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Abstract

Objective

Prognosis of myocardial infarction tends to be worse when serum C-reactive protein (CRP)

level is high. miRNAs are also known to be involved in different pathogeneses of heart dis-

eases such as myocardial infarction. However, how CRP is involved in myocardial infarction

has not been fully elucidated. We hypothesized that serum CRP changes the miRNA profile

during ischemia-reperfusion injury (IRI) of the myocardium. To confirm this hypothesis, we

performed global miRNA expression profiling of myocardium using IRI and CRP infusion rat

model.

Methods

After ligation of the coronary artery of rat hearts, human serum CRP was intravenously

injected, and reperfusion was performed (I/R+CRP group, n = 6). Control group consisted of

the sham group (n = 3), IV CRP infusion group (CRP only, n = 3), and the I/R-only group (I/R

only, n = 5). We evaluated 423 miRNA expression in non-ischemic areas and areas at risk

(AAR) of each group using NanoString nCounter miRNA expression assay.

Results

MiR-124 was downregulated in non-ischemic myocardium in CRP-only group. In AAR, 7

miRNAs were commonly upregulated in both I/R-only and I/R+CRP groups. And additional

6 miRNAs were upregulated in the I/R+CRP group (miR-33, miR-409-3p, miR-384-3p, miR-

3562, miR-101a, and miR-340-5p). Similarly, in the non-ischemic areas, 6 miRNAs were

commonly upregulated in both I/R-only and I/R+CRP groups, and additional 5 miRNAs

changed in the I/R+CRP group (upregulation of miR-3559-5p, miR-499, and miR-21 and

downregulation of miR-500 and miR-532-3p).
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Conclusion

We showed that when serum CRP level is high, IRI results in multiple miRNA profile

changes not only in ischemic areas but also in non-ischemic myocardium. Our results may

provide a strong basis for studying the role of CRP and miRNAs in ischemic heart disease.

Introduction

C-reactive protein (CRP) is an acute reactant protein that is rapidly released from the liver

when induced by interleukin-6 in the presence of inflammation, cell injury, or infection [1, 2].

Serum CRP level increases during acute myocardial infarction and is considered a valuable

prognostic marker of ischemic heart disease [3–6].

CRP is present in the blood as a pentamer, and when it encounters damaged cell mem-

branes, pentameric CRP (pCRP) undergoes a structural change into a monomeric form and is

deposited in the damaged site [7–9]. Although pCRP plays an anti-inflammatory role in the

blood, monomeric CRP (mCRP) deposited in the damaged tissue activates the complement

cascades, monocytes, and oxidative damage by reactive oxygen species formation, resulting in

aggravation of cell damage [10–14]. Thiele et al demonstrated that mCRP had a pathogenic

role in myocardial infarction [15]. Accordingly, our previous study showed that mCRP is

deposited in areas at risk (AAR) of the myocardium (ischemic, but not infarcted) with ische-

mia-reperfusion injury in rat heart [16].

microRNAs (miRNAs) are small non-coding RNAs that attach to the 3’ untranslated region

of target mRNAs and negatively regulate gene expression by leading to mRNA degradation or

translational repression [17–20]. miRNAs are involved in cell development, proliferation, dif-

ferentiation, apoptosis, metabolism, and determining the fate of cells. Therefore, changes in

miRNAs are deeply associated with the pathophysiology of many diseases [21, 22]. In particu-

lar, miRNAs play an essential role in the development of various cardiovascular diseases and

are used as a marker of progression and prognosis of the disease [23, 24].

However, there has been no study about the relation of two critical factors in ischemic heart

disease: serum CRP and myocardial miRNAs. In the present study, we hypothesized that

serum CRP would change miRNA profiles of damaged myocardium by ischemia-reperfusion

injury. To prove this hypothesis, we performed myocardial miRNA expression profiling in the

ischemia-reperfusion injury rat model with CRP infusion using high-throughput NanoString

nCounter technology.

Materials and methods

Removal of sodium azide from human CRP

Sodium azide in commercial CRP preparations, which is obtained from human plasma

(C4063; Sigma-Aldrich, Saint Louis, Missouri), was found to induce proapoptotic effects in

human umbilical vein endothelial cells [25, 26]. Therefore, we carefully dialyzed out in CRP

preparations in a large volume of Tris-HCL buffer.

