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The Autism Diagnostic Observation Schedule-Generic (ADOS) is one of the most widely used instruments for behavioral
evaluation of autism spectrum disorders. It is composed of four modules, each tailored for a specific group of individuals based
on their language and developmental level. On average, a module takes between 30 and 60 min to deliver. We used a series of
machine-learning algorithms to study the complete set of scores from Module 1 of the ADOS available at the Autism Genetic
Resource Exchange (AGRE) for 612 individuals with a classification of autism and 15 non-spectrum individuals from both AGRE
and the Boston Autism Consortium (AC). Our analysis indicated that 8 of the 29 items contained in Module 1 of the ADOS were
sufficient to classify autism with 100% accuracy. We further validated the accuracy of this eight-item classifier against complete
sets of scores from two independent sources, a collection of 110 individuals with autism from AC and a collection of 336
individuals with autism from the Simons Foundation. In both cases, our classifier performed with nearly 100% sensitivity,
correctly classifying all but two of the individuals from these two resources with a diagnosis of autism, and with 94% specificity
on a collection of observed and simulated non-spectrum controls. The classifier contained several elements found in the ADOS
algorithm, demonstrating high test validity, and also resulted in a quantitative score that measures classification confidence and
extremeness of the phenotype. With incidence rates rising, the ability to classify autism effectively and quickly requires careful
design of assessment and diagnostic tools. Given the brevity, accuracy and quantitative nature of the classifier, results from this
study may prove valuable in the development of mobile tools for preliminary evaluation and clinical prioritization—in particular
those focused on assessment of short home videos of children—that speed the pace of initial evaluation and broaden the reach
to a significantly larger percentage of the population at risk.
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Introduction

Although autism has a significant genetic component,1 it is
primarily diagnosed through behavioral characteristics.
Diagnosing autism has been formalized with instruments
carefully designed to measure impairments indicative of
autism in three developmental areas: language and commu-
nication, reciprocal social interactions and restricted or
stereotypical interests and activities. One of the most widely
used instruments is the Autism Diagnostic Observation
Schedule-Generic (ADOS).2 The ADOS consists of a variety
of semi-structured activities designed to measure social
interaction, communication, play and imaginative use of
materials. The exam is divided into four modules, each
geared towards a specific group of individuals based on their
language and developmental level, ensuring coverage for
a wide variety of behavioral manifestations. Module 1
contains 10 activities and 29 items, is focused on individuals
with little or no language and is therefore most typical for
assessment of younger children. The ADOS observation is
run by a certified professional in a clinical environment and
its duration can range from 30 to 60 min. Following the

observation period, the administrator will then score the
individual to determine their ADOS-based diagnosis, increas-
ing the total time from observation through scoring to between
60 and 90 min in length.

The long length of the ADOS exam and the need for
administration in a clinical facility by a trained professional
both contribute to delays in diagnosis and an imbalance in
coverage of the population needing attention.3 The clinical
facilities and trained clinical professionals tend to be
geographically clustered in major metropolitan areas and far
outnumbered by the individuals in need of clinical evaluation.
Families may wait as long as 13 months between initial
screening and diagnosis,4 and even longer if part of a minority
population or lower socioeconomic status.5 These delays
directly translate into delays in the delivery of speech and
behavioral therapies that have significant positive impacts on
a child’s development, especially when delivered early.6,7

Thus, a large percentage of the population is diagnosed after
developmental windows in which behavioral therapy would
have had maximal impact on future development and quality
of life. The average age of diagnosis in the United States is
5.7 years and an estimated 27% remain undiagnosed at
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8 years of age.3 At these late stages in development, many of
the opportunities to intervene with therapy have evaporated.

Significant attention has been paid to the design of
abbreviated screening examinations that are meant to
foster more rapid diagnosis, including the Autism Screening
Questionnaire (designed to discriminate between pervasive
developmental disorder and non-pervasive developmental
disorder diagnoses8), the Modified Checklist for Autism in
Toddlers9 and the Social Communication Questionnaire,10

to name a few. Although these have widespread use and
value, the ADOS, because of its high degree of clinical
utility and diagnostic validity, remains one of the dominant
behavioral tools for finalizing a clinical diagnosis. Research
has focused on manual selection of preferred questions from
the full ADOS for use in scoring following the observation
period, work that has led to critical advances in diagnostic
validity and steps toward a reliable measure of severity of the
autism phenotype.11 Our aim in this research study was
similarly minded, but specifically focused on testing whether
statistical and data-driven selection of the ADOS questions
could result in an abbreviated and accurate instrument for
classification of autism.

