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Abstract
Background: In malaria endemic areas children may recover from malaria after chemotherapy in
spite of harbouring genotypically drug-resistant Plasmodium falciparum. This phenomenon suggests
that there is a synergy between drug treatment and acquired immunity. This hypothesis was
examined in an area of moderately intense transmission of P. falciparum in Tanzania during a drug
trail with sulphadoxine-pyrimethamine (SP) or amodiaquine (AQ).

Methods: One hundred children with uncomplicated malaria were treated with either SP or AQ
and followed for 28 days. Mutations in parasite genes related to SP and AQ-resistance as well as
human sickle cell trait and alpha-thalassaemia were determined using PCR and sequence-specific
oligonucleotide probes and enzyme-linked immunosorbent assay (SSOP-ELISA), and IgG antibody
responses to a panel of P. falciparum antigens were assessed and related to treatment outcome.

Results: Parasitological or clinical treatment failure (TF) was observed in 68% and 38% of children
receiving SP or AQ, respectively. In those with adequate clinical and parasitological response
(ACPR) compared to children with TF, and for both treatment regimens, prevalence and levels of
anti-Glutamate-rich Protein (GLURP)-specific IgG antibodies were significantly higher (P < 0.001),
while prevalence of parasite haplotypes associated with SP and AQ resistance was lower (P = 0.02
and P = 0.07, respectively). Interestingly, anti-GLURP-IgG antibodies were more strongly
associated with treatment outcome than parasite resistant haplotypes, while the IgG responses to
none of the other 11 malaria antigens were not significantly associated with ACPR.

Conclusion: These findings suggest that GLURP-specific IgG antibodies in this setting contribute
to clearance of drug-resistant infections and support the hypothesis that acquired immunity
enhances the clinical efficacy of drug therapy. The results should be confirmed in larger scale with
greater sample size and with variation in transmission intensity.
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Background
Plasmodium falciparum resistance to commonly available
antimalarial drugs such as chloroquine (CQ), amodi-
aquine (AQ) sulphadoxine-pyrimethamine (SP) is now
widespread in most malaria-endemic areas, including
Tanzania [1,2]. It has been established that polymor-
phisms in the parasite dihydrofolate reductase (dhfr),
dihydropteroate synthetase (dhps) and chloroquine resist-
ance transporter (Pfcrt) genes are associated with SP and
CQ resistance, respectively in vitro [3,4]. Point mutations
at positions N51I, C59R and S108N in the dhfr gene [5,6]
and at positions A437G and K540E in the dhps gene [7,8]
have shown to predict a reduced efficacy to SP in vivo.
Likewise, the K76T mutation in the Pfcrt gene is a well
described predictor of reduced parasite susceptibility to
CQ [9], and to a lesser extent AQ [10]. The prevalence of
these mutations has increased as a result of high drug
pressure in most sub-Saharan countries in recent years
(reviewed in [2,11]).

Patients infected with P. falciparum parasites carrying such
drug-resistant mutations sometimes overcome infection
after treatment [12]. The ability to recover has been asso-
ciated with host age [13,14] and transmission intensity
[15,16], reflecting an effect of acquired host immunity.
From animal models it has also been established that
immunity enhances the efficacy of malaria drug treatment
[17]. Moreover, haemoglobinopathies, such as sickle cell
trait, has been related to increased efficacy of SP treatment
of uncomplicated falciparum malaria in Kenya [18].
Therefore, recovery from malaria may depend on the drug
efficacy and parasite drug-resistance, as well as a complex
interaction with host factors like acquired immunity and
innate resistance e.g. haemoglobinopathies.

Various studies have investigated the relationship
between potential immune mechanisms, such as anti-
body responses, and therapeutic efficacy. It has been dem-
onstrated that increased amounts of anti-RESA and anti-
NANP antibodies in patients treated with CQ were associ-
ated with better clearance of resistant parasites [19,20],
whereas other studies could not establish evidence for ele-
vated anti-MSP1 and anti-AMA1 antibody levels in
patients recovering after treatment with CQ, SP or AQ [21-
23]. These observations are however difficult to compare,
when factors like patient age, innate resistance, intensity
of transmission and level of drug resistance vary substan-
tially between these studies and may influence treatment
outcome.