Endotoxin assay of human CRP

We verified that commercial CRP (C4063) does not contain lipopolysaccharide (LPS). The

amount of the endotoxin was determined using a quantitative test, specifically the endpoint

chromogenic Limulus amebocyte lysate (LAL) test (Lonza, Basel, Switzerland). Fifty
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microliters of a 1 μg/mL sample, or an endotoxin standard (2.0, 1.0, 0.5, 0.25, and 0.1 EU/mL),

were dispensed into prewarmed 37˚C endotoxin-free microplate wells. In each well, 50 μL of

LAL reagent was added. Wells were incubated at 37˚C for 10 minutes. After incubation,

100 μL of prewarmed chromogenic substrate solution was added to each well and incubated at

37˚C for 6 minutes. Next, 100 μL of stop reagent [25% (v/v) acetic acid] was added and ana-

lyzed at 405 nm using a spectrophotometer. After analyzing the absorbance, the units of endo-

toxin were calculated using the standard curve obtained from the standard solution [15]. The

extrapolated endotoxin level of the CRP protein sample after the dialysis was 0.129 EU/mL.

The detection limit on the low side was 0.131 EU/mL. The endotoxin level of the CRP sample

was below the detection limit.

CRP pentamer report

A previous study reported that a commercially obtained source of CRP contained measurable

quantities of mCRP [27]. Therefore, we confirmed that a commercially available CRP (C4063;

Sigma-Aldrich) was pentameric, spontaneously modified to monomeric form, or not contami-

nated with mCRP. The mCRP was obtained by the treatment of dialyzed CRP with 8 M urea

and 10 mM EDTA at 37˚C for 1 hour. 0.9 μg of pCRP and mCRP was loaded onto 10% glycine

gel containing 1/20th of normal levels of sodium dodecyl sulfate (0.005%). The protein bands

were visualized using Coomassie staining, and the identity of the CRP was confirmed using

Western blotting with anti-CRP Ab (ab32412; Abcam, Cambridge, United Kingdom; 1:250

dilution), which detects both pCRP and mCRP [15, 27].

The dialyzed CRP appeared at much higher sizes than the treated CRP did, suggesting

pCRP and mCRP, respectively. The dialyzed CRP did not show any bands that were monomer

size. The mCRP was detected with the anti-CRP antibody (ab32412; Abcam; 1:250 dilution).

The pCRP was not transferred well onto the membrane. Therefore, the dialyzed CRP was

shown to be in pentameric form (Fig 1).

Animals

We constructed a myocardial ischemia-reperfusion injury model using female Sprague Dawley

rats weighing between 220 g and 260 g (gestational age range, 12–14 weeks). The animals were

treated in compliance with the Guide for the Care and Use of Laboratory Animals (National

Academy of Sciences, Washington, DC). Animal use protocols were approved by the Institu-

tional Animal Care and Use Committee (IACUC) at the SMG-SNU Boramae Medical Center

Biomedical Research Institute (approval number: 2016–0043). Anesthesia was performed via

inhalation of isoflurane (4%) for induction followed by the intraperitoneal administration of

Zoletil 50 (Virbac, Carros, France; 0.12 ml) and Xylazine (Rompun 2%; Bayer Korea,

Gyeonggi-do, Republic of Korea; 0.02 ml) for maintenance. The rats were intubated with can-

nulas (16-gauge intravenous catheter, REF 382457; BD, Sandy, Utah) and connected to ventila-

tors (683 rodent ventilator; Harvard Apparatus, Holliston, Massachusetts). Positive-pressure

ventilation using room air at a tidal volume of 2.5 ml to 3.0 ml (10 ml/kg) and 63 to 67

breaths/min was maintained to prevent atelectasis during the procedure. Left thoracotomy via

the fifth intercostal space was performed, and the pericardium was opened to expose the left

coronary artery.

Experimental protocols

The experimental group consisted of the sham group (n = 3), CRP-only group (n = 3), I/R-

only group (n = 5), and the I/R+CRP group (n = 6). On the sham group (n = 3), we performed
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left thoracotomy and pericardiotomy without manipulation of the heart. After carrying out the

procedures and then waiting for 90 minutes, we euthanized the rats and then performed

autopsies (Fig 2A). On the CRP-only group (n = 3), we performed left thoracotomy and peri-

cardiotomy and infused pCRP via the femoral vein and then waited for 90 minutes without

manipulation of the heart. After that, we euthanized the rats and performed autopsies (Fig 2B).

On the I/R-only group (n = 5), ischemia-reperfusion injury (IRI) was induced by ligating the

left anterior descending (LAD) coronary artery approximately 2 mm distal to its origin by

snaring it with 6–0 nylon double sutures (buttressed with a small piece of plastic tube for 45

minutes) and reperfusion for 45 minutes. After reperfusion, the heart was quickly excised (Fig

2C). For the I/R+CRP group (n = 6), 100 μg of highly purified and dialyzed human CRP was

infused via the femoral vein after the release of coronary ligation (Fig 2D).

Fig 1. Western blot of dialyzed CRP and treated CRP with urea and EDTA. The dialyzed CRP appeared at much

higher sizes than the treated CRP did, suggesting pentameric CRP (pCRP) and monomeric CRP (mCRP), respectively.

Western blotting showed that the mCRP was detected with the anti-CRP antibody (ab32412). pCRP, but no mCRP,

was found in infused human CRP.

https://doi.org/10.1371/journal.pone.0216610.g001
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Evans blue and 2,3,5-triphenyltetrazolium chloride staining to determine

infarct areas, areas at risk, and non-ischemic areas

One milliliter of diluted heparin solution (2500 IU/mL) was infused via the coronary ostium

while the ascending aorta was clamped. The LAD, which had been occluded for infarct pro-

duction, was again occluded with a 6–0 nylon suture, and 1% Evans blue was injected to stain

the perfused myocardium. The AAR and infarct (whole ischemic areas) were left unstained.

Non-ischemic areas were stained deep blue.

The left ventricles were cut from the apex to the base in 4 transverse slices. For the sliced

sections of the myocardium, the middle parts of the left ventricle at the same cross section

were used to measure the ischemia and infarct sizes. Selected middle portions were then cut

into 4 mm slices, 1 of which was incubated in TTC (Sigma Chemical) that had been dissolved

in a 100 mmol/L phosphate buffer for 15 minutes. TTC stains active mitochondria pink and

negatively stains infarcted areas. Therefore, the infarcted zones remained white, whereas the

viable areas (non-ischemic areas and AAR) were stained deep red with TTC. After Evans blue

and TTC staining, the non-ischemic areas were stained blue, AAR were stained red, and the

infarct was stained white (Fig 3). The fresh tissues were dissected by color, separated, and

stored at -70˚C for miRNA isolation. After Evans blue and TTC staining, fresh myocardium

tissues (about 2 × 2 × 2 mm3) were excised according to their color: blue (non-ischemic area),

Fig 2. Schematic illustration of experimental protocols. (A) Sham group. (B) CRP-only group. (C) I/R-only group.

D, I/R+CRP group.

https://doi.org/10.1371/journal.pone.0216610.g002

Fig 3. Evans blue and 2,3,5-triphenyltetrazolium chloride (TTC) staining. Evans blue and TTC staining determined

infarct area (1, white), area at risk (2, red), and non-ischemic area (3, blue).

https://doi.org/10.1371/journal.pone.0216610.g003
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red (AAR, ischemic but viable area), and white (infarcted area). In the sham group and the

CRP-only group, only the blue myocardium was sampled because LAD ligation was not per-

formed in them. Excised myocardium tissues were immediately snap-frozen at -70˚C in order

to avoid RNA degradation.

RNA extraction and quantification

Total RNA was isolated from fresh frozen myocardial tissues dissected from the blue (non-

ischemic area), red (AAR), and white (infarcted area) zones. Frozen tissue samples were pro-

cessed on ice to prevent thawing; 3 mg of tissue was added to 700 μl QIAzol Lysis Reagent

(QIAGEN, CA, USA) and homogenized using taco Prep Bead Beater (Genereach, Taichung

City, Taiwan). After resting the homogenate at room temperature for 5 minutes, 140 μl chloro-

form was added and centrifuged at 12,000 × g for 15 min at 4˚C. RNA extraction was per-

formed using the miRNeasy Mini Kit (QIAGEN) following the manufacturer’s instructions.

RNA yield and purity were assessed using the DS 11 Spectrophotometer (Denovix Inc, DE,

USA).

miRNA microarray expression by NanoString nCounter platform

NanoString rat panel expression levels of 423 different miRNAs were measured using 100 ng

of miRNA and the nCounter Rat miR version 1.5 Expression Assay Kit (NanoString Technolo-

gies, Seattle, Washington). The assay incorporates 420 mature miRNAs based on miRBase ver-

sion 17 and includes 6 positive mRNA controls, 8 negative mRNA controls, 3 ligations

positive, 3 ligation negative synthetic miRNA controls, and 4 miRNA housekeeping controls

(internal reference genes; Actb, B2m, Gapdh, and Rpl19).

Hybridizations were carried out by combining 5 ul of each RNA sample with 20 ul of

nCounter Reporter probes in hybridization buffer and 5 ul of nCounter Capture probes (for a

total reaction volume of 30 ul) overnight at 65˚C for 16 to 20 hours. Excess probes were

removed using two-step magnetic bead-based purification on the nCounter Prep Station

(NanoString Technologies). Abundances of specific target molecules were quantified on the

nCounter Digital Analyzer by counting the individual fluorescent barcodes and assessing the

target molecules. For each assay, a high-density scan encompassing 280 fields of view was per-

formed. The data was collected using the nCounter Digital Analyzer after taking images of the

immobilized fluorescent reporters in the sample cartridge with a CCD camera.

Data analysis

miRNA data analysis was performed using the nSolver Analysis Software (version 3.0) freely

available from NanoString Technologies. The global mean of top 100 miRNA expressers in the

samples tested was used to content normalize the miRNA expression ac all samples as

described previously [28, 29].

Statistical analyses were performed with the R software [30]. Thirty miRNAs with average

expression count > 10 were selected. Fold change> 2 was set as upregulation, and< -2 as

downregulation. P values< .05 were considered statistically significant.

Results

We compared the expression level of 420 rat miRNAs in non-ischemic myocardium (blue

area) and ischemic but viable myocardium (red area) of each group (CRP-only group, I/R-

only group, and I/R+CRP group) to that of the sham group. Normalized NanoString signals

data are provided in supporting information files (S1 and S2 Data). For the CRP-only group,
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we infused only CRP without ischemia-reperfusion injury. Therefore, we could obtain only

non-ischemic myocardium in the CRP-only group. The level of miR-124 was significantly

lower in the CRP-only group than the sham group (fold change, -3.07; P = .02).

For the ischemic but viable myocardium (red myocardium), 8 miRNAs (miR-3564, miR-

592, miR-3557-5p, miR-337, miR-3575, miR-501, miR-3596b, and miR-376b-3p) were upre-

gulated, and 1 miRNA (miR-127) was downregulated in the I/R-only group. Seven miRNAs

(miR-3585-5p, miR-1224, miR-3555, miR-3120, miR-1949, miR-190, and miR-448) were com-

monly upregulated in both the I/R-only group and the I/R+CRP group. Similar to the trend of

ischemic myocardium, additional 6 miRNAs (miR-33, miR-409-3p, miR-384-3p, miR-3562,

miR-101a, and miR-340-5p) were upregulated only in non-ischemic myocardium in the I/R

+CRP group (Fig 4A; Table 1).

In non-ischemic myocardium (blue area), 9 miRNAs were upregulated, and 1 miRNA

(miR-451) was downregulated in the I/R-only group. Six miRNAs (miR-3585-5p, miR-448,

miR-1949, miR-1224, miR-190, and miR-340-5p) were commonly upregulated in both the I/

R-only and I/R+CRP groups than in the sham group. However, unlike in the CRP-only and I/

R-only groups, 3 miRNAs (miR-3559-5p, miR-499, and miR-21) were upregulated, and 2 miR-

NAs (miR-500 and miR-532-3p) were downregulated in only the I/R+CRP group (Fig 4B;

Table 2).

Discussion

This study shows that serum CRP influences the miRNA profiles in damaged myocardium by

ischemia-reperfusion injury. In our experiments, the expression levels of multiple miRNAs

change in non-ischemic myocardium as well as in ischemic myocardium in response to CRP

infusion.

For ischemic area, 7 miRNAs upregulated in both I/R-only and I/R+CRP group are

regarded as changes induced by IRI. Six miRNAs upregulated only in I/R+CRP group (miR-

33, miR-409-3p, miR-384-3p, miR-3562, miR-101a, and miR-340-5p) are considered to have

Fig 4. miRNA expression profiles. Global miRNA expression analysis of ischemic but viable myocardium (A, red myocardium by Evans blue and TTC staining) and

non-ischemic myocardium (B, blue myocardium by Evans blue and TTC staining). Venn diagrams (upper) and corresponding heat maps (lower) show significantly

different expressions of miRNAs when compared to sham group. miRNAs with average expression count> 10, fold change>2 or< -2, and P value< .05 were selected.

https://doi.org/10.1371/journal.pone.0216610.g004
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been influenced by CRP infusion (Fig 4A; Table 1). Four of these 6 miRNAs identified only in

the I/R+CRP group (miR-33, miR-409-3p, miR-384-3p and miR-101a) were found to be

involved in myocardial disease. Recent studies have shown that the expression level of miR-33

is elevated in heart failure [31] and that miR-33 promotes myocardial fibrosis [32] and vascular

atherosclerosis [33]. Currently, miR-33 is being considered as a new therapeutic target [34].

Consequently, our study suggests that upregulation of miR-33 may be a missing link between

bad prognosis of ischemic heart disease and high serum CRP level. Interestingly, the miRNAs

(miR-409-3p, miR-384-3p, and miR-101a) that were upregulated after CRP infusion in our

present study have been shown to have cardioprotective roles or downregulated in patients

with heart diseases: miR-409-3p was significantly downregulated in mitral regurgitation

patients with heart failures in a previous case-control study [35]; miR-384-3p was downregu-

lated in ischemic myocardium of rat and was shown to regulate apoptosis pathway to play a

cardioprotective role in myocardial ischemia [36]; miR-101a was shown to mitigate cardiac

fibrosis in postinfarct rats [37]; miR-340-5p was shown to inhibit cell proliferation and

increase apoptosis in various types of cancer cells [38–40].

For non-ischemic myocardium, 6 miRNAs were changed in both I/R-only and I/R+CRP

groups, and additional 5 miRNAs (upregulation of miR-3559-5p, miR-499, miR-21 and down-

regulation of miR-500 and miR-532-3p) were changed in I/R+CRP group; this is regarded as

the effect of CRP infusion (Fig 4B; Table 2). Among these miRNAs, miR-499, miR-21, and

miR-500 are known to be involved in heart disease. miR-499 is highly expressed in myocardio-

cytes and increase in acute myocardial infarction [41–45]. miR-21 has an important role in

cardiac fibrosis after myocardial infarction [46] and for regulating fibroblast proliferation [47].

Furthermore, miR-500 was downregulated in patients with diastolic dysfunction [48].

Functional recovery after ischemic injury depends on the amount of remaining non-ische-

mic myocardium and the recovery from reperfusion of the ischemic area. Many miRNAs

change both in non-ischemic and ischemic myocardium when IRI occurs in high serum, and

the changes may have important roles in aggravating heart conditions. The pathogenesis of

dysregulation of these miRNAs and its role should be elucidated in future research.

Table 1. Genes significantly changed in each group compared to the sham group in ischemic but viable myocardium (red area by evans blue and TTC staining).

Gene Name I/R vs Sham Fold change P value Average

expression count

Gene Name I/R+CRP vs Sham Fold change P value Average expression

count

I/R Sham I/R+CRP Sham

rno-miR-3585-5p 31.6 .00484081 31.6 1 rno-miR-3585-5p 20.96 .00199687 20.96 1

rno-miR-1224 3.62 .00659538 97.09 26.85 rno-miR-1224 3.93 .00052359 105.43 26.85

rno-miR-3555 3.18 .01800967 12.44 3.92 rno-miR-3555 3.09 .01780053 12.1 3.92

rno-miR-3120 2.7 .00485023 13.78 5.11 rno-miR-3120 2.16 .01399395 11.06 5.11

rno-miR-1949 2.58 .00168606 236.52 91.68 rno-miR-1949 2.17 .00439291 198.75 91.68

rno-miR-190 2.53 .01061211 49.88 19.68 rno-miR-190 2.84 .01642446 55.82 19.68

rno-miR-448 2.49 .02966429 15.06 6.04 rno-miR-448 3.2 .01399491 19.3 6.04

rno-miR-3564 8.56 .03530545 31.15 3.64 rno-miR-33 4.97 .03085913 10.72 2.16

rno-miR-592 3.46 .01995102 10.76 3.11 rno-miR-409-3p 3.96 .00059162 13.56 3.42

rno-miR-3557-5p 2.56 .02299442 15.55 6.08 rno-miR-384-3p 3.82 .01736719 13.06 3.42

rno-miR-337 2.28 .04114917 14.07 6.16 rno-miR-3562 3.74 .00213201 11.87 3.18

rno-miR-3575 2.27 .04284919 25.34 11.16 rno-miR-101a 2.59 .00006868 26.33 10.17

rno-miR-501 2.2 .04875308 63.05 28.67 rno-miR-340-5p 2.03 .04336423 23.46 11.55

rno-miR-3596b 2.15 .02778967 20.3 9.44

rno-miR-376b-3p 2.06 .04421247 10.4 5.04

rno-miR-127 -2.68 .02952817 4.44 11.9

https://doi.org/10.1371/journal.pone.0216610.t001
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miR-124 is downregulated in non-ischemic myocardium with high serum

CRP level

Interestingly, miR-124 is significantly downregulated in CRP-infused myocardium even in the

absence of ischemic injury. Previous studies have shown the harmful effect of miR-124 on the

myocardium. miR-124 expression is known to be an adverse prognostic factor in heart failure

that suppresses angiogenesis [49]. Downregulation of miR-124 is known to have a protective

role in damaged myocardium, suppressing Angiotensin II–induced myocardial hypertrophy

along with the attenuation of ER stress [50]. A substudy of a randomized clinical trial of 519

patients showed that miR-124-3p level was associated with neurological outcomes and lower

survival rates in cardiac arrest patients [51]. Our results showed that serum CRP increased

miR-124 level. We suggest that an increase in miR-124 level induced by CRP might be associ-

ated with bad prognosis of cardiovascular diseases.

Infusion of dialyzed human pentameric CRP in rat ischemia-reperfusion

injury model

Whereas the serum CRP released from rat liver does not activate the complement cascade by

itself, human CRP does cause the complement cascade in a rat, mimicking the effects of CRP

on complement activation in humans [52, 53]. Therefore, many studies that focus on the

effects of CRP on complement used human CRP instead of rat CRP. Therefore, the present

study used human CRP and not rat CRP.

To obtain purified endotoxin-free, azide-free human CRP, we carefully dialyzed and

removed sodium azide from commercial CRP obtained from human plasma. A previous study

showed that LPS contamination in commercial CRP was responsible for cell activation events

[26]. We then performed endotoxin assay to confirm the absence of LPS in the infused human

CRP. We also confirmed whether the infused CRP had spontaneously changed to a mono-

meric form. Using these methods, we were able to conduct a sophisticated, well-controlled

experiment.

Table 2. Genes significantly changed in each group compared to the sham group in non-ischemic myocardium (blue area by evans blue and TTC staining).

Gene Name I/R vs Sham Fold change P value Average

expression count

Gene Name I/R+CRP vs Sham Fold change P value Average expression

count

I/R Sham I/R+CRP Sham

rno-miR-3585-5p 56.94 .00034394 61.73 1.08 rno-miR-3585-5p 50.87 .00132952 55.16 1.08

rno-miR-448 3.16 .01663447 23.42 7.4 rno-miR-448 4.25 .01132464 31.46 7.4

rno-miR-1949 3 .00115536 336.69 112.32 rno-miR-1949 3.03 .00264767 340.33 112.32

rno-miR-1224 2.89 .004928 95.2 32.9 rno-miR-1224 2.75 .02371731 90.48 32.9

rno-miR-190 2.84 .0367035 68.39 24.11 rno-miR-190 4.63 .037218 111.6 24.11

rno-miR-340-5p 2.23 .03751136 31.51 14.15 rno-miR-340-5p 2.42 .04547073 34.25 14.15