With this goal, we sought to statistically identify a
subset of elements from the full ADOS Module 1 that could
enable faster screening both in and out of clinical settings
without compromising the diagnostic validity of the ADOS.
As a valuable by-product of the widespread adoption and
use of ADOS, research efforts have banked large collec-
tions of score sheets from ADOS together with the clinical
diagnosis that can be utilized to address this aim directly.
Leveraging these databases, we assembled a collec-
tion of complete ADOS evaluations for over 1050 children,
focusing on Module 1 data alone to gain insight into the
development of shorter approaches for early detection.
Through the application of machine-learning methods, we
were able to construct classifiers and objectively measure the
sensitivity and specificity of each with respect to diagnostic
validity and similarity to the original2 and revised11 ADOS
algorithms. We developed a classifier using decision tree
learning that performed optimally for classification of a wide
range of individuals both on and off the spectrum. This
classifier was substantially shorter than the standard ADOS
and pinpointed several behavioral patterns that could guide
future methods for expeditious observation-based screening
and diagnosis in and out of clinical settings.

Materials and methods

Constructing a classifier. We used ADOS Module 1 data
from the Autism Genetic Resource Exchange (AGRE)12

repository of families with at least one child diagnosed with
autism as our input for machine-learning classification. The
ADOS examination classified individuals into categories of
autism or autism spectrum based on the ADOS diagnostic
algorithm. This algorithm added the answers from a subset of
items extracted from the full exam for classification on or off
the autism spectrum according to a threshold score. Those
individuals who did not meet the required threshold were
classified as non-spectrum and were used as controls in our
study. For the purposes of our study, we restricted the
analyses to individuals with the classification of autism. Any
individuals with a majority (50% or more) of missing answers
in the ADOS exam were excluded. The final data matrix
contained 612 individuals with a classification of autism and
11 individuals with a classification of non-spectrum (Table 1).

We constructed 16 alternative classifiers by performing a
series of machine-learning analyses (performed using
Weka13) on the 29 ADOS Module 1 items to differentiate
individuals with a classification of autism from those with a
classification of non-spectrum. For each algorithm, we
performed 10-fold cross-validation, utilizing 90% for training
and the remaining 10% for testing to construct the classifiers
and measure their sensitivity, specificity and accuracy. This
level of cross-validation has been shown previously to perform
optimally for structured, labeled data while reducing bias in the
resulting classifier.14 We then plotted the specificity of the
classifiers against its sensitivity to visualize the performance
and selected the classifier with the best sensitivity, specificity
and accuracy (Table 2).

Validating the classifier. In addition to the 10-fold cross-
validation, we validated our classifier by testing it on
independently collected ADOS data from other individuals
with autism in the Boston Autism Consortium (AC) and the
Simons Simplex Collection15 (SSC). The AC data contained
110 individuals who met criteria on the Module 1 ADOS
algorithm for autism and an additional four individuals given
the non-spectrum classification. The SSC data comprised
336 individuals who met Module 1 cutoffs for autism but
lacked ADOS data for non-spectrum individuals.

Table 1 Summary of the data used for both construction and validation of the autism diagnostic classifier

AGRE AC Simons

Autism Non-spectrum Autism Non-spectrum Autism Non-spectrum

Sample size 612 11 110 4 336 0
Q1 4.7375 2.99 3.6875 2.771 5.167 0
Median 6.64 4.57 5.625 3.083 6.75 0
Q3 8.86 6.93 8.4167 6.729 10 0
IQR 4.1225 3.94 4.7292 3.958 4.833 0

