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Abstract: The kinetics of thermally stimulated processes in the condensed phase is commonly
analyzed by model-free techniques such as isoconversional methods. Oftentimes, this type of analysis
is unjustifiably limited to probing the activation energy alone, whereas the preexponential factor
remains unexplored. This article calls attention to the importance of determining the preexponential
factor as an integral part of model-free kinetic analysis. The use of the compensation effect provides
an efficient way of evaluating the preexponential factor for both single- and multi-step kinetics. Many
effects observed experimentally as the reaction temperature shifts usually involve changes in both
activation energy and preexponential factor and, thus, are better understood by combining both
parameters into the rate constant. A technique for establishing the temperature dependence of the rate
constant by utilizing the isoconversional values of the activation energy and preexponential factor is
explained. It is stressed that that the experimental effects that involve changes in the preexponential
factor can be traced to the activation entropy changes that may help in obtaining deeper insights into
the process kinetics. The arguments are illustrated by experimental examples.

Keywords: Arrhenius equation; crosslinking polymerization (curing); decomposition; degradation;
liquid and solid state; phase transitions; thermal analysis

1. Introduction

Kinetic studies of thermally stimulated processes provide a key to understanding the
thermal behavior of materials. In the field of condensed phase kinetics, most of such studies
are conducted by employing experimental methods such as thermogravimetric analysis
(TGA) and differential scanning calorimetry (DSC). The International Confederation for
Thermal Analysis and Calorimetry has issued recommendations [1,2] for kinetic analysis
of such data. Briefly, proper kinetic analysis can be performed via model-fitting and model-
free approaches as long as the calculations are based on simultaneous use of data obtained
at multiple temperature programs. Most commonly, it means the usage of data collected at
multiple heating (or cooling) rates.

The model-free approach includes primarily the Kissinger method [3] as well as a
variety of isoconversional methods [4]. The latter have experienced dramatic growth in
popularity over the past two decades [4,5]. An illustrative example is that out of 13 papers
in the Special Issue “Thermal Analysis Kinetics for Understanding Materials Behavior”
published by Molecules, 10 used isoconversional and other model-free kinetic analyses [6].
At least partially, this is because many of the simpler isoconversional methods can be readily
programmed with the common spreadsheets, whereas the model-fitting methods typically
require specialized software. A more important difference, though, is that model-fitting
methods yield the whole kinetic triplet (i.e., the activation energy, preexponential factor,
and reaction model) in a single computational step. Isoconversional methods evaluate the
kinetic triplet in several computational steps. This is easily illustrated for a single-step
process studied at multiple heating rates. Its kinetics obeys the following rate equation:
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dα

dt
= A exp

(
−E
RT

)
f (α) (1)

where α is the extent of the reactant conversion, t is the time, f (α) is the reaction model, T is
the temperature, R is the gas constant, and A and E are the Arrhenius parameters, i.e., the
preexponential factor and activation energy, respectively. In this situation, a model-fitting
method fits the right hand side of Equation (1) to a set of the rate data obtained at different
heating rates. The fitting yields E, A, and f (α), all at the same time.

Isoconversional methods rely on the isoconversional derivative of the rate to determine
the activation energy as [1,4]:

Eα = −R
[

∂ ln(dα/dt)
∂T−1

]
α

(2)

where the subscript α denotes the value related to specific conversion. The most direct
implementation of this approach is the isoconversional method of Friedman [7]. Its basic
equation is:

ln
(

dα

dt

)
α

= ln[Aα f (α)]− Eα

RTα
(3)

The application of the method requires one to determine for each conversion the
values of the rate and temperature for a set of the heating rates used. Per Equation (3), the
left hand side depends linearly on 1/Tα, so that the activation energy is evaluated from
the slope of the straight line by means of the standard linear regression. This is the first
computational step for isoconversional methods. Evaluating the other two components,
i.e., A and f (α), of the kinetic triplet requires additional computational steps, described in
detail elsewhere [1,4].