The objective of this study was to evaluate factors influ-
encing outcome of antimalarial treatment to uncompli-
cated P. falciparum malaria, such as acquired immunity,
haemoglobinopathies and genotypic markers of drug
resistance. The study likewise wanted to investigate the

applicability of drug efficacy trails in testing the impor-
tance of antibodies to different vaccine-candidates in
patients receiving drugs with reduced efficacy, as sug-
gested previously [14,22]. Patients were children below
five years of age exposed to low-to-moderate levels of
malaria transmission in Tanzania, treated with either SP
or AQ for episodes of uncomplicated febrile malaria.

Methods
Study population and samples
The study was done as part of an annual clinical drug-effi-
cacy trial under the East Africa Network for Monitoring
Antimalarial Treatment (EANMAT) in collaboration with
the National Malaria Control Programme in Tanzania.
The trial was conducted during the rainy season between
February and July 2005 in Chamwino village, Dodoma
region, which is an area characterized by low-to-moderate
malaria transmission of mainly P. falciparum. The study
protocol was approved by the Ethical Committee of the
National Institute for Medical Research and Ministry of
Health, Tanzania.

The efficacy study were designed to enrol 100 patients
aged 6–59 months presenting with uncomplicated
malaria if they met the criteria as defined in the standard
efficacy testing protocol by WHO [24]: i) monoinfection
with P. falciparum at parasite densities above 2,000/μl and
below 200,000/μl, ii) axillary temperature ≥ 37.5°C, iii)
haemoglobin > 5 g/dl, iv) absence of severe malnutrition,
v) absence of general danger signs, severe and compli-
cated malaria, and vi) informed written consent from par-
ents/guardians.

Patients were randomly allocated to receive either sul-
phadoxine-pyrimethamine (SP) (25 mg/kg sulphadoxine
and 1.25 mg/kg pyrimethamine) as a single dose (Fan-
sidar®, Roche, Switzerland) or amodiaquine (AQ) (10 mg/
kg), once daily for three days (Pfizer, Senegal). Patients
were followed up clinically and parasitologically on days
0, 1, 2, 3, 7, 14, and 28 and on any other day if the patient
felt unwell.

Treatment outcome during 28 days of follow-up were
classified as early treatment failure (ETF), late clinical fail-
ure (LCF), late parasitological failure (LPF) or adequate
clinical and parasitological response (ACPR) according to
the standard protocol of WHO [24]. For the purpose of
this study, patients with ETF, LCF and LPF were grouped
as treatment failures (TF). LPF were defined as patients
with presence of parasitaemia on any day from day 7 to
day 28 and axillary temperature < 37.5°C without previ-
ously having ETF or LCF. Patients failing treatment or with
signs of severe malaria were given quinine and referred to
the nearby district hospital.
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Parasitaemia was determined microscopically using thin
smear of fingerprick blood and stained with 3% Giemsa.
Packed cell volume (PCV) was measured in haematocrit
capillary tubes. Plasma samples were collected upon cen-
trifugation, and stored at minus 20°C until further analy-
sis.

DNA and genetic analysis
DNA was extracted from fingerprick blood collected on
filter paper, as previously described [25]. Nested polymer-
ase chain reaction (PCR) assays were applied to differenti-
ate recrudescence from new P. falciparum infections by
comparing PCR-generated msp2 genotype patterns in
regions FC27 and IC-1 from samples collected on day 0,
7, 14 and 28 [26]. Analysis of the msp2 genotypes was
done according to Cattamanchi et al [27]: An outcome
was defined as recrudescence if a subsequent sample on
any day from day 7 to day 28 post-treatment contained
identical alleles or a subset of the alleles present in the day
0 sample and the patient were classified as having late par-
asitological treatment failure (LPF). An outcome was
defined as re-infection if a subsequent sample on any day
from day 7 to day 28 post-treatment contained only new
alleles compared to the day 0 sample and the patient were
classified as having an adequate clinical and parasitologi-
cal response (ACPR) [24].