Abbreviations: AC, autism consortium; AGRE, autism screening questionnaire; Simons, Simons Foundation.
We acquired complete sets of answers to the Autism Diagnostic Observation Schedule-Generic (ADOS) Module 1 evaluation from the AGRE, the Boston AC and the
Simons Foundation. The table lists the total numbers of individuals classified as having autism and individuals classified as non-spectrum represented in each of the
three data sets as well as a breakdown of age using the interquartile range.
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Balancing classes through simulation. Because machine-
learning algorithms maximize performance criteria that place
equal weight on each data point without regard to class
distinctions, we elected to simulate controls to increase the
number of score sheets that would correspond to an ADOS
classification of non-spectrum. This enabled us to test
whether the imbalance in the classes autism and non-
spectrum inadvertently introduced biases that would skew
downstream results and interpretation. To create a simulated
control, we randomly sampled scores from the existing set of
15 controls, that is, the total number of individuals who did not
meet the criteria for a classification of autism or autism
spectrum in all the three studies. We did this for each of the
29 items in the ADOS Module 1 by randomly drawing from the
set of recorded scores for that item. This guaranteed
that the simulated scores were drawn from the same

distribution of observed scores. This process was repeated
1000 times to create artificial controls that were subsequently
used to further challenge the specificity of the classifier,
that is, its ability to correctly categorize individuals with
atypical development or apparent risk of neurodevelopmental
delay but not on the autism spectrum. We also utilized the
simulated controls to recreate a classifier based on com-
pletely balanced data, 612 observed ADOS score sheets for
individuals categorized as having autism and 612 individuals
(15 observedþ 597 simulated) not meeting ADOS autism
or autism spectrum cutoffs. Additionally, we simulated
controls based on the full set of answers that would
correspond to a classification of non-spectrum rather than
restricting to the observed distribution alone. These simulated
controls yielded the same results as those above and thus we
elected to use the former simulated controls for imbalance

Table 2 The 16 machine-learning algorithms used for constructing classifiers from the ADOS Module 1 data

Classifier
name

Description FPR TPR Accuracy

ADTree An ADTree combines decision trees, voted decision trees and voted decision stumps. The algorithm
is based on boosting, which yields accurate predictions by combining a series of ‘weak’ learners that
together can classify accurately.16

0.000 1.000 1.000

BFTree The top node of the decision tree splits the data, so the maximum reduction of impurity (misclassified
data) is achieved. This is called the ‘best’ node and it is expanded upon first (unlike in a C4.5 tree, for
example, where nodes are expanded upon according to the depth first).18

0.600 0.993 0.979

Decision
Stump

A Decision Stump classifier is a single-level decision tree with one node. Terminal nodes extend
directly off of this node, thus classification is made based on a single attribute.19

1.000 1.000

FT Functional trees are classification trees that can use multiple linear regression or multiple logistic
regression at decision nodes and linear models at leaf nodes.17

0.000 1.000 1.000

J48 J48 is a Java implementation of the C4.5 algorithm; it generates either pruned or an unpruned or
C4.5 decision tree. C4.5 build trees from training data using the concept of information entropy.20

0.200 0.998 0.994

J48graft This class generates a grafted C4.5 decision tree that can either be pruned or unpruned. Grafting
adds nodes to already created decision trees to improve accuracy.21

0.333 1.000 0.992

Jrip This classifier is an optimized version of the Incremental Reduced Error Pruning, implementing a
propositional learner RIPPER (Repeated Incremental Pruning to Produce Error Reduction).22

0.333 0.995 0.987

LADTree LADTree produces a multi-class ADTree. It has the capability to have more than two class inputs. It
performs additive logistic regression using the LogitBoost strategy.23

0.133 0.997 0.994

LMT Logistic model trees combine decision trees with logistic regression models. LMTs are generated by
creating a logistic model at the root using LogitBoost. The tree is extended at child nodes by using
LogitBoost. Nodes are split until no additional split can be found.24

0.133 1.000 0.997

Nnge Nearest neighbor algorithms define a distance function to separate classes. By using generalized
exemplars, it reduces the role of the distance function (relying too heavily on the distance function
can produce inaccurate results) by grouping classes together.25

0.200 0.998 0.994

OneR This algorithm finds association rules. It finds the one attribute that classifies instances so as to
reduce prediction errors.26

0.400 0.993 0.984

PART A set of rules is generated using the ‘divide-and-conquer’ strategy. From here, all instances in the
training data that are covered by this rule get removed and this process is repeated until no
instances remain.27

0.200 1.000 0.995

Random
Tree

The Random Tree classifier draws trees at random from a set of possible trees with k random
features at each node and performs no pruning.28