Oftentimes, isoconversional kinetic analysis remains limited to the first step, i.e.,
to evaluating a dependence of the activation energy on conversion. While incomplete,
such analysis can be adequate for certain purposes. For example, the Eα dependence
can be used for making kinetic predictions without estimating both the preexponential
factor and reaction model [1,8–10]. Additionally, this dependence can be parameterized in
terms of fundamental kinetic models and used for estimating their parameters [2,4,5,11].
Nevertheless, there are many situations when knowledge of the Eα dependence alone is
insufficient for understanding the kinetics. Then, isoconversional analysis must move
beyond the first step to evaluate the preexponential factor and reaction model.

Although for complete kinetic analysis both of these components need to be evaluated,
the present article does not discuss evaluating the reaction models. This is because the
experimentally determined reaction models have very little interpretive value. First, one
needs to recognize that the aforementioned computational techniques [1] for estimating the
reaction models via isoconversional analysis are suitable only for a single-step process. The
latter manifests itself through the absence of significant variation of the isoconversional
activation energy with conversion. Variation in Eα can be ruled as insignificant if within
the range α = 0.1–0.9 the difference between the maximum and minimum value of Eα

is less than 10–20% of the average Eα value [2]. Quite frequently, this is not the case.
Then, the process cannot be represented by a single model f (α). Ignoring this point
results in computing f (α) data that cannot and should not be interpreted in terms of the
commonly used theoretical f (α) models. In case of significant variation in Eα one should
use more sophisticated computational techniques, designed specifically for multi-step
processes [2]. Second, even if Eα demonstrates no significant variation so that a process
can be considered as a single-step one, the experimentally evaluated f (α) models still do
not permit straightforward interpretation in terms of the mechanisms [12]. Note that all of
this is also applicable to the integral models, g(α).

Instead, this article aims to emphasize the importance of evaluating the preexponential
factor in model-free kinetic analysis. The focus is put on the interpretive value of the
preexponential factor that is illustrated by several instructive examples. The intention is to
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demonstrate that determining the preexponential factor alone as well as combining it with
the activation energy to evaluate the rate constant can help in obtaining deeper insights
into the process kinetics.

2. How to Determine the Preexponential Factor

There are several methods of estimating the preexponential factor in model-free
and isoconversional calculations. Fundamentally, they can be reduced to two approaches:
model-based and model-free. Friedman, who proposed the earliest isoconversional method
for kinetic analysis of nonisothermal data, also proposed a model-based way of evaluating
the preexponential factor [7]. The evaluation makes use of the fact that the application of
Equation (3) produces not only a dependence of Eα on α but a dependence of ln[Aαf (α)]
on α as well. Then, assuming a particular form of the reaction model, e.g., the reaction-
order model f (α) = (1 − α)n, one can readily use the ln[Aαf (α)] dependence to estimate
both lnAα and n [7]. There are more advanced variants of the model-based approach that
are not limited to the reaction-order model. Some of them are discussed in the ICTAC
recommendations [1]. While different, all model-based techniques share a common theme.
They identify the reaction model to evaluate the preexponential factor. This approach
works perfectly well provided that the process analyzed can be considered as a single-step
one—in other words, when Eα does not demonstrate significant variation with α.

If Eα varies significantly with α, i.e., when the process is a multi-step one, the preex-
ponential factor can be determined via a model-free approach. The idea is to make use of
the so-called compensation effect that takes the following form:

log Ai = aEi + b (4)

where the subscript i denotes A and E determined experimentally when using a particular
fi(α)-model to fit the rate data obtained at a single heating rate. This type of fit is well-
known to produce Ai and Ei that depend strongly on the choice of fi(α) in the differential
methods or of gi(α) in the integral methods. An example of the compensation effect is
illustrated in Table 1 and Figure 1 for the thermal decomposition of ammonium nitrate
analyzed by an integral method [13].

Table 1. Activation energies for the thermal decomposition of ammonium nitrate determined using
12 different models. Adapted with permission from Vyazovkin et al. [13]. Copyright 2001 ACS.

i Reaction Model gi(α) Ei/kJ mol−1 log(Ai/min−1)

1 power law α1/4 11.5 −0.2
2 power law α1/3 17.7 0.6
3 power law α1/2 30.1 2.0
4 power law α3/2 104.5 10.2
5 one-dimensional diffusion α2 141.6 14.2
6 Mampel (first order) −ln(1 − α) 81.5 8.2
7 Avrami–Erofeev [−ln(1 − α)]1/4 15.1 0.4
8 Avrami–Erofeev [−ln(1 − α)]1/3 22.5 1.3
9 Avrami–Erofeev [−ln(1 − α)]1/2 37.2 3.1

10 three-dimensional diffusion [1 − (1 − α)1/3]2 156.7 15.3
11 contracting sphere 1 − (1 − α)1/3 74.8 6.8
12 contracting cylinder 1 − (1 − α)1/2 72.4 6.6
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Figure 1. Compensation effect (solid line) for thermal decomposition of ammonium nitrate. Circles
are individual lnAi and Ei values calculated for 12 models from Table 1. A model-free estimate of lnA
(8.8) is determined by substituting a model-free value of E (92.8 kJ mol−1) into the compensation
effect Equation (5). Adapted with permission from Vyazovkin et al. [13]. Copyright 2001 ACS.

It is seen that for a set of 12 gi(α) models presented in Table 1, the logAi and Ei values
vary in a very broad range. Yet, they all fit almost perfectly into a straight line:

log Ai = 0.108Ei − 1.17 (5)

The existence of the compensation effect suggests that all logA and E pairs, be they
correct or not, are linearly correlated. It means that knowing a model-independent value
of E should allow one to plug it into the compensation effect Equation (4) and estimate
the respective value of logA. This is the idea of the model-free approach to estimating the
preexponential factor [14,15]. Simulations by Vyazovkin et al. have demonstrated the high
accuracy of this approach for both single- [14] and for multi- [15] step kinetics.

If the Eα values do not vary significantly with α, their substitution into Equation (4)
will yield the logAα values that also are nearly independent of α. In this situation, the Eα

values can be simply replaced with a single mean value, the substitution of which into
Equation (4) will yield a single mean value of logAα. This example is presented in Figure 1.
For the decomposition of ammonium nitrate, Eα is practically independent of α [13]. The
mean value is 92.8 kJ mol−1. Its substitution into Equation (5) yields logA = 8.8.

In connection with the ammonium nitrate example, a warning must be given regarding
another procedure for estimating the preexponential factor. In it, a model-free estimate of
E is obtained, and its value is compared against the activation energies estimated by using
various reaction models. Then, one selects the model that gives the closest value E and uses
the respective value of the preexponential factor as a proper estimate. This procedure is
clearly inferior to the one based on utilizing the compensation effect for two reasons. First,
it is equivalent to picking one point on the compensation line and, as seen in Figure 1, the
individual points do fluctuate around the line. These fluctuations will introduce an error in
the logA estimate even if there is a close match between the model-free and model-based
values of E. On the other hand, the use of the compensation line eliminates all individual
fluctuations and, thus, the error associated with them. Second, it is quite common that
there is no model that yields a closely matching value of E. An instructive example is found
in Table 1. There are no E values that closely match the model-free value 92.8 kJ mol−1.
The two closest values are 81.5 and 104.5 kJ mol−1. Their respective logA values are 8.2
and 10.2, neither of which is quite accurate.
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Most important for our purpose is that the afore-described model-free approach
provides accurate estimates for the logAα value in the case of multi-step kinetics. This has
been originally established by Vyazovkin and Linert [15] and also demonstrated recently by
Sbirrazzuoli, [16] who has made significant contributions [17] in perfecting this approach.
As stated earlier, the multi-step kinetics is identified by significant variation of Eα with α.
In this case, the Eα dependence cannot be replaced with the mean value. Then, substitution
of the Eα values into Equation (4) yields a dependence of logAα on α that, as shown further,
can be used for obtaining important insights as well as for estimating the temperature
dependence of the rate constant.

It should be stressed that the logAα values can be estimated from Equation (4) by
substituting the Eα values determined by any isoconversional method. As seen from a few
recent examples [18–21] of estimating logAα via the compensation effect, one typically uses
Eα determined by the most popular isoconversional methods such as the integral method of
Ozawa [22] and Flynn-Wall [23] and of Kissinger-Akahira-Sunose [24] or as the differential
method of Friedman [7]. With respect to this, it should be reminded that these integral
methods, also known [4,25] as stiff integral methods, introduce a systematic error into the
Eα value when it varies significantly with α [26]. This error naturally propagates into a
systematic error in the logAα value. To eliminate this error, one should use flexible integral
methods [4,25]. Popular representatives of these method are the isoconversional method
of Vyazovkin [26] or Ortega [27]. Alternatively, one can use the differential method of
Friedman to avoid the systematic error in Eα and, thus, in logAα. In addition, as discussed
by Sbirrazzuoli, [17] the accuracy of the logAα value is improved by using more accurate
methods for estimating logAi and Ei that are inserted in Equation (4) for determining the
parameters a and b.

Kissinger did not propose a way of determining the preexponential factor in his
model-free method. He did propose a method of estimating the reaction order from the
so-called shape index, S as n = 1.26S0.5, where S is evaluated experimentally from the
rate peak. Balarin [28] has found this relationship inaccurate and suggested an alternative
expression, n = 1.54S1.18. As far as estimating the preexponential factor, one needs first
to recognize that unlike isoconversional methods, the Kissinger method typically fails to
detect the multi-step kinetics [29]. In other words, it treats all processes as single-step
kinetics. For that reason, the preexponential factor in this method can be estimated by
means of model-based techniques suitable for single-step kinetics [1] as well as with the
aid of the model-free approach described above.

3. Why to Determine the Preexponential Factor
3.1. Preexponential Factor for Understanding Reaction Temperature Shifts

Materials are routinely modified to change their thermal behavior. Some applications
may require lowering the reaction temperature, whereas others may need the reaction
temperature to be increased. Such changes are readily seen in nonisothermal TGA or DSC
curves as shifts to either lower or higher temperature. For example, Figure 2 illustrates
the situation when the modification of a compound causes an increase in its thermal
stability. This is best seen as a shift in the conversion vs. temperature curves. All four
curves presented in Figure 2 have been simulated for the reaction model of first-order.
The solid line represents a process with E = 120 kJ mol−1 and A = 1012 min−1. The three
other curves appear at a temperature about 40 K higher and, thus, represent increased
thermal stability. From the kinetic standpoint, an increase in thermal stability is associated
with the deceleration of the process. The most common explanation for deceleration
is an increase in the activation energy. Overcoming a larger energy barrier naturally
requires increasing the kinetic energy of the reactant molecules, which is accomplished
by increasing the temperature. In Figure 2, this effect is represented by the curve with
circles (E = 130 kJ mol−1 and A = 1012 min−1). Indeed, an increase in E without a change in
A decelerates the process by shifting its range to higher temperature. This type of effect
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would be easily detected by estimating the activation energy with the aid of any model-free
method.

Figure 2. Kinetic curves simulated at the heating rate 2 K min−1 for a first order reaction having
different values of the activation energy (E in kJ mol−1) and preexponential factor (A in min−1). The
inset shows respective Arrhenius plots.

However, Figure 2 depicts two more examples of very similar temperature shifts. The
curve with squares (E = 120 kJ mol−1 and A = 1011 min−1) demonstrates that deceleration
and a shift to higher temperature can occur at the expense of a decrease in A without any
changes in E. While uncommon, such a case has been observed experimentally in a study of
the effect of inert gas pressure on the kinetics of reversible decomposition [30]. Furthermore,
as seen from the curve with stars (E = 110 kJ mol−1 and A = 1010 min−1), deceleration and a
shift to higher temperature can happen even when E decreases if A undergoes a significant
decrease as well. Needless to say that in such situations estimating the activation energy
alone is not able to help in identifying the reason behind the observed shift to higher
temperature, i.e., an increase in thermal stability. Understanding the observed effect
necessarily requires estimating the preexponential factor.

Note that changes in thermal behavior rarely entail a change in only one of the
Arrhenius parameters. Typically, both E and A change simultaneously. This implies that
understanding the shifts in the reaction temperature generally requires consideration of
the combined effect of E and A. Such an effect is accounted for in the rate constant, k(T).
The significance of this parameter is that it provides a measure of the reactivity. The rate
constant depends on temperature in accord with the Arrhenius equation:

k(T) = A exp
(
−E
RT

)
(6)

Plugging experimentally determined A and E in Equation (6) and considering the k(T)
values in the corresponding temperature regions permits visualizing the combined effect
of changes in both Arrhenius parameters. Figure 2 (inset) shows the Arrhenius plots for
the four examples discussed above. Comparison of the k(T) values at the same temperature
clearly shows that all three shifts to higher reaction temperature represent a nearly identical
decrease in the reactivity of the system considered. Note that in practical situations when
the kinetics is multi-step and, thus, both Eα and Aα vary with α, linking temperature shifts
to either parameter becomes especially difficult [31]. Thus, combining Eα and Aα into the
rate constant and analyzing the resulting Arrhenius plot provides an effective solution to
the problem.
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Building the Arrhenius plots is trivial in the case of the single-step kinetics. As already
stated, in such a case Eα and Aα do not practically vary with α so that they can be replaced
with the mean values. The latter just need to be inserted in Equation (6). Creating the
Arrhenius plots for multi-step kinetics, i.e., when both Eα and Aα vary significantly with α,
is a bit trickier. An appropriate procedure for calculating the Arrhenius plots for multi-step
kinetics has been proposed by Liavitskaya et al. [31]. The essential step in this procedure is
converting the dependencies of Eα and Aα on α to the dependencies on temperature. Recall
that in the isoconversional calculations each Eα is estimated for a given value of α by using
several values of Tα, which are the temperatures of reaching this α at different heating
rates. That is, each value of Eα is associated with several Tα values that can be replaced
with their mean value. Then, replacing α with the respective mean Tα in the dependencies
of Eα and Aα on α yields the dependencies of Eα and Aα on temperature [11]. The latter
can then be substituted into Equation (7):

ln k(Tα) = ln Aα −
Eα

RTα
(7)

to yield the Arrhenius plots for the multi-step kinetics.
An example of the Arrhenius plots built according to Equation (7) is displayed in

Figure 3. The plots represent the process of vaporization of n-decane from bulk and
7 nm alumina nanopores [32]. In the nanopores, vaporization is markedly decelerated as
detected by a shift of the TGA curves to a higher temperature. Isoconversional calculations
for bulk vaporization yield the Eα values that are practically independent of α and average
at ~56 kJ mol−1, which is the value of the vaporization enthalpy of n-decane. The Eα

values for vaporization from the nanopores drop from that value down to ~40 kJ mol−1.
On the other hand, a decrease in Eα is accompanied by a ~2 orders of magnitude decrease
in Aα (Figure 3, inset). It is worth mentioning that when Eα varies significantly with α, i.e.,
when the kinetics is multi-step, the Arrhenius plots should generally be nonlinear [11]. In
the same way, practically invariable Eα representative of single-step kinetics should give
rise to linear Arrhenius plots. This is exactly what one can see in Figure 3: a linear plot
for vaporization from bulk and a nonlinear one for vaporization from the nanopores. In
any case, the obtained Arrhenius plots indicate that at any given temperature within the
experimental range, vaporization from the nanopores is characterized by a smaller rate
constant. It means that the observed effect occurs because possible acceleration associated
with a decrease in Eα is completely outweighed by deceleration due to a decrease in Aα.

Figure 3. Dependencies of the preexponential factor on conversion and respective Arrhenius plots
for vaporization of n-decane from bulk (circles) and nanopores (squares). Adapted with permission
from Ekawa et al. [32]. Copyright 2021 Elsevier.
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Of course, the above example is not the only case of the benefit provided by analysis
of the Arrhenius plots constructed from the Eα and Aα dependencies. As mentioned
earlier, Liavitskaya et al. [31] have proposed the aforementioned procedure as a means to
understand the temperature shifts observed experimentally in the situation when both Eα

and Aα varied with conversion. This has occurred in a study of the thermal decomposition
of malonic acid dissolved in three different polymeric matrixes: poly(vinylpyrrolidone),
poly(methyl methacrylate), and poly(vinyl acetate). Although comparison of the individual
Arrhenius parameters for these systems does not demonstrate any simple trend, a clear-cut
trend is seen in the Arrhenius plots that reveal a significant acceleration of decomposition
in the poly(vinylpyrrolidone) matrix. Likewise, this procedure has been instrumental
in obtaining insights into the effect of the poly(vinylpyrrolidone) matrix on the thermal
stability of such drugs as indomethacin, felodipine, and nifedipine [33]. It has also helped
to visualize the saturation in the increase in the thermal stability of the solid dispersions of
indomethacin in poly(vinylpyrrolidone) that occurs at a specific drug to polymer ratio [34].
Other recent examples of the beneficial use of the proposed procedure for calculating the
Arrhenius plots include: evaluating the thermal stabilities of terpolymers of carbon dioxide,
propylene oxide, and cyclohexene oxide [18]; probing a catalytic effect of nanosized zinc
and titanium oxides on the thermal degradation of poly(lactic acid) [35]; assessing the
reactivity toward the polymerization of aryl cyanates with different bridging fragments [36];
exploring the effect of ionic liquid treatment on the oxidation kinetics of coal [37]; studying
the effect of milling on the oxidation kinetics of aluminum–boron systems [38]; gauging the
acceleration of the cyanate ester polymerization in hydrophilic nanopores of silica colloidal
crystals [39]; and comparing the thermal decomposition kinetics of an ionic liquid under
nitrogen and air [40].

3.2. Entropic Interpretation of Changes in the Preexponential Factor

The temperature dependence of the rate constant is traditionally described by the
Arrhenius Equation (6). The activated complex theory suggests a rather similar form for
this dependence [41]:

k(T) =
kBT

h
exp

(
∆S 6=

R

)
exp

(
−∆H 6=

RT

)
(8)

where kB is the Boltzmann constant, h is the Planck constant, and ∆S 6= and ∆H 6=, respec-
tively, are the entropy and enthalpy of activation. ∆S 6= represents the difference between the
entropy of the activated complex (SAC) and the entropy of reactants (SR). ∆H 6= represents a
similar difference in the enthalpies. ∆H 6= in Equation (8) is smaller than E in Equation (6)
by one or two RT values for mono- or bimolecular reactions, respectively. However, this
difference usually does not exceed the typical 5–10% uncertainty in experimental activation
energy and, thus, can be ignored. Replacing ∆H 6= with E in Equation (8) and comparing it
to Equation (6) allows one to define the preexponential factor in the Arrhenius equation as:

A =
kBT

h
exp

(
∆S 6=

R

)
(9)

Alternatively, the preexponential factor can be called the “frequency factor” because
the term kBT/h represents a frequency, at which the activated complex at the top of the
energy barrier decomposes into the reaction products [41]. The importance of the ∆S 6=

term in Equation (9) is that it contributes to the shift in equilibrium between the reactants
and activated complexes via the usual thermodynamic relationship:

∆G 6= = ∆H 6= − T∆S 6= (10)

where ∆G 6= is the free energy of the activated complex formation. An increase in ∆S 6= low-
ers ∆G 6=, thereby shifting the equilibrium towards the formation of the activated complexes.
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To put it simply, the ∆S 6= term is responsible for the number of the activated complexes
formed. All things considered, the preexponential factor, as defined in Equation (9), can be
thought of as the intensity of the reaction attempts.

For bimolecular reactions, ∆S 6= is typically negative. This results from the diminishing
of the degrees of freedom for the activated complex relative to the reactants. For example,
if a reaction system of two molecules has six translational and six rotational degrