that
neither codon usage bias nor amino acid composition
taken separately performed as well as codon composition.

Moreover, our SVM based method was also applied to the
full genome: We tried to predict the hot/cold ORFs from
all selected ORFs in yeast genome by using cutoffs of
recombination rate. We found that the FCU based model
still behaved better than the models based on RSCU and
FAAU. However, the performance of our method for pre-
dicting cold ORFs is not as good as that for predicting hot
ORFs.

The performance of SVM for predicting hot ORFs from the full genomeFigure 3
The performance of SVM for predicting hot ORFs 
from the full genome. The numerical value stuck on each 
bar cluster denotes the recombination rate cutoff of hot 
ORFs.

Table 3: The performance of SVM only trained on the key 
codons. The SVM models were trained using FCU and RSCU 
values of the codons listed in Figure 2 as sequence attributes 
respectively. These codons are thought to play important roles in 
classification.

Attributes Sensitivity (%) Specificity (%) OP (%) Accuracy 
(%)

FCU 86.6 68.8 77.7 84.2
RSCU 84.6 65.6 75.4 82.1
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In addition, we also observed a considerable correlation
between meiotic recombination rate and amino acid com-
position of positively charged residue His and Arg and
polar residue Asn and Ser in proteins encoded by the
ORFs located in hot/cold spots, which probably reflects
the structural and functional dissimilarity between the hot
and cold groups.

Methods
Sequence data
Gerton et al. have estimated relative recombination rates
for most of the S. cerevisiae loci using DNA microarrays at
a resolution of about 2–3 kb [2]. In S. cerevisiae, the aver-
age length of intergenic regions is about 500 bp. There-
fore, although most hotspots are intergenic rather than
intragenic, ORFs are used to locate hot/cold spots by Ger-
ton et al. They detected 303 hot ORFs clustered into 177
hotspots whose recombination rates ranked in the top
12.5% and 49 cold ORFs clustered into 40 coldspots
whose recombination rate ranked in the bottom 12.5%
[2]. We extracted the hot/cold ORFs (one of the cold ORFs
listed in Gerton's paper doesn't exist) and other neutral
ORFs from GenBank database. The corresponding recom-
bination data were obtained from [25] which was gener-
ated by Gerton et al. The relative recombination rate of
each ORF is determined by the median array value of
seven microarray experiments.

Sequence attributes
Codon composition was measured by codon use fre-
quency (FCU). Each ORF was represented by 61-dimen-

sional vector with respect to the 61 sense codons. The FCU
value of the jth codon for the ith amino acid was calculated
thus:

FCUij = obsij/Total

where obsij is the observed number of the jth codon for the
ithamino acid and Total is the total number of codons in
the ORF. FCU is inherently the fusion of both codon
usage bias and amino acid composition signals [13].

To examine synonymous codon usage without the con-
founding influence of amino acid composition of differ-
ent gene samples, the values of relative synonymous
codon usage (RSCU) of different codons in each sequence
were also calculated. The RSCU value of the jth codon for
the ith amino acid was calculated by

where obsij is the observed number of the jth codon for the
ithamino acid which has ni type of synonymous codons.
This attribute is independent of amino acid usage and it is
obvious that RSCU value close to 1.0 indicates a lack of
bias for the corresponding codon [26].

As well as the definition of FCU, amino acid use frequency
(FAAU) was used to examine the amino acid composition
of the corresponding protein for the selected ORF. The
FAAU value of the ith amino acid was calculated as below:

FAAUi = obsi/Total

where obsi is the observed number of amino aicd i in pro-
tein sample, and Total is the total number of the twenty
kinds of amino acids in the protein.

Support vector machine
Support vector machine (SVM) is a machine learning
technique based on statistical theory. The principle of
SVM is to find a maximum margin hyperplane for classifi-
cation. If it is not possible in the given space, the instances
are mapped to a higher dimensional space using the ker-
nel function. Kernel function allows one to work in a
higher dimensional space without computing all ele-
ments, which reduces computational complexity and con-
nects the input space and the higher dimensional space
directly. SVM will then choose a maximum soft margin
separating hyperplane in this higher dimensional space,
which separates the training instances by their classes. The
classification of a test sample will then be determined by
a sign function which is defined by the parameters of the
hyperplane. The instances closest to the hyperplane are

RSCU obs obs nij ij ik
k

n

i

i

=









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=

−

∑
1

1
The performance of SVM for predicting cold ORFs from the full genomeFigure 4
The performance of SVM for predicting cold ORFs 
from the full genome. The numerical value stuck on each 
bar cluster denotes the recombination rate cutoff of cold 
ORFs.
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called support vectors and are vital for training [27]. Using
SVM requires careful attention to the kernel function and
the magnitude of the trade-off between accuracy and gen-
eralization [13].

In this paper, we used SVMlight version 6.01 for data train-
ing and classifying. To ensure that the parameter estima-
tion and model generation of SVM is completely
independent of the test data, the original data set of hot
and cold ORFs was divided into two parts: set A and B. Set
A was used as a separate validation set to optimize the
parameters of SVM, which contains one third of the origi-
nal sequences (117 ORFs). The remainder sequences were
put into set B for performance evaluation (234 ORFs).
When classifying hot and cold ORFs, the SVM models
were trained with all the hot ORFs with positive labels and
all the sequences from coldspots with negative labels.
Ten-fold cross-validation was used for both parameter
and accuracy estimation. Ten-fold cross-validation is to
divide the dataset of hot and cold ORFs randomly into ten
subsets and then alternately using one subset for testing
and the other nine sets for training. In our study, ORFs
from the same hot or cold spot were placed in one subset.
In other words, we didn't distribute the ORFs from the
same spot to different subsets.

We used different kernel functions in our experiments,
including linear function, polynomial function and radial
basis function. To obtain SVM classifier with optimal per-
formance, the penalty parameter C and the parameters of
kernel function are tuned by the standard grid search
method based on set A. In this study, the value of param-
eter C was optimized to 100. When employing FCU as
sequence attributes, the best results were obtained using
the radial basis function kernel with γ = 200; while
employing RSCU and FAAU as sequence attributes, the
best performance was obtained using the polynomial ker-
nel of five and three degree respectively, which implies
that the FCU based classification problem is much more
non-linear than the problems based on RSCU and FAAU.

Measurement of SVM performance
The performance of the SVM model in distinguishing hot
ORFs from cold ORFs was evaluated by ten-fold cross-val-
idation using sensitivity, specificity, overall performance
(OP) and accuracy. These indices are determined thus:

Sensitivity = TP/(TP + FN)

Specificity = TN/(TN + FP)

OP = (Sensitivity + Specificity)/2

Accuracy = (TP + TN)/(TP + TN + FP + FN)

where TP, TN, FP and FN are the number of true positives,
true negatives, false positives and false negatives respec-
tively.

When we examined the ability of our SVM based method
to identifying hot or cold ORFs from the full genome, true
positive rate and false positive rate are used for perform-
ance evaluation.

True positive rate = TP/(TP + FN)

False positive rate = FP/(TN + FP)

McNemar's test was also applied to decide whether signif-
icant differences exist between the performances of any
two SVM models based on different attribute types. This
test is performed by summarizing the classification errors
of the two algorithms and has a lower Type I error (the
probability of incorrectly detecting a difference when no
difference exists) [28].

Principal component analysis
To assess the statistical difference between the hot and
cold ORFs, principal component analysis (PCA) was used
to investigate the major trends in codon usage variation
among genes. The RSCU values of each ORF were plotted
in a multidimensional space of 59 axes (excluding Met,
Trp and stop codons) and PCA identified a series of new
orthogonal axes accounting for the greatest variation
among genes. The analysis yielded the coordinate of each
ORF on each new axis, and the fraction of the total varia-
tion was accounted for by each axis.
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