Plasmodium falciparum single nucleotide polymorphisms
(SNPs) at dhfr (position 50/51, 59 and 108), dhps (posi-
tion 436/437, 540, 581 and 613) and Pfcrt (position
72–76) were determined on day 0 by sequence-specific
oligonucleotide probes (SSOP) and Enzyme-Linked
ImmunoSorbent Assay (ELISA)-based technique of PCR
amplified fragments as described in [27] Briefly, biotin-
conjugated nested PCR amplified DNA were fixed on
streptavidin-coated ELISA plates and mixed with digoxi-
genin-labelled oligonucleotide probes with specificity for
the SNP's of interest. The mixtures were washed with high
stringency at set temperatures before incubated with per-
oxidase-conjugated anti-digoxigenin antibodies and visu-
alized by o-phenylene-diamine (OPD). The SSOP's
enables detection of mixed haplotypes with high specifi-
city. The SNP's were constructed into haplotypes. Infec-
tions with mixed parasite haplotypes were only classified
as 'mixed' when none of the polymorphisms in the same
codon were dominant as determined by OD values of dif-
ferences above 50%. Sickle cell trait were detected by
screening the human β-haemoglobin gene for the A18T
mutation by SSOP-ELISA [28] and the African alpha3.7

deletion variant of alpha+-thalassaemia was determined
as previously described [29].

Recombinant P. falciparum antigens and synthetic 
peptides
The P. falciparum antigens used in the present study were:
the N-terminal non-repeat R0 region of the Glutamate-
rich Protein (GLURP-R0) (amino acids 27–500, FVO
strain) [30]; the C-terminal GLURP-R2 repeat region
(amino acids 705–1178, F32 strain) [31]; the synthetic
peptide corresponding to the repeat region (NANPx6) of
the circumsporozoite protein (CSP); the EBA-4 peptide of
the Erythrocyte Binding Antigen-175 (EBA-175) [32]; the
N-terminal region of the Apical Membrane Protein 1
(AMA1) (amino acids 25 to 545, FVO strain) with
mutated glycosylation sites [33]; the non-polymorphic C-
terminal region of the Merozoite Surface Protein 3
(MSP3) (amino acids 212–380, FVO strain) [30]; the 19
kDa fragment of Merozoite Surface Protein 1 (MSP1) [34];
three PfEMP1 recombinant HIS-tagged proteins: The
CIDR1-α and DBL4-γ-DBL5-δ domains of the PFD1235w
and the DBL2-β domain of the PF13_0003 [35,36]; and
crude extract of schizont material [37].

Antibody levels estimated by ELISA
The plasma samples collected at day 0 were tested for the
presence of IgG to the eleven antigens mentioned above
by ELISA as previously described [35]. Wells of Maxisorp
microtiter plates (Nunc, Roskilde, Denmark) were coated
with 100 μl of the recombinant protein diluted in 0.1 M
glycine-HCl (pH 2.75) (apart from CSP that was diluted
in phosphate-buffered saline [PBS], pH 7.2) by overnight
incubation at 4°C. Plasma collected from 30 residents of
a Tanzanian village where malaria is holoendemic were
used as a reference positive plasma pool and plasma from
19 healthy Danish donors who have never been exposed
to malaria were used as negative controls. To account for
day-to-day variation between assays, antibody responses
were calculated as arbitrary units (AU) with the following
formula: [(ODsample plasma - ODbackground)/(ODpositive plasma -
ODbackground)] × 100. The cut-of for a positive antibody
response was defined as the mean level plus two standard
deviations of the antibody reactivity among the negative
controls.

Measurement of VSA-specific IgG by flow cytometry
Plasma levels of IgG with specificity for variant surface
antigens (VSA) on two parasite isolate lines with different
VSA-expression profiles, 3D7 unselected (VSA1) and 3D7
selected on transformed human bone marrow endothelial
cells (THrMEB) (VSA2) [35] were tested by a flow cyto-
metric assay previously described [38]. Plasma from six
residents of a holoendemic Ghanaian village and six Dan-
ish donors served as positive and negative controls,
respectively. For each plasma sample, the mean fluores-
cence index (MFI) was recorded and used as a measure of
the VSA-specific antibody level. Antibody responses were
calculated as arbitrary units (AU) with the following for-
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mula: [(MFIsample plasma - MFIbackground)/(MFIpositive plasma -
MFIbackground)] × 100. The antibody positivity cut-of was
determined as the mean antibody levels of the plasma
from the mean of the six Danish donors plus two standard
deviations.

Statistics
Statistical analyses of data were performed with Stata/SE
version 8.2 (Stata Corp., Texas, US). χ2 test and Fisher's
exact test were used to compare differences in proportions
of antibody responders, presence of parasite resistant gen-
otypes and genes assessing haemoglobinopathies in
patients with adequate clinical and parasitological
response (ACPR) and treatment failure (TF). Non-para-
metric Mann Whitney rank sum test was used to analyse
differences in median antibody levels between treatment
groups. Associations between quantitative variables as
age, parasite densities and haemoglobin levels were
assessed by linear regression. For multivariable analysis,
logistic regression models were used to assess predictors
of treatment failure. In these models, parasite density (log
parasite density pre-treatment), age and age-squared were
used as continuous exposure variables, while presence or
absence of parasite resistant genotypes, human antibodies
and genes causing haemoglobinopathies were included as
categorical exposure variables. Possible effect modifica-
tion between the exposure variables was considered by
testing for interaction between presence of parasite
mutant haplotypes and IgG antibodies. P < 0.05 was
defined as significant.

Results
Characteristics of the study groups and outcome of 
treatment
The baseline characteristics of the 100 patients enrolled in
the study are shown in Table 1. Age, sex, parasitaemia,

temperature and haemoglobin levels on the day of enrol-
ment were similar in the SP and AQ treatment groups.

Of the 50 patients receiving SP, none presented with early
clinical failure (ECF), three patients presented with late
clinical failures (LCF), 31 patients presented with late par-
asitological failures (LPF) and the remaining 16 patients
had an adequate clinical and parasitological response
(ACPR). Of the 50 patients receiving AQ, one presented
with ECF, two patients presented with LCF, 16 patients
presented with LPF and the remaining 31 patients had an
ACPR. All samples were adjusted for new infections by
PCR genotyping. Before PCR corrections, 32 patients
receiving SP and 22 patients receiving AQ presented with
LPF, respectively. All patients with either ECR, LCF or LPF
were grouped together as treatment failures (TF). Thus,
the treatment failure rates were 68% in the SP group and
38% in the AQ group. There were no significant differ-
ences with respect to age, sex, temperature, and haemo-
globin level between patients with ACPR or TF in any of
the treatment groups. However, in patients receiving SP,
the parasite density on day 0 was higher in the TF than
ACPR group (P = 0.03). Levels of haemoglobin, parasite
density and failure rates showed no relation to age (data
not shown).

Associations between parasite mutant haplotypes and 
treatment outcome
The haplotypes based on the single nucleotide polymor-
phisms at codon 50/51, 59 and 108 of the P. falciparum
dhfr gene, and codon 436/437, 540, 581 and 613 of the P.
falciparum dhps gene, were determined on day 0 for para-
site infections in patients receiving SP (Table 2).

A higher prevalence of the triple mutant haplotype, CIRN
in dhfr, was observed in patients experiencing TF (82%)
compared to patients with ACPR (50%), (χ2 = 5.6, P =

Table 1: Baseline characteristics of patients.

SP (n = 50) AQ (n = 50)

Treatment outcome TF ACPR TF ACPR

PCR un-corrected, N (%) 35 (70) 15 (30) 22 (44) 28 (56)
PCR corrected, N (%) 34 (68) 16 (32) 19 (38) 31 (62)
Median age (months, CI) 31.5 (25.3–36) 27.5 (19–41.4) 24 (19.4–43.9) 32 (23.5–38.5)
Females (%) 31.6 38.7 41.2 68.7
Geometric mean parasite density, day0 
(/ul. CI)

39.810 (28.184–56.234)* 17.865 (8.511–37.153) 28.840 (14.256–57.544) 32.359 (22.387–43.651)

Mean haemoglobin day0 (PCV, SD) 29.4 (4.8) 29.6 (5.8) 28.6 (6.5) 30.7 (5.1)
Mean temperature day0 (°C. SD) 38.8 (0.9) 38.5 (0.6) 38.5 (0.9) 39.1 (0.8)
Alpha+-thalassaemia, % 33.4 27.6 42.9 35.7
HbAS, % 15.2 12.5 10.4 9.7

TF: Parasitological or clinical treatment failure, ACPR: Adequate clinical and parasitological response. SP: sulphadoxine-pyrimethamine, AQ: 
amodiaquine. * Significantly different from value for parasite density in ACPR group as calculated by Student's t test.
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0.02). There was no significant association between dhps
mutant haplotypes (single SGKAA and double SGEAA
combined) and treatment outcome (χ2 = 1.8, P = 0.18),
nor between the quintuple dhfr-dhps mutant haplotype
(CIRN-SGEAA) and TF (χ2 = 0.6, P = 0.46). However, due
to the low number of samples, we could not exclude a
possible association between the quintuple mutant hap-
lotype and treatment outcome.

