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Abstract

The winter wheat variety Kitahonami shows a superior flour yield in comparison to other Japanese soft wheat varieties. To
map the quantitative trait loci (QTL) associated with this trait, association mapping was performed using a panel of lines
from Kitahonami’s pedigree, along with leading Japanese varieties and advanced breeding lines. Using a mixed linear model
corrected for kernel types and familial relatedness, 62 marker-trait associations for flour yield were identified and classified
into 21 QTLs. In eighteen of these, Kitahonami alleles showed positive effects. Pedigree analysis demonstrated that a
continuous pyramiding of QTLs had occurred throughout the breeding history of Kitahonami. Linkage analyses using three
sets of doubled haploid populations from crosses in which Kitahonami was used as a parent were performed, leading to the
validation of five of the eight QTLs tested. Among these, QTLs on chromosomes 3B and 7A showed highly significant and
consistent effects across the three populations. This study shows that pedigree-based association mapping using breeding
materials can be a useful method for QTL identification at the early stages of breeding programs.
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Introduction

Flour yield, or the percentage of flour from a given quantity of

grain, is of great importance to flour milling companies. Flour

yield can be increased by the enhancement of techniques in the

milling process, or through the development of varieties with

higher flour yields. In 2006, the soft winter wheat variety

Kitahonami was released in the Hokkaido prefecture of Japan

[1]. This variety, which has become a leading variety in Hokkaido,

shows the highest flour yield among Japanese soft wheat varieties.

Therefore, Kitahonami is now being used as a source of the high

flour-yield trait in multiple Japanese wheat breeding programs.

Mapping of quantitative trait loci (QTL) associated with this trait

and identification of linked markers would accelerate the

introgression of the high flour-yield phenotype into other varieties.

However, flour yield is a complex trait that appears to be

strongly influenced by genetic background. QTL studies using bi-

parental populations have been conducted within hard varieties or

within populations of interclass hybridizations between hard and

soft varieties. These studies have indicated that QTLs for flour

yield are located on 16 out of 21 chromosomes: 1B, 1D, 2A, 2B,

3A, 3B, 4A, 4B, 4D, 5A, 5B, 5D, 6B, 6D, 7A and 7D [2–6].

Interclass hybridization between soft and hard wheat demonstrat-

ed that the hardness locus Pinb on 5D chromosome had a strong

influence on flour yield [3]. In soft wheat types, only a limited

number of studies identifying QTLs associated with flour yield

have been reported to date. Using an association mapping

approach with 95 soft wheat varieties, Breseghello and Sorrells

[7] detected weak QTLs associated with flour yield and break flour

yield on 2D and 5B. A study of a bi-parental population derived

from two soft wheat cultivars identified QTLs for flour yield on

1B, 2A, 2B, 2D and 3B [8]. Carter et al. [9] found that a large

number of QTLs for milling quality and starch functionality were

located on 3B and 4D, including QTLs for flour yield. Although

the QTLs described in these studies were detected with high

confidence, few were consistent between studies, suggesting that

they are unlikely to coincide with the high flour yield trait from

Kitahonami.

Because developing mapping populations and performing

mapping studies are time consuming processes, breeders often

have already introgressed target QTL into breeding lines using

traditional selection methods before markers are available,

especially for highly desirable traits. Thus, the most effective stage

for using marker-assisted selection (MAS) to introduce a new trait

into breeding programs is often missed. One solution to this could

be to take advantage of populations developed within a breeding
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program to identify QTLs. Jannink et al. [10] proposed an

approach applying family-based methods that are generally used

within human and animal populations. Family-based QTL

mapping for resistance to Fusarium head blight has been reported

[11], and Malosetti et al. [12] used pedigree-data in association

mapping of resistance to Phytophthora infestans in potato. Such

association mapping techniques might be useful in rapid marker

development for MAS.

The objective of this study was to dissect the genetic factors

contributing to the high flour-yield trait of Kitahonami by an

association mapping approach. After identification of QTLs

related to flour yield, the pedigree record of Kitahonami was

used to trace the origin of QTLs which had been inadvertently

accumulated through selection for high flour yield. To confirm the

utility of this approach, QTLs identified by association mapping

were validated using our own bi-parental populations.

Materials and Methods

Plant materials: One hundred eighty-five accessions were used

in this study (Table S1 in File S1). Of these, 65 accessions were

winter wheat varieties related to Kitahonami and lines from the

pedigree of Kitahonami (Fig. S1), along with advanced breeding

materials and varieties developed at Kitami Agricultural Exper-

imental Station (KAES), NARO Tohoku Agricultural Research

Center (TARC) and Nagano Agricultural Experimental Station

(NAES). These lines, which made up the association panel, were

subjected to intensive phenotyping and were used in an association

analysis. The remaining 120 accessions, which were included in a

diversity analysis to investigate the genetic diversity of Japanese

breeding materials, consisted of leading varieties and advanced

breeding lines from across the country, along with introduced

varieties from other countries and experimental lines such as

Chinese Spring and T. spelta var. duhamelianum.
DNA isolation and genome-wide marker analysis: Genomic

DNA of each accession was extracted from 100 mg of young leaf

tissue using the automated DNA isolation systems PI-50a or PI-

Figure 1. Scatter diagrams of principal component (PC) 1, 2 and 3 values calculated by the PCA function of TASSEL 3.0 using 2,933
DArT (A) and 6,042 SNP (B) markers.
doi:10.1371/journal.pone.0111337.g001
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80X (Kurabo Industries Ltd., Osaka, Japan) according to the

manufacturer’s instructions. For the diversity analysis, 151

accessions were genotyped by DArT [Wheat PstI (TaqI) v.3]

(Diversity Arrays Technology Pty Ltd., http://www.

diversityarrays.com/) and 164 accessions were genotyped by

SNP (PrivKSU_WheatCons_9k) [13] markers. After removing

data with minor allele frequencies (MAF) of less than 0.01,

genotyping data from 2,933 DArT and 6,042 SNP markers were

forwarded for diversity analysis. In addition to DArT and SNP

genotyping, materials in the association panel were also genotyped

using SSR markers (GrainGenes 2.0, http://wheat.pw.usda.gov/

GG2/index.shtml/) and established diagnostic markers, such as

Pina-D1, Pinb-D1, Wx-A1, Wx-B1, Ppo-A1, Ppo-D1, Psy-A1
and Psy-B1 (reviewed in Liu et al. [14]). Genotyping data from

SSR markers was recorded in the bi-allelic state: each fragment

derived from a SSR marker was recorded as presence (1) or

absence (0). All genotyping data from the association panel was

merged. Data with MAF of less than 0.1 and redundancies among

markers were removed. After these processes, genotyping data

from 3,815 selected markers was used for the association analysis.

Distribution of these markers across the wheat genome is shown in

Table S2 in File S1.

Field experiments: Accessions in the association panel were

field-grown in three locations [Kitami (Hokkaido island, 43.7uN,

Figure 2. UPGMA dendrogram showing the pattern of genetic diversity among the 164 accessions based on the analysis of 6,042
SNP markers. Open and black circles indicate accessions found in the Association panel. Black circle means accessions in Kitahonami’s pedigree.
Numbers outside of the dendrogram correspond to accession numbers in Table S1 in File S1.
doi:10.1371/journal.pone.0111337.g002
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143.7uE), Morioka (Northern Honsyu island, 39.7uN, 141.1uE)
and Nagano (Central of Honsyu island, 36.7uN, 138.3uE)], during
the three successive cropping seasons from 2008/2009 to 2010/

2011. The plot size was 3.0 m60.7 m, and each plot consisted of

40–50 plants separated from one another by 10–15 cm. Two

replications were conducted in each season except 2008/2009.

Trait analyses: Grain samples were tempered to 14.5% moisture

and 100 g of each sample was milled on a Quadrumat Junior mill

(Brabender Co., Hackensack, NJ). The mill was preheated to

prevent expansion of the rolls during operation. Ground grain

samples were sifted with an 8XX silk reel sieve and a 94-mesh

(180 mm) screen. Flour yield (FlYd) was expressed as the

percentage of total flour weight to initial sample weight.

Measurements were also taken for the following 14 traits: flour

efficiency (FlEf), median size of flour particles (x50), specific

surface area of flour particles (Sv), flour protein content (FPC),

flour ash content (Fash), flour color L* (FlL), flour color a* (Fla),

flour color b* (Flb), grain protein content (GPC), grain ash content

(Gash), test weight (TestW), 1000-kernel weight (TKW), heading

date (HD) and maturity date (MD). Detailed explanations for each

trait are described in Table S3 in File S1.

Statistical analysis: Principal component analysis (PCA) and

cladogram construction were performed with TASSEL 3.0 [15].

Analyses of DArT and SNP data were conducted separately. A

correlation-based PCA was performed, and missing data was

imputed with following settings: use manhatten distance, use

unweighted average, 3 numbers of neighbors, and 0.80 minimum

frequency of row data. Statistical analysis of traits was performed

with JMP 9 (SAS Institute, Raleigh, NC). The mean value of two

replications was used as the environmental value for each

accession in the 2009/2010 and 2010/2011 cropping seasons.

For two-dimensional analysis of variance, the fit model function

was used with standard least squares method. Random effects of

the genotypes and environments were applied to estimate the

variance components. Heritability in the broad sense was

estimated from the results of the variance analysis according to

the formula used by Burton and DeVane [16]. Associations

between markers and traits were calculated with TASSEL 3.0 [15]

using the mixed linear model. The kinship matrix calculated by

Figure 3. Leverage plots of flour yield (FlYd) values. Abbrevi-
ations for environments consist of first letter of location and harvest
year. K: Kitami, M: Morioka, N: Nagano. For example, K09 means samples
of 2008/2009 cropping season at Kitami.
doi:10.1371/journal.pone.0111337.g003
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TASSEL was used for considering familial relatedness of

accessions. Since a different distribution pattern was observed

between soft and hard kernel types (see Results’ section), the effect

of kernel type was considered as an additional term of fixed effect

in the model: 0 and 1 values were rendered to soft and hard kernel

type, respectively. To take into account multiple comparisons,

significance was tested using a 0.5 false discovery rate implement-

ed in the q value software [17].

QTL validation: QTLs obtained as described above were

validated using three doubled haploid (DH) populations, which

were developed from F1 plants from crosses between Kitahonami

and three other varieties, namely Kinuhime, Tohoku224 and

Shunyou. At least 151 lines from each population were field-grown

without replication during the 2010/2011 season and subjected to

validation. FlYd values for these lines were obtained as described

above. To reduce genotyping costs, markers showing significant

association with this trait in the association mapping analysis were

converted from array-based SNP markers into PCR-based

markers. To do this, probe sequences of the SNPs of interest

were identified; since most of these sequences have been mapped,

the chromosome number to which they have been assigned is

known. These sequences were used as queries in BLASTN

searches (E-value,e-40) against the wheat survey sequences

(IWGSC, http://www.wheatgenome.org/) [18]. Generally, this

allowed the identification of three highly homologous contigs from

the relevant A, B and D homoeologous chromosomes, one of

which showed 100% match to the probe sequence and originated

from the same chromosome to which the probe sequence had

been mapped. Contigs were aligned and regions that were

polymorphic among the three genomes were used to design

genome-specific primers (GSPs) upstream and downstream from

the SNP of interest, with the SNP location set at approximately

one third of the interval between primers. Two additional allele-

specific primers (ASPs) were designing, with the 39 base of these

primers being concurrent with the SNP. To increase allele

specificity, an artificial mismatch was integrated at the third

nucleotide from the 39 end of the ASPs, as described by Liu et al.

[19]. Each PCR reaction included both GSPs and one ASP, and

two reactions, each containing a different ASP, were used for

genotyping. For PCR analysis, each 25-mL PCR mixture included

50–100 ng of DNA, 1.5 mM MgCl2, 0.2 mM dNTP (each), 16Ex

Taq buffer, and 0.5 U of TaKaRa Ex Taq (Takara, Osaka,

Figure 4. Relationships between flour yield (FlYd) and flour efficiency (FlEf) (A), FlYd and median diameter of particles (x50) (B) and
FlYd and specific surface area of particles (Sv) (C). Accessions could be classified into either soft or hard kernel types based on Pina-D1/Pinb-D1
genotypes. Soft accessions have Pina-D1a and Pinb-D1a, while hard have Pina-D1b or Pinb-D1b.
doi:10.1371/journal.pone.0111337.g004
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Japan). The concentrations of GSPs and ASPs in PCR mixtures

are provided in the Table S4 in File S1. The PCR cycle consisted

of an initial 5 min denaturation at 95uC, followed by 32 cycles of

95uC for 30 s, 55 262uC for 30 s, and 72uC for 1 min, followed

by a final extension at 72uC for 7 min. PCR products were

separated by electrophoresis on a QIAxcel system (Qiagen,

Hilden, Germany) using a QIAxcel DNA screening kit. Differ-

ences between allele mean values were tested by a T-test function

implemented in JMP 9 for each combination of QTL and

population. As well, the effects of the eight selected markers on

FlYd were estimated using a multiple regression model. The fit

model function of JMP 9 was used with the standard least squares

method. Regression models were constructed based on the three

combined DH populations (DH_total) or on each population

separately (DH_each). The models were used to predict FlYd

values of the individual DH lines. Correlation coefficients between

predicted and actual values were determined.

Results

Population structure and familial relationships
Array-based marker analyses allowed the identification of 2,933

polymorphic DArT (Dataset S1 in File S2) and 6,042 polymorphic

SNP markers (Dataset S2 in File S2) using 151 and 164 accessions,

respectively. To obtain an overview of the genetic diversity of the

accessions, a PCA was performed with each marker type. With the

DArT markers, principal component (PC) 1, PC2 and PC3

explained 9.0, 4.6 and 3.9% of the total variation, while the first

three PCs from the SNP markers explained 15.0, 5.2 and 3.5% of

the variation. Scatter plots of PC1 and either PC2 or PC3 showed

similar distribution patterns for both marker types (Fig. 1). These

plots indicated that the accessions were distributed continuously

and did not form any clear clusters. For the association panel, most

accessions showed high PC1 values, but no clear tendencies were

observed with PC2 and PC3 values. Based on the source of the

accessions, PC1 represents the axis of earliness or growth habit

(data not shown). In the scatter plots of SNP markers, two

accessions, U24 (Acc. no. 114) and Gabo (124), showed outlier

values in PC2 and PC3. This indicates that the SNP markers used

in this study have more power to distinguish lines than the DArT

markers.

To investigate relationships among accessions, a cladogram was

generated based on a distance matrix. Little difference was

observed between the marker types, therefore only the cladogram

generated from the SNP genotyping was employed here. As shown

in Fig. 2, accessions were classified into two main clusters, and

most accessions in the association panel into the same cluster.

Particularly, clusters within the first four nodes from Kitahonami

(Acc. no. 1) displayed relatively short distances and contained

35.4% (23/65) of accessions in the association panel. This

indicates that familial relationship should be taken into account

for association mapping.

Flour yield and relationship with other traits
The FlYd of lines in each environment and their mean values

over the nine environments are provided in Dataset S3 in File S2.

The analysis of variance showed significant genetic and environ-

mental variation in FlYd compared to residual errors. Mean

squares of accessions and environments were 61.76 (F = 19.65***)

and 475.57 (F = 151.26***), respectively. The heritability of FlYd

was 38.5%, which was relatively low compared to other traits

investigated (Table S5 in File S1). This indicates that environ-

mental factors have strong influence on FlYd. Leverage plots of

environment also indicated a significant environmental effect on

FlYd (Fig. 3). Samples harvested in 2010 showed a lower mean

value for FlYd in all locations, and the lowest mean value was

observed in the samples from Morioka in 2010. However,

correlations across nine environments ranged from 0.419 to

0.945 (average 0.717), indicating that relative differences among

accessions were consistent over the environments (Table 1).

Therefore, we considered the mean value from the nine

environments as the genotypic value of each accession.

Relationships between FlYd and other quality traits were also

investigated (TableS6 in File S1). The FlEf (r = 0.511), x50 (0.436),

Sv (20.430) and Fash (0.349) each showed a significant

relationship with FlYd, while no relationship with the other traits

investigated was observed. It has been reported that x50, Sv and

FlEf, as well as FlYd, have strong correlations with soft and hard

kernel types (reviewed in Morris [20]). Therefore, the kernel types

of 65 accessions were genotyped by Pina-D1/Pinb-D1 markers

[21,22]. All were classified as either soft (48) or hard (17) type.

Taking kernel type into consideration, the relationships between

FlYd and the other four traits were reanalyzed. This revealed two

clear clusters attributable to kernel type, and no correlation with

FlYd was detected in either cluster; only FlEf was correlated with

kernel type (Fig. 4; TableS6 in File S1). Kitahonami showed the

highest FlYd value among accessions in the soft cluster, although

its value was considerably lower than the highest value observed in

the hard cluster. These results clearly indicate that kernel type is

an important element to consider in the association analysis.

Association analysis for flour yield using mixed-model
Genotype data obtained with the 3,815 selected markers was

used for association mapping (Dataset S4 in File S2). Calculations

were performed using a mixed linear model, with and without

using kernel type as a covariant. To take into account multiple

comparisons, a false discovery rate (q value) was adopted in

determining significant marker-trait associations (MTAs). Distri-

butions of q values with and without using kernel type as a

covariant are shown in Fig. 5. When the kernel type was not used

Figure 5. Distributions of p- and q-values and impact of kernel
type correction on association mapping results for flour yield
(FlYd). The distribution was calculated without (w/o) or with (w)
employing kernel type as a covariant.
doi:10.1371/journal.pone.0111337.g005
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in the model, the q value was within 0.55–0.85. When kernel type

was accounted for, more accurate MTAs were detected, as

indicated by q values ranging from 0.09 to 0.93. Therefore, to

select reliable markers, kernel type was used as a covariant and the

threshold of the q value was set at 0.5. This led to the identification

of a total of 62 markers (Table S7 in File S1). Based on the

locations of the markers [13,23], MTAs were classified into 21

QTLs (Table 2), although five MTA locations remained undeter-

mined (Table S7 in File S1). Among the 21 QTLs, 18 had positive

effects when the Kitahonami allele was present (Table 2). Since

QTLs were classified based on two consensus genetic maps, it is

possible that some QTLs overlapped: for example, 3B.3 may

represent the same QTL as 3B.1 or 3B.2 (Table 2). Among the 62

MTAs, r2 ranged from 9.2 to 20.5% and effects on FlYd ranged

from 1.51 to 2.68 (Table S7 in File S1).

Pedigree analysis for flour yield QTL
For the 18 QTLs that showed positive effects on FlYd when

Kitahonami alleles were present, linkage disequilibrium (LD)

analyses of the associated loci were performed. Obvious LD blocks

were observed in 11 of 18 QTLs (Table 3; Fig. S2). The 3B.1

QTL consisted of two blocks (3B.1.1 and 3B.1.2). The sizes of the

blocks ranged from 0.5 to 23.5 cM, with an average size of

7.5 cM. By referencing Kitahonami’s pedigree tree (Fig. S1), we

investigated the origin and routes of transfer of QTLs into

Kitahonami, based on similarities of genotypes in the LD blocks.

Results indicated that the QTLs on 2B.1, 2B.2, 3D, 5D.1, 6B,

7B.1, 7B.2 and 7D were derived from the maternal variety,

Kitamoe (Acc. no. 2) and 1B.2, 3B.1.1, 3B.1.2, 3B.2, 3B.3 and 4B

from the paternal line, Kitakei1660 (Acc. no. 3) (Fig. 6). Since

QTLs on 5A, 5D.2, 6A.1, 6A.2 and 7A existed in both parents, it

could not be determined which side was the source of these QTLs

in Kitahonami. QTLs originating from the maternal donor were

further traced back to either Hokushin (Acc. no. 4) (3D, 7B.1, 7B.2

and 7D) or Kitakei1354 (Acc. no. 5) (2B.1, 2B.2 and 5D.1) (Fig. 6).

When we attempted to trace the QTLs further back in

Kitahonami’s lineage, some showed discrepancies with the

pedigree record (Fig. S1). However, the origins of several QTLs

could be attributed to varieties introduced from abroad: it was

concluded that 2B.1, 2B.2, 4B and 7D were from Ibis (Acc.

no. 19), 3B.1.1 and 3B.1.2 were from Wichita (Acc. no. 12), and

3D and 5D.1 from Newthach (Acc. no. 24). The QTL on 6B

seems to have originated from Norman (Acc. no. 9). The full

matrix of similarities within LD blocks is shown in Table S8 in File

S1.

Validation of the QTLs with newly developed PCR
markers
For validation of the QTLs detected by association mapping, we

performed linkage analysis using three sets of DH populations

(Dataset S5 in File S2). The distribution of FlYd among lines in the

three DH populations is shown in Fig. S3. For QTL validation, we

wished to convert the SNP markers associated with the 11 QTLs

into PCR-based markers to reduce the analysis cost involved with

using the 9,000 SNP chip detection system. We succeeded in

designing primer sets for eight of the 11 QTLs (Table S4 in File

S1). Before use of these markers for QTL validation, their genome

and allele specificity were confirmed in all four parents used for the

DH populations. Based on the design of the primers, two bands

were expected if the sample sequence matched with the sequence

of the ASP, and a single band if it did not. All amplified products

showed the expected band patterns (Fig. 7), indicating the new

PCR-based markers were capable of identifying the eight QTLs.

Using these markers, it was determined that four of the QTLs

had significant effects on FlYd in the Kinuhime/Kitahonami

population, three had significant effects in the Tohoku224/

Kitahonami population, and four QTLs had significant effects in

the Shunyou/Kitahonami population (Table 4). Notably, QTLs

on 3B.1.1, 3B.2 and 7A showed highly significant and consistent

effects across the populations.

Multiple regression analysis showed significant effects in five of

the eight markers using the DH_total dataset, which is based on

the combination of all three DH populations (Table S9 in File S1).

For the DH_each dataset, based on individual DH populations,

Figure 6. Pedigree analysis of flour yield (FlYd) QTLs. Values indicate frequencies of the same genotype as Kitahonami for each QTL.
doi:10.1371/journal.pone.0111337.g006
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four, two and three markers were significant in Kinuhime/

Kitahonami, Tohoku224/Kitahonami and Shunyou/Kitahonami

populations, respectively (Table S9 in File S1). The regression

models were used to predict FlYd in the individual DH lines

(Dataset S5 in File S2). When we considered all DH lines together,

the correlation coefficients between predicted and actual values

were 0.479 for DH_total and 0.607 for DH_each (Fig. 8). In each

population, prediction accuracies based on the DH_each dataset

were consistently higher than those based on the DH_total dataset

(Fig. 8).

Discussion

Array-based systems allow genotyping using a large number of

markers simultaneously, and the use of these systems has become

Figure 7. PCR assays to detect of polymorphic SNPs between Kitahonami and the three other varieties used as parents in the DH
populations. White and black arrows indicate bands derived from genome-specific and allele-specific amplicons, respectively. 1: Kitahonami, 2:
Kinuhime, 3: Tohoku224, 4: Shunyou.
doi:10.1371/journal.pone.0111337.g007
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popular for rapidly determining the genetic diversity and

population structure of samples [13,24–26]. The DArT and

SNP arrays used in this study contain approximately 7,000 and

9,000 markers, respectively. Among these markers, 42% of the

DArT and 67% of the SNP markers showed polymorphisms

among the accessions used here. By using these high-density

genome-wide markers, we could provide the first precise overview

of genetic variation in Japanese wheat varieties (Fig. 1; Fig. 2).

The 185 lines used in the diversity analysis included an association

panel of 65 lines. As expected, the lines in the association panel

showed a higher level of similarity compared to other accessions,

which is reasonable given that the association panel consists

mainly of lines developed at KAES in the Hokkaido region; most

are winter lines that are well-adapted to the northern region of

Japan. Such regional adaptation is an important feature in

evaluating genetic performances of complex traits such as yield

and grain quality. Of the 33 lines in the pedigree record of

Kitahonami (Fig. S1), 24 accessions were still available and were

employed in this study. The cladograms generated by SNP

markers clearly showed that Kitamoe (Acc. no. 2), Kitakei1660 (3),

Hokushin (4) and Kitakei1354 (5) were clustered close to

Kitahonami (Fig. 2), agreeing with the pedigree record. This

indicates that kinship matrix generated with markers can be useful

for representing the familial relation of accessions.

The analysis of variance indicated there was significant genetic

and environmental variation for the target trait (Fig. 3). Samples

collected at Morioka in 2010 showed the lowest mean FlYd values

compared to other environments. The meteorological data

recorded during the cropping seasons did not indicate any clear

reason for this (data not shown). Although the differences among

mean values between environments were significant (Fig. 3), the

relative differences among accessions were consistent over the

environments (Table 1). For example, Kitahonami consistently

grouped within the eight accessions showing highest values for

FlYd in all environments, indicating that Kitahonami carries

alleles affecting this trait that will be useful across environments.

In the diversity analysis, the lines used for association mapping

did not fall into distinct groups, but did show high familial

relatedness. Therefore, we performed association mapping using

kinship matrix (K) rather than population structure (Q) as a

covariant. Based on a plot of expected versus observed p values,

this correction achieved a reduction in the false positive rate (data

not shown). Kernel type is known to have a great impact on

milling yield traits [3], and the Pin genes, which encode

puroindolines, determine kernel type [27,28]. In this study, a

significant difference in mean values of FlYd was observed

between soft and hard accessions grouped by Pina-D1 and

Pinb-D1 genotypes (Fig. 4). Therefore, kernel type was used as a

fixed effect term in the statistical model. This treatment resulted in

a major improvement in the association mapping results. When

kernel type was not considered, no significant MTAs were

detected at a q value of 0.5. However, when kernel type was

used as a covariant, 62 MTAs were identified at this q value. This

implies that the statistical model employed in this study, which

used both kinship and kernel type as covariants, was appropriate

for identifying genetic factors related to FlYd in Kitahonami.

It was not possible to precisely compare the positions of QTLs

detected in this study to those identified in previous reports, since few

identical markers were used. However, based on the microsatellite

consensus map [29], the QTLs on 2B.1, 2B.2, 3B.2, 6A.2 and 7A

observed here may correspond to those reported by Smith et al. [4],

Lehmensieket al. [5],Carteret al. [9],Foxet al. [6]andLehmensiek

et al. [5], respectively. The pedigree analysis showed that ongoing

pyramiding of QTLs had occurred during the history of wheat

breeding in the Hokkaido region. The high FlYd values of

Kitahonami were achieved by combining eight positive QTLs from

maternal lines, six from paternal lines, and five from both sides

(Fig. 6). This information will be useful in developing effective

breeding strategies to improve FlYd, since it allows us to predict the

performance of progeny lines from a specific cross based on the

genotypes of parental varieties or lines.

The levelofLDcanbeaffectedbyvarious factors including linkage,

selection, and admixture [30]. Although there have been several

studies on LD levels in various wheat populations [7,31–35], direct

comparisons between studies is difficult, since LD levels are

influenced by the type ofmarkers used for genotyping and by sample

size. However, generally LD decays to half of the initial value within

less than 9 cM. In this study, LD blocks with more than 10 cMwere

Figure 8. Scatter diagrams of predicted and actual FlYd values in DH lines. Regression models were constructed using the three DH
populations together (DH_total) (A) or separately (DH_each) (B). KK: Kinuhime/Kitahonami, TK: Tohoku224/Kitahonami, SK: Shunyou/Kitahonami
population.
doi:10.1371/journal.pone.0111337.g008
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identified in the QTLs on 2B.2, 3B.1+3B.2 (these two QTLs are

closely linked), 6A.1 and 6A.2. Since the accessions in this study

consist mainly of breeding materials, it is possible that LD blocks

detected in the QTL regions result from selection for favorable

phenotypes during the history of wheat breeding in KAES.

Segregation analysis confirmed that five of the eight QTLs

tested had significant effects on the FlYd (Table 4). Previous

studies using bi-parental populations reported that flour yield

QTLs were detected on most wheat chromosomes but it was not

demonstrated whether these QTLs maintained their favorable

effects in materials with different genetic backgrounds. In this

study, we used three different populations in which Kitahonami

served as pollen donor to confirm positive effects for five out of

eight QTLs. The contributions of 3B.1.1, 3B.2 and 7A were

significant in all three populations, and the contributions of 2B.2

and 7B.1 were significant in one population. Although the effects

of 2B.1, 5D.1 and 6A.2 were not confirmed in the three DH

populations, this does not mean these QTLs have no positive

effects on FlYd; rather, they have significant effects in a specific

genetic background. Generally, it can be expected that during long

term breeding programs, positive QTLs will accumulate in most

breeding materials. However, the usefulness of these QTLs for

crop improvement via breeding will be determined by their

robustness, or their ability to predict effects in a range of genetic

backgrounds. In this study, the QTLs on 3B and 7A consistently

showed highly significant effects across three DH populations

(Table 4). QTL analyses using a joint linkage map from these

three populations indicated that the 3B and 7A QTLs explained

6.0% and 11.7% of the total variation, respectively (data not

shown). Besides being significant in the DH populations, these

QTLs were also present in lines with high flour yield originating

from three separate breeding programs where Kitahonami was

used as a parent (data not shown).

The effects of the markers on FlYd were not identical between

single and multiple regression models (Table 4; Table S9 in File

S1). These differences may be caused by relationships among the

eight markers, since there were significant relationship between

snp2571 and snp7909, between snp2571 and snp4550, and

between snp5325 and snp7510 (data not shown). The correlation

coefficients between actual and predicted values indicated that the

model based on the DH_each dataset showed higher prediction

accuracy than that based on the DH_total (Fig. 8). This result

implies that the model should be constructed based on each cross

combination. This is reasonable, because the number and effects

of QTLs segregating in a biparental population varied within

crosses. Since the three DH populations in this study share

Kitahonami as a paternal parent, the differences observed between

the two regression models among populations were caused by the

differences in genetic backgrounds of maternal parents. In this

study, the multiple regression analysis indicated that a relatively

high prediction accuracy (r = 0.607) was achieved when the eight

markers were applied for each DH population at the same time

(Fig. 8). Not all markers showed positive effects in each DH

population, yet the prediction accuracy was higher when all

markers were used concurrently, as opposed to using only those

markers that showed a positive effect for a specific DH population.

Therefore, in terms of practical breeding, the construction of a

regression model using all QTLs identified by GWAS in this study

represents an attractive approach for increasing the selection

efficiency for FlYd. Notably, the prediction accuracy was higher

when the multiple regression model was based on data from each

DH population (r = 0.607), rather than on data from combining

the three DH populations (0.479) or data from the panel (0.370).

In this study, PCR-based markers linked to eight QTLs were

developed (Fig. 7; Table S4 in File S1). Recently, large numbers of

SNPs have been identified and characterized in wheat [13,24,36–

38]. Using these resources, high density array-based markers have

been established and used for diversity and LD analyses. Those

tools have opened a new gate for understanding the genetic

architecture of populations of interest. However, although the cost

of genotyping per data point has dramatically declined, array-

based systems are still relatively costly to access. This hinders the

adoption of array-based systems in crop breeding programs,

especially in the public sector. Since PCR-based markers are

commonly used in MAS and are well suited to breeding programs,

we decided to convert array-based SNP markers to PCR-based

markers. In hexaploid wheat, difficulties arise in distinguishing

allelic from genomic SNPs [38]. This is especially problematic

because most SNP resources originate from exonic sequences

[39,40] which tend to maintain higher similarity among A, B and

D genomes than intronic sequences. This led us to design not only

allele specific but also genome specific primers for precise targeting

of SNPs. The chromosome locations of the target SNPs and the

corresponding probe sequences were used to sort out the A, B and

D homoeologous contigs from chromosome-arm specific survey

sequences (IWGSC, http://www.wheatgenome.org/) [18]. By

aligning the three contig sequences, we could identify polymorphic

positions flanking the target SNP. These regions were used to

design genome specific primer sets, allowing the amplification of

fragments specific to the genome from which the SNP originated.

Only eight markers were developed in this study, but using the

same strategy we have succeeded in developing PCR-based

markers capable of detecting 54 additional SNPs. We estimate

that approximately 70% of the publicly available wheat SNP

markers can be converted to genome specific PCR-based markers.

Milling tests require a substantial quantity of grain, meaning

that selection for flour yield cannot be performed at the early

stages of wheat breeding programs. The identification of markers

linked to the flour yield trait can circumvent this problem. Using

association mapping with a mixed model, we identified 21 QTLs

influencing flour yield. The role of these QTLs was supported by

pedigree information and results of linkage analysis. Notably, we

identified several QTLs which were consistently associated with

high flour yield across different genetic backgrounds. The

introduction of these QTLs from Kitahonami into other lines by

MAS is a promising method of improving flour yield in Japanese

soft wheat varieties.
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