0.400 0.987 0.978

REPTree An REPTree is a fast decision tree learner that constructs a decision/regression tree using
information gain for splitting, and prunes the tree using reduced-error pruning with backfitting.29

0.467 0.998 0.987

Ridor This classifier is an implementation of a Ripple-Down Rule Learner. An example of this is when the
classifier picks a default rule (based on the least weighted error) and creates exception cases
stemming from this one.30

0.267 0.997 0.990

Simple
Cart

Classification and regression trees are used to construct prediction models for data. They are made
by partitioning the data and fitting models to each partition.31

0.667 0.992 0.976

Abbreviations: ADTree, alternating decision tree; FPR, false positive rate; FT, functional tree; TPR, true positive rate.
The FPR and TPR are provided along with the overall accuracy. The ADTree and the FT, both performed with 100% accuracy. The ADTree contained fewer items
(eight in ADTree compared with nine in the FT) and was selected for further analysis in our study.
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class analysis and for measurements of the specificity of the
classifier.

Results

Because the AGRE data contained only 11 controls for
Module 1, we included all other Module 1 individuals with
a classification of non-spectrum from the Boston AC in the
analysis to bring the total number of controls to 15. We found
that this improved the accuracy of our classifier when
compared with the accuracy of only using the 11 controls
alone. We then tested the performance of 16 different
machine-learning algorithms on the 29 items in Module 1
(Table 2). We chose the best algorithm by comparing the
sensitivity, specificity and accuracy (Figure 1). Two algo-
rithms, the alternating decision tree (ADTree)16 and the
functional tree,17 operated with perfect sensitivity, specificity
and accuracy, resulting in classifiers with 8 and 9 questions,
respectively. Because it was our goal to shorten the exam
without appreciable loss of accuracy, we selected the ADTree
as the optimum algorithm for further analysis and validation.
The ADTree classifier correctly classified all 612 individuals
from the AGRE who previously received a diagnosis of autism
by the ADOS Module 1 algorithm, as well as all 15 individuals
from the AGRE and AC who were given a classification of non-
spectrum. The ADTree classifier consisted of 8 items out of
the 29 used in the analysis and included A2, B1, B2, B5, B9,
B10, C1 and C2 (Table 3).

These eight items segregated into two of the three main
functional domains associated with autism, language/com-
munication and social interactions, both important indicators
of autism. Item A2 (Frequency of Vocalization Directed to
Others) corresponded to the language and communication
domain. Items B1 (Unusual Eye Contact), B2 (Responsive
Social Smile), B5 (Shared Enjoyment in Interaction), B9
(Showing) and B10 (Spontaneous Initiation of Joint Attention)

corresponded to the domain of social interaction. Items C1
(Functional Play with Objects) and C2 (Imagination/Creativity)
were designed to assess how the subject plays with objects.
The eight items formed the elements of a decision tree that
enabled classification of either autism or non-spectrum
(Figure 2). Two items appeared more than once in the tree
(B9 and B10), indicating the possibility that these items have a
relatively more important role in classification of autism and
that the domain of social interaction may have more utility in
observation-based screening and diagnosis of autism. Each
item in the tree either increased or decreased a running total
statistic known as the ADTree score. A negative score
indicated a classification of autism, whereas a positive score
yielded the classification of non-spectrum. Importantly, the

Figure 1 Receiver operating characteristic curves mapping sensitivity versus specificity for the 16 different machine-learning algorithms tested on the ADOS Module 1
training data. We identified the best classifiers as those closest to the point (1, 0) on the graph indicating perfect sensitivity (true positive rate) and one specificity (false positive
rate). The best performing models were the ADTree and functional tree (FT). The ADTree was chosen over the FT because it used less items. See Table 2 for a summary of
the 16 machine-learning algorithms used in our analysis.