The majority of parasites in patients receiving AQ
expressed the Pfcrt mutant haplotype CVIET (68%) and
the remaining samples were the CVMNK wildtype haplo-
type. There was a trend towards higher prevalence of the
CVIET haplotype in patients failing treatment (84%) com-
pared to patients with ACPR (58%), although not statisti-
cally significant (χ2 = 3.2, P = 0.08).

Thus, a higher prevalence of parasites expressing triple
mutant dhfr haplotype in patients failing SP treatment and
a tendency for a higher prevalence of the mutant CVIET
haplotype in patients failing AQ treatment were observed,
indicating some association between presence of parasite
resistant genotypes and treatment outcome.

Associations between anti-malaria antibodies and 
treatment outcome
Prevalence and levels of IgG antibodies with specificity for
the eleven malaria antigens and the surface of the two par-
asite isolates were measured on day 0 in patients treated
with SP or AQ (Figure 1 and Table 3). In univariate anal-
ysis, patients with ACPR had a higher prevalence of anti-
GLURP-R0 IgG (χ2 = 20.9, P < 0.001) and anti-GLURP-R2
IgG (χ2 = 12.7, P < 0.001) as well as higher levels of anti-
GLURP-R0 and R2 IgG (P < 0.001) compared to patients
with TF. Such statistically significant associations were not
observed for any of the other antigen-specific IgG
responses. Furthermore, the associations between ACPR
and prevalence and levels of GLURP-R0 and R2 antibod-
ies were significant when the SP and AQ groups were ana-
lysed separately ([SP]: R0: χ2= 11.8, P = 0.001; R2: χ2 = 9.4,
P = 0.002. [AQ]: R0: χ2 = 11.3, P = 0.001; R2: χ2 = 3.3, P =
0.07). The prevalence of the combined IgG responses to
GLURP-R0 and R2 was also correlated to ACPR in both
the SP (χ2 = 10.1, P = 0.002) and the AQ (χ2 = 11.3, P =
0.001) group. By contrast, no association between anti-
body responses to any other antigen, analysed individu-
ally or in combination, and treatment outcome in neither
the SP nor the AQ group was demonstrated. Approxi-
mately 25% of patients with IgG against GLURP R0 did
not have IgG against R2 and vice versa, indicating that
responding to R0 not necessarily means responding to R2.
Thus, among the thirteen IgG specificities, only anti-
GLURP-R0 and R2 IgG proved to be associated with
ACPR.

Impact of haemoglobinopathies on anti-malaria 
antibodies, parasitaemia and treatment outcome
In the study population, the overall frequency of homozy-
gote and heterozygote alpha+-thalassaemia was 38% and
the frequency of sickle cell trait (HbAS) 12%. No sickle
cell anaemic patients (HbSS) were found. The prevalence
of these traits was similar in the two treatment outcome
groups for both SP and AQ (see Table 1). Prevalence and
levels of antibodies did not differ between patients with
and without sickle cell trait or with and without alpha+-
thalassaemia for any of the malaria antigens. A lower par-
asite density was observed at enrolment in patients with
alpha+-thalassaemia receiving AQ (P = 0.007), but not for
SP (P = 0.41).

Table 2: Frequency of P. falciparum polymorphisms in dhfr, dhps 
and crt genes in relation to treatment outcome

SP Haplotypes TF ACPR

N 34 16

dhfr
wildtype CNCS 0 2
S108N, single CNCN 1 1
C59R + S108N, double CNRN 1 1
N51I + S108N, double CICN 3 3
N51I + C59R + S108N, triple CIRN 28 8
Mixed* 1 1

dhps
wildtype SAKAA/AAKAA 18 11
A437G, single SGKAA 5 0
A437G + K540E, double SGEAA 11 4
single-double combined 16 4
Mixed* 0 1

dhfr-dhps
triple-double 10 3
triple-single 4 0
double-double 1 1

AQ TF ACPR

N 19 31

76K CVNMK 3 12
76T CVIET 16 18
Mixed* 0 1

TF: Parasitological or clinical treatment failure, ACPR: Adequate 
clinical and parasitological response. SP: sulphadoxine-pyrimethamine, 
AQ: amodiaquine. Haplotypes defined as amino acid sequences based 
on the following substitutions in dhfr: S108N (single), C59R + S108N 
or N51I + C59R (double) and N51I + C59R + S108N (triple), and in 
dhps: A437G (single) and A437G + K540E (double) were assessed. 
For the crt gene, the K76T amino acid substitution was assessed. 
*Classified as mixed when none of the haplotypes were dominant.
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Potential predictors of treatment outcome
Patients were divided into four groups based on infections
with or without mutant haplotypes (the dhfr triple mutant
haplotype in the SP group, and the CVIET haplotype in
the AQ group), and presence or absence of IgG antibodies
to each antigen. In Table 4, only data for GLURP-R0 and
R2 are shown.