rno-miR-3564 6.74 .0372734 30.03 4.46 rno-miR-3559-5p 4.12 .00431564 12.72 3.09

rno-miR-3555 3.73 .01814172 17.9 4.8 rno-miR-499 2.22 .04658707 10329.86 4660.75

rno-miR-384-3p 3.55 .02377503 14.89 4.19 rno-miR-21 2.06 .04408989 718.04 348.35

rno-miR-101a 3.35 .01129538 41.7 12.46 rno-miR-500 -2.13 .02676364 4.97 10.61

rno-miR-409-3p 2.94 .00162202 12.33 4.19 rno-miR-532-3p -2.19 .03442331 20.53 45.01

rno-miR-101b 2.64 .036637 21.75 8.24

rno-miR-148b-5p 2.46 .01162151 18.06 7.36

rno-miR-329 2.3 .02992854 16.76 7.29

rno-miR-337 2.24 .01032434 16.89 7.55

rno-miR-451 -6.46 .0135633 9.5 61.4

https://doi.org/10.1371/journal.pone.0216610.t002
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Polymeric CRP and monomeric CRP

We performed immunohistochemical staining of heart sections using formalin-fixed, paraffin-

embedded, 4-μm-thick tissue sections with a human monoclonal anti-CRP antibody (C1688;

Sigma-Aldrich; 1:400 dilution), which specifically detects the monomeric form of CRP

(mCRP). The I/R+CRP group showed diffuse and strong immunopositivity for anti-mCRP

antibody in their damaged myocardium (data not shown), which is in line with our previous

finding that mCRP is deposited on AAR myocardium damaged by IRI [16]. Moreover, CRP

mRNA was not detected by PCR in our previous study, which supports the idea that mCRP

immunopositivity is the result of mCRP deposition rather than production of CRP from the

myocardium. We speculate that the deposited mCRP may carry some role in regulating the

miRNA profiles in the damaged myocardium.

We showed that mCRP deposition activates complement, mitochondria destruction, autop-

hagy production, and apoptosis in AAR myocardium and results in the increase in infarct size

[16], which is consistent with the findings from a study by Yang et al. [54] mCRP deposition

was limited to AAR in our previous study. In this study, miRNA profile changes occur in both

AAR and non-ischemic areas after CRP injection.

Limitations of the study

We had to select and dissect 3 areas of rat heart based on the results of Evans blue and TTC

staining and therefore were only able to obtain small specimens of rat heart tissue and conse-

quently a small amount of RNA. Only NanoString apparatuses require smaller amounts of

material; we could perform only the NanoString method to examine the miRNA profiles and

did not validate our findings with other methods. Nevertheless, the NanoString nCounter plat-

form is not an enzyme-dependent method, lacks RNA-amplification steps, and performs

miRNA profiling with digital precision. It is therefore accurate and less error-prone [55].

Results obtained using NanoString apparatuses do not require further validation by another

method [56]. The NanoString nCounter platform is being used to validate the results of

another platform, RNA-Seq [57].

We did not experiment with pCRP infusion before ischemic injury, which could reflect

clinical situations involving pre-existing long-standing inflammatory processes before an

ischemic event such as diabetes mellitus and severe obesity. There are reports that elevated

CRP level during myocardial infarction is associated with myocardial damage and consequent

elevated IL-6 level rather than pre-existing inflammation.[4, 6, 58] We also intended to find

changes in miRNAs in CRP-deposited damaged myocardium by injecting serum CRP after

infarction.

CRP supplementation may not accurately mimic the pathological increase in serum CRP in

response to myocardial infarction, because pathologically increased CRP may interact with a

variety of tissues and cells. Future study should therefore utilize CRP-knockout mice in order

to evaluate the role of endogenous CRP in the respective regulation of miRNA profiles in

ischemic and non-ischemic myocardium.

Conclusion

We have shown that high serum CRP level with ischemia-reperfusion injury results in myocar-

dial miRNA changes. We also showed that the miRNA changes occurred in both ischemic and

non-ischemic myocardium. Many of these miRNA changes are involved in myocardial dis-

eases. Our results may provide a strong basis for research on the relation between CRP and

miRNAs and their role in ischemic heart disease and subsequent reperfusion therapy.
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