Table 3 The eight items found in the ADTree classifier

Question
code

Question subject Core domain

A2* Frequency of vocalization
directed to others

Communication

B1* Unusual eye contact Social interaction

B2 Responsive social smile Social interaction

B5* Shared enjoyment in interaction Social interaction

B9* Showing Social interaction

B10* Spontaneous initiation of joint
attention

Social interaction

C1 Functional play with objects Play

C2 Imagination/creativity Play

Abbreviation: ADTree, alternating decision tree.
Listed are the question code used by the Autism Genetic Research Exchange
(AGRE), a brief description of the question, and the domain to which the
question belongs. Five of the items in the ADTree classifier (*) are found on the
Autism Diagnostic Observation Schedule-Generic (ADOS) revised algorithm
(Gotham et al11), an algorithm containing 14 total items and demonstrating high
diagnostic validity.
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amplitude of the score provided a measure of confidence in
the classification outcome, with larger absolute values
indicating higher confidence overall, as previously indicated
in Freund and Mason.16 In our study, the vast majority of
the scores were away from the borderline for both the case

and control classes (Figure 3), demonstrating that a majority
of the predictions made by the classifier were robust and
unambiguous.

For independent validation of our eight-question classifier,
we collated score sheets for Module 1 from the Boston AC and

Figure 2 Diagrammatic representation of the classifier generated by the ADTree algorithm. The ADTree was found to perform best out of the 16 different machine-learning
approaches (Figure 1, Table 2). The resulting tree enables one to follow each path originating from the top node and increment (þ ) or decrement (�) prediction variables
accordingly. In our case, variables with a negative sign yielded the classification of autism, whereas those with a positive sign resulted in a classification of non-spectrum. The
magnitude of the score corresponded to confidence in the class prediction.

Figure 3 The ADTree scores of individuals in the AGRE, Boston AC and SSC data sets plotted against age in years (range from 13 months to 49 years). A majority of the
ADTree scores were large, indicating confidence in the class predictions, and uncorrelated with the ages of the individuals.
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SSC. Here the objective was to determine if the classifier
could correctly recapitulate the classification, i.e., autism
versus non-spectrum, provided by the ADOS assessments of
the individuals recruited to these two independent studies.
The classifier correctly classified all 110 individuals previously
meeting cutoffs for autism in AC. The classifier also performed
with high accuracy on the SSC dataset misclassifying only 2 of
the 336 individuals given a classification of autism in the
original SSC (99.7% accuracy). Upon further examination of
the two misclassified individuals from SSC, we learned that
their ADTree scores were approximately zero, at 0.1 and
0.039. The low scores, corresponding to low statistical
confidence in the classifications, suggested inadequate
classifier power and the potential presence of non-spectrum
behaviors in the misclassified subjects themselves.

Because of the limited number of controls who received
any ADOS Module, we elected to simulate 1000 controls by
randomly sampling from the group of observed answers in
the 15 individuals classified as non-spectrum. This procedure
enabled us to construct a series of artificial score sheets
for the ADOS Module 1 that were within the bounds of
answers likely to be provided by prospectively recruited
individuals who would not receive a diagnosis of autism
following an ADOS exam. The classifier correctly classified
944 out of the 1000 simulated controls (94.4% accuracy).
Upon closer inspection of the 56 simulated individuals
misclassified with autism, we found that all but 6 had ADTree
scores less than one unit away from the classification of
non-spectrum (Figure 3).

Because of the small number of controls and the imbalance
between the numbers of cases and controls, we elected to
perform a machine-learning procedure called upsampling to
assess and rule out biases in the original classifier.
Upsampling balances the numbers of cases and controls by
progressive sampling from the population of observed data.
We constructed a classifier using the ADTree algorithm with
the 612 individuals with a classification of autism from the
AGRE and 612 individuals with a classification of non-
spectrum, of which 11 were from the AGRE, 4 were from
the AC and the remaining 597 were from the simulated
controls. The resulting classifier correctly classified 609 out of
the 612 individuals with autism and all 612 individuals with a
classification of non-spectrum (99.8% accuracy). The result-
ing ADTree consisted of seven items, six of which were also in
the original classifier derived from the imbalanced data.
Additionally, the ensuing ADTree remained largely un-
changed from the original (data not shown), lending further
support to the robustness of our classifier and supporting
the notion that the imbalance of classes did not bias our
results.

Discussion

Current practices for the behavioral diagnosis of autism can
be effective but in many cases overly prohibitive and time
consuming. One of the most trusted and widely used
instruments in the field of autism spectrum disorders is the
ADOS, an exam broken up into four modules to accommodate
varying developmental level and language ability. We used
machine-learning techniques to determine if we could achieve

high classification accuracy with a small selection of items
from the exam. In our case, several alternative machine-
learning strategies yielded classifiers with near perfect
accuracy and low rates of false positives. The top-performing
ADTree algorithm resulted in an eight-item classifier with
99.7% sensitivity and 94% specificity when tested across
1058 individuals with autism and a collection of 1000
simulated and 15 observed non-spectrum controls. The
ADTree algorithm resulted in a simple decision tree (Figure 2)
with potential value for use in screening and/or clinical
diagnostic settings.

The ADTree classifier contains five questions also found on
the ADOS revised algorithm11 (Table 3), suggesting that our
classifier retains at least some of the diagnositic validity of this
14-item algorithm. Additionally, the classifier results in a
quantitative score that is a direct measurement of both
classification confidence as well as severity (or extremeness)
of phenotype. Therefore, this score represents an empirical
measure of confidence in the classification that can flag
borderline cases warranting closer inspection and further
behavioral assessment. The ADTree score may also be
integrated with other instruments, for example, Social
Responsiveness Scale, to enrich content while keeping
diagnosis time frames short. In addition, as a quantitative
measure of phenotype, the ADTree score could be integrated
with genetic data to improve our understanding of the
genotype–phenotype map for autism over a diversity of
subjects.

The statistical reduction in the number of items from the
ADOS Module 1 suggests that a compatible reduction in the
activities associated with the exam is possible. Module 1
contains 10 activities (Table 4), each designed to elicit specific
behaviors and responses that are coded in the 29 items.
Considering only the 8 items in our classifier, 2 of the 10
activities, namely ‘response to name’ and ‘response to joint
attention,’ could be removed because neither is required for
the eight-question classifier (Table 4). How this or other
alterations could have an impact on the observation process
overall remains an open research question, but as our clinical
and research databases expand together with our abilities to
refine machine-learning approaches like the one described
here, it is conceivable that further statistical reductions that

Table 4 The 10 activities used in an observation of a subject to answer the 29
items found on the ADOS Module 1

Activity Needed for classifier?

Free play Yes
Response to name No
Response to joint attention No
Bubble play Yes
Anticipation of a routine with objects Yes
Responsive social smile Yes
Anticipation of a social routine Yes
Functional and symbolic imitation Yes
Birthday party Yes
Snack Yes

Abbreviation: ADOS, Autism Diagnostic Observation Schedule-Generic.
Our work resulted in an accurate classifier containing only eight items from the
full test. In all, 2 of the 10 activities would not be needed to use this classifier in
an evaluation of a subject.
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enable rapid detection with high accuracy will be discovered.
In a similar vein, we anticipate that our classifier and
potentially others realized through similar studies on different
instruments and databases (clinical and research) will inform
the development of mobile tools for preliminary evaluation and
clinical prioritization—in particular those focused on assess-
ment of short home videos of children (for example, http://
vid.autworks.hms.harvard.edu)—that speed the pace of initial
evaluation and broaden the reach to a significantly larger
percentage of the population at risk.

Limitations. Our study was limited by the content of existing
repositories that, for reasons related to the recruitment
processes of those studies, contain very few individuals who
did not meet the criteria for an autism classification. In a
prospective design for a study like ours, we would include
equal numbers of cases and controls for optimal calcu-
lations of sensitivity and specificity of the classifier. Going
forward, we hope to expand our work through the inclusion of
new ADOS Module 1 (and other modules) data from both
individuals with autism spectrum disorders and individuals
without autism, particularly non-spectrum individuals with
learning delays and neurodevelopmental conditions, to
appropriately challenge the specificity and better reflect the
population of cases seen in clinical environments.

Again because of limitations in available data, our classifier
was trained only on non-spectrum individuals and those
with classic autism. Therefore, we were not able to test
whether our classifier could accurately distinguish between
autism, Asperger’s syndrome and pervasive develop-
mental disorder-not otherwise specified. Nevertheless, those
individuals not meeting the formal criteria for autism diag-
nosis were generally recruited to the study as high-risk
individuals or as siblings of an individual with autism.
Thus, these controls may have milder neurodevelopmental
abnormalities that correspond to other categories outside
of classic autism. Given that our classifier generally performed
well at distinguishing these individuals from those with classic
autism supports the possibility that our classifier already has
inherent sensitivity to behavioral variation within and outside
of the autism spectrum. Additional ADOS data from a range of
individuals with autism spectrum disorders and importantly
non-spectrum individuals with other learning and develop-
mental delays would enable us to measure the value beyond
that of classic autism, as well as enable us to retrain the
classifier to improve both sensitivity and specificity.

Conclusions

Currently, autism spectrum disorder is diagnosed through
behavioral exams and questionnaires that require significant
time investment for both parents and clinicians. In our study,
we performed a data-driven approach to select a reduced set
of questions from one of the most widely used instruments for
behavioral diagnosis, the ADOS. Using machine-learning
algorithms, we found the ADTree to perform with almost
perfect sensitivity, specificity and accuracy in distinguishing
individuals with autism from individuals without autism. The
ADTree classifier consisted of eight questions, 72.4% less
than the complete ADOS Module 1, and performed with

499% accuracy when applied to independent populations of
individuals with autism, misclassifying only 2 out of 446 cases.
Given this reduction in the number of items without appreci-
able loss in accuracy, our findings may help to guide future
efforts, chiefly including mobile health approaches, to shorten
the evaluation and diagnosis process overall such that
families can receive care earlier than under current diagnostic
modalities.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgements. We would like to thank members of the Tonellato
and Wall labs for key input on study design and results interpretation, including
Rebecca Dally for help with data management and Tristan Nelson for assistance
with database queries. We thank the AGRE, SSC and AC projects for access to
data, as well as the families enrolled in these projects for their invaluable
contributions. We thank Vlad Kustanovich for assistance with downloading and
handling the AGRE data. We also thank Rhiannon Luyster for comments on an
earlier draft.

1. Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, Yuzda E et al. Autism as a
strongly genetic disorder: evidence from a British twin study. Psychol Med 1995; 25: 63–77.

2. Lord C, Risi S, Lambrecht L, Cook Jr EH, Leventhal BL, DiLavore PC et al. The autism
diagnostic observation schedule-generic: a standard measure of social and communication
deficits associated with the spectrum of autism. J Autism Dev Disord 2000; 30: 205–223.

3. Shattuck PT, Durkin M, Maenner M, Newschaffer C, Mandell DS, Wiggins L et al. Timing of
identification among children with an autism spectrum disorder: findings from a population-
based surveillance study. J Am Acad Child Adolesc Psychiatry 2009; 48: 474–483.

4. Wiggins LD, Baio J, Rice C. Examination of the time between first evaluation and first
autism spectrum diagnosis in a population-based sample. J Dev Behav Pediatr 2006; 27(2
Suppl): S79–S87.

5. Bernier R, Mao A, Yen J. Psychopathology, families, and culture: autism. Child Adolesc
Psychiatr Clin N Am 2010; 19: 855–867.

6. Howlin P. Children with Autism and Asperger’s Syndrome: A Guide for Practitioners and
Parents. Wiley: Chichester, UK, 1998.

7. Pinto-Martin JA, Young LM, Mandell DS, Poghosyan L, Giarelli E, Levy SE. Screening
strategies for autism spectrum disorders in pediatric primary care. J Dev Behav Pediatr
2008; 29: 345–350.

8. Berument SK, Rutter M, Lord C, Pickles A, Bailey A. Autism screening questionnaire:
diagnostic validity. Br J Psychiatry 1999; 175: 444–451.

9. Robins DL, Fein D, Barton ML, Green JA. The Modified Checklist for Autism in Toddlers: an
initial study investigating the early detection of autism and pervasive developmental
disorders. J Autism Dev Disord 2001; 31: 131–144.

10. Eaves LC, Wingert HD, Ho HH, Mickelson EC. Screening for autism spectrum
disorders with the social communication questionnaire. J Dev Behav Pediatr 2006;
27(2 Suppl): S95–S103.

11. Gotham K, Risi S, Pickles A, Lord C. The Autism Diagnostic Observation Schedule: revised
algorithms for improved diagnostic validity. J Autism Dev Disord 2007; 37: 613–627.

12. Geschwind DH, Sowinski J, Lord C, Iversen P, Shestack J, Jones P, et al. The autism
genetic resource exchange: a resource for the study of autism and related neuropsychiatric
conditions. Am J Hum Genet 2001; 69: 463–466.

13. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA Data Mining
Software: an update. SIGKDD Explorations 2009; 11: 1.

14. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model
selection. Mellish CS (ed). In Proceedings IJCAI-95: 1995 Montreal. Morgan Kaufmann:
Los Altos, CA, 1995, pp 1137–1143.

15. Fischbach GD, Lord C. The Simons Simplex Collection: a resource for identification of
autism genetic risk factors. Neuron 2010; 68: 192–195.

16. Freund Y, Mason L. The alternating decision tree learning algorithm. In Machine Learning:
Proceedings of the Sixteenth International Conference. Morgan Kaufmann Publishers Inc.,
1999, pp 124–133.

17. Gama J. Functional Trees. Machine Learning 2004; 55: 219–250.
18. Shi H. Best-first Decision Tree Learning. In Master Thesis, The University of Waikato,

Hamilton, NZ, 2007.
19. Freund Y, Schapire RE. Experiments with a new boosting algorithm. In Machine Learning:

Proceedings of the Thirteenth International Conference. Morgan Kaufmann: San
Francisco, 1996, pp 148–156.

20. Quinlan R. C4.5. Morgan Kaufmann Publishers: San Mateo, 1993.

Rapid observational detection of autism
DP Wall et al

7

Translational Psychiatry

http://vid.autworks.hms.harvard.edu
http://vid.autworks.hms.harvard.edu


21. Webb GI. Decision tree grafting. In Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence. Morgan Kaufmann: Nagoya, Japan, 1997, pp 846–851.

22. Cohen WW. Fast Effective Rule Induction. In Machine Learning : The 12th International
Conference, Lake Tahoe. Morgan Kaufmann: CA, 1995, pp 115–123.

23. Holmes G, Pfahringer B, Kirkby R, Frank E, Hall M. Multiclass alternating decision trees.
ECML 2001; 161–172.

24. Landwehr N, Hall M, Frank E. Logistic Model Trees. Machine Learning 2005; 59: 161–205.
25. Martin B. Instance-Based learning: Nearest Neighbor With Generalization. University of

Waikato: Hamilton, New Zealand, 1995.
26. Holte RC. Very simple classification rules perform well on most commonly used datasets.

Machine Learning: Proceedings of the Sixteenth International Conference 1993; 11: 63–91.
27. Frank E, Witten IH. Generating Accurate Rule Sets Without Global Optimization. In:

Machine Learning: Proceedings of the Fifteenth International Conference. Morgan
Kaufmann Publishers: San Francisco CA, 1998.

28. Brieman L. Random Forest. Machine Learning 2001; 45: 5–32.

29. Witten IH, Frank E. Data Mining: Practical Machine Learning Tools and Techniques with
Java Implementations. Amsterdam: Morgan Kaufman, 2005.

30. Gaines BR, Compton P. Induction of Ripple-Down Rules Applied to Modeling Large
Databases. J Intell Inf Syst 1995; 5: 211–228.

31. Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and Regression Trees.
Belmont: California, 1984.

Translational Psychiatry is an open-access journal
published by Nature Publishing Group. This work is

licensed under the Creative Commons Attribution-Noncommercial-No
Derivative Works 3.0 Unported License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc-nd/3.0/

Rapid observational detection of autism
DP Wall et al

8

Translational Psychiatry


	Use of machine learning to shorten observation-based screening and diagnosis of autism
	Introduction
	Materials and methods
	Constructing a classifier
	Validating the classifier

	Table 1 Summary of the data used for both construction and validation of the autism diagnostic classifier
	Balancing classes through simulation

	Table 2 The 16 machine-learning algorithms used for constructing classifiers from the ADOS Module 1 data
	Results
	Figure 1 Receiver operating characteristic  curves mapping sensitivity versus specificity for the 16 different machine-learning algorithms tested on the ADOS Module 1 training data.
	Table 3 The eight items found in the ADTree classifier
	Figure 2 Diagrammatic representation of the classifier generated by the ADTree algorithm.
	Figure 3 The ADTree scores of individuals in the AGRE, Boston AC and SSC data sets plotted against age in years (range from 13 months to 49 years).
	Discussion
	Table 4 The 10 activities used in an observation of a subject to answer the 29 items found on the ADOS Module 1
	Limitations

	Conclusions
	Conflict of interest
	Acknowledgements