As expected, patients with anti-GLURP IgG infected with a
sensitive haplotype (group 1) were more likely to have
ACPR compared to patients with no anti-GLURP IgG
infected with a resistant parasite haplotype (group 4).
Interestingly, there was a marked positive effect of having
anti-GLURP IgG on treatment outcome in patients with
resistant haplotypes (comparing group 3 vs. 4 for GLURP-
R0; [SP]: R0, P = 0.004 and [AQ]: R0, P = 0.02), indicating
that possessions of anti-GLURP IgG were associated with
reduced risk of TF when infected with resistant parasites.
Similar significant associations were seen for GLURP-R2
but not for any of the other antigens.

In multivariate regression models, the effect of IgG anti-
bodies, parasite haplotype and parasite density on treat-

ment outcome was analysed (Table 5). Regardless of
parasite density and age, anti-GLURP IgG were the strong-
est predictor of treatment outcome in the SP and AQ
groups separately and combined. Presence of resistant
parasite haplotypes and high parasitaemia were also asso-
ciated with treatment failure in patients receiving SP, but
not as strongly as the presence of GLURP-R0 and R2 IgG
and not in the AQ group.

Discussion
This study evaluated the contribution of some anti-
malaria antibodies and parasite resistant haplotypes on
the outcome of SP and AQ treatment of patients under
five years of age with uncomplicated malaria. The rate of
SP treatment failure observed (68%) is unexpectedly high
for this area of endemicity, but similar SP failure rates
(43%–74%) have been shown in other parts of Tanzania
the last 10 years [39-41]. Not surprisingly patients failing
SP and AQ treatment were generally infected with para-
sites expressing drug resistance-related mutations. How-
ever, increased risk of SP treatment failure was associated
with the triple dhfr (CIRN) irrespective of the dhps haplo-
type status as demonstrated in other studies [5,42]. In the 

Prevalence of IgG antibody in patients at day 0 to different malaria antigens in relation to treatment outcomeFigure 1
Prevalence of IgG antibody in patients at day 0 to different malaria antigens in relation to treatment outcome. 
Black: Parasitological or clinical treatment failure (TF), White: Adequate clinical and parasitological response (ACPR). Patients 
receiving sulphadoxine-pyrimethamine (SP) or amodiaquine (AQ) are grouped together. Error bars illustrate 95% confidence 
intervals. χ2 test were done to compare proportions of IgG antibody responders between treatment outcome groups. Only 
significant p-values are presented. aGLURP-R0; χ2 = 20.9, bGLURP-R2; χ2 = 12.7. GLURP-R0: Glutamate-rich Protein region N-
terminal, GLURP-R2: Glutamate-rich Protein region C-terminal, AMA1: Apical Membrane Antigen 1, CSP: Circumsporozoite 
Protein, EBA: Erythrocyte Binding Antigen-175, CIDR: CIDR domain of PfEMP1 (PFD1235w), DBL2: DBL2 domain of PfEMP1 
(PF13_0003), DBL4: DBL4 domain of PfEMP1 (PFD1235w), MSP1: Merozoite Surface Protein 1, MSP3: Merozoite Surface Pro-
tein 3, VSA1: Variant Surface Antigen on unselected 3D7 parasite strain, VSA2: Variant Surface Antigen on bone marrow 
selected 3D7 parasite strain. SCHIZONT: Crude extract of schizont material.

Antigen
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AQ treatment group, only a trend towards an increased
risk of treatment failure was found in patients infected
with the Pfcrt-CVIET mutant haplotype. Although the lat-
ter could be explained by involvement of other putative
genes related to AQ resistance, such as Pfmdr [43], and
that the assumptions are based on a relatively small sam-
ple size, these findings indicate that the association
between parasite resistant genotypes and SP or AQ treat-
ment outcome is not absolute.

Interestingly, the prevalence and level of anti-GLURP anti-
bodies was associated with a substantial decreased risk of
treatment failure irrespective of drug regimen. This associ-
ation could not be demonstrated for any of the other anti-
gens studied, neither individually nor combined.
Similarly, although there was an association between par-
asite density and patients failing SP treatment, the treat-
ment outcome was independent of age, alpha+-
thalassaemia (homozygote or heterozygote) and sickle
cell trait, and for AQ treatment outcome, also parasite
density. Furthermore, in regression analysis, the presence
of GLURP R0 or R2 specific IgG antibodies influenced the
risk for failing SP and AQ treatment more strongly than
presence of parasite resistant haplotypes. This is in line
with a recent study from Uganda, where transmission
intensity, rather than the parasite genotype, influenced
treatment outcome [16]. This indicates that the degree of
immunity in the population in combination with the
number of resistant-related parasite mutations predicts
ACPR, suggesting a synergistic effect between the antima-
larial and host immunity, as also demonstrated in mice
[17].

It has recently been proposed that therapeutic responses
to resistant malaria infections can provide a mechanism
for measuring effective clinical immunity [14], i.e. drug
trials can be useful in identifying antigens and vaccine
candidates affording protection [22]. Investigations of the
impact of immunity on treatment outcome have however
resulted in conflicting findings [19-23]. In line with the
observations from the present study, level of anti-IgG to
MSP119 was not associated with CQ [22] SP [23] or AQ
[21,23] treatment outcome, and prevalence of anti-AMA1
[22] and anti-MSP3 [19] IgG was not associated with
reduced risk for CQ treatment failure. However, in con-
trast to the findings from the present study, the prevalence
of IgG to MSP119 was higher in patients clinically recover-
ing after CQ treatment [22], and IgG reactivity to multi-
ple, but not single, K1 and MAD20 alleles of MSP1 were
related to efficacy of AQ treatment [21]. In addition, prev-
alence of anti-NANP and anti-RESA IgG has been demon-
strated to be higher in patients recovering successfully
from CQ [19] and artesunate [20] treatment. The inability
to demonstrate an association between prevalence and
levels of antibodies against antigens other than GLURP in

Table 4: Associations between presence of IgG antibodies to 
GLURP-R0 + R2 and parasite haplotypes in relation to treatment 
outcome.

GLURP-R0 GLURP-R2

Treatment 
and group SP

Presence of antibody/
resistant haplotype*

TF ACPR TF ACPR

1 +/- 2 4 1 6
2 -/- 4 3 5 2
3 +/+ 6 7 9 7
4 -/+ 22 2 19 1

AQ

1 +/- 1 7 0 8
2 -/- 2 5 3 4
3 +/+ 4 12 3 11
4 -/+ 12 6 13 7

TF: Parasitological or clinical treatment failure, ACPR: Adequate 
clinical and parasitological response. SP: sulphadoxine-pyrimethamine, 
AQ: amodiaquine. *Number of patients with presence (+) or absence 
(-) of IgG antibodies to GLURP-R0 or R2 combined with resistant (+) 
or sensitive (-) genotypes associated with treatment outcome. 
Haplotypes were defined as resistant if parasites expressed the dhfr 
triple haplotype (CIRN) for the SP group or the CVIET haplotype for 
the AQ group.

Table 3: Level of IgG antibodies in patients to different malaria 
antigens in relation to treatment outcome.

Median level (25th and 75th percentiles)*

Antigen TF, n = 53 ACPR, n = 47 P-value

GLURP-R0 0.0 (0.0–1.3) 8.4 (0.0–47.7) < 0.001
GLURP-R2 0.0 (0.0–5.0) 7.7 (0.0–49.8) < 0.001
AMA-1 24.3 (0.0–51.1) 24.5 (0.0–87.3) 0.25
CSP 5.8 (0.0–17.1) 10.2 (0.0–24.4) 0.42
CIDR1α 15.4 (3.3–61.7) 9.1 (0.0–30.2) 0.24
DBL2β 22.5 (6.9–45.6) 16.9 (3.4–58.3) 0.92
DBL4γ-DBL5δ 10.4 (1.6–38.6) 12.4 (3.0–44.0) 0.74
MSP-1 80.0 (6.7–144.4) 122.7 (29.3–162.0) 0.11
MSP-3 5.3 (1.1–12.6) 8.0 (2.5–18.9) 0.30
VSA1 15.5 (5.2–33.0) 19.8 (6.1–41.0) 0.58
VSA2 16.3 (4.1–30.9) 21.1 (7.6–38.7) 0.21
EBA-175 4.3 (0.0–14.1) 5.9 (0.0–21.0) 0.54
SCHIZONT 30.0 (12.9–51.0) 35.2 (11.1–80.2) 0.17

TF: Parasitological or clinical treatment failure, ACPR: Adequate 
clinical and parasitological response. Patients receiving sulphadoxine-
pyrimethamine (SP) or amodiaquine (AQ) are grouped together. 
*Median values of IgG level day 0 in arbitrary units (25th and 75th 

percentiles). P-values determined by Mann-Whitney rank-sum test. 
Similar tendencies were observed when restricting the analysis to 
those with a measurable antibody level only, and when analysing each 
drug arm separately. For definitions of antigens, see Figure 1 and in the 
method section.
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the present study may be explained by the relatively small
sample size (50 patients in each group); alternatively by
allelic diversity as shown in the study from Gabon (20), or
by variable IgG subclass composition of the patient sera.
For instance, it has previously been described that only
IgG3 against MSP3 is associated with protection against
clinical malaria [44], although this was not observed in
another study where total IgG was a strong predictor of
protection [45]. Finally, one could speculate if prevalence
or level of IgG antibodies to these other specific antigens
are not primary responsible for, or associated with, host
immune protection against uncomplicated malaria but
rather severe malaria – which none of the patients had.
However, in patients with established clinical malaria,
sporozoite-blocking anti-CSP antibodies were, however,
not expected to influence treatment outcome.

Interestingly, at day 0, all patients had IgG antibodies to
at least one of the antigens tested, but no patient had IgG
antibodies to all the antigens. This may reflect substantial
variation in response to infections. Previous immuno-epi-
demiological studies have demonstrated that GLURP-spe-
cific IgG antibodies are associated with protection against
high parasitaemia [46], clinical disease [47] and inhibi-
tion of parasite growth in vitro [48], but this is not direct
evidence of IgG antibodies against GLURP increase the
ability to clear uncomplicated malaria infections, nor of a
causal relationship between treatment success and IgG
antibodies against GLURP. However, it was shown that
patients clinically recovering after treatment are more
likely to carry anti-GLURP IgG antibodies and the pres-
ence of such antibodies were associated with reduced risk
of failing drug-resistant parasite infections.

Conclusion
This study suggests that presence or level of GLURP-spe-
cific IgG antibodies in some settings are better predictors
of SP and AQ treatment outcome than the parasite density
at enrolment and drug-resistant related parasite muta-
tions. This confirms the hypothesis that acquired immu-
nity enhances the efficacy of antimalarial treatment, and
supports the use of drug trials to identify markers of
immunological importance. In addition, the findings sug-
gest that drugs with reduced efficacy, such as SP, may still
be effective for treatment of uncomplicated malaria in
individuals with some acquired immunity, such as older
children and adults living in areas of intense malaria
transmission.
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CIRN 4.67 (1.25–17.44) 0.02 7.21 (1.42–36.73) 0.02

GLURP-R0 0.09 (0.02–0.41) 0.002 0.08 (0.14–0.47) 0.005

AQ (n = 50) Parasite density 0.82 (0.27–2.46) 0.72 0.77 (0.13–4.42) 0.76
CVIET 3.55 (0.85–14.91) 0.08 2.56 (0.46–14.27) 0.28

GLURP-R0 0.10 (0.02–0.43) 0.002 0.07 (0.01–0.48) 0.003
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GLURP-R0 0.13 (0.06–0.33) < 0.001 0.11 (0.04–0.31) < 0.001

Multivariate regression models predicting failure of antimalarial treatment. SP: sulphadoxine-pyrimethamine, AQ: amodiaquine.OR: Odds Ratio, CI: 
95% Confidence interval. CIRN: Presence of the triple dhfr CIRN haplotype. CVIET: Presence of the crt CVIET haplotype. CIRN/CVIET: Presence of 
parasites with CIRN in patients treated with SP and presence of parasites with CVIET in patients treated with AQ. GLURP-R0: Presence of IgG 
antibodies to GLURP-R0. SP+AQ: Total patients in the two treatment groups. *Adjusted for age, parasite density, presence of mutant haplotypes 
and GLURP-R0 antibodies. No interaction between presence of mutant haplotypes and GLURP-R0 IgG antibodies was detected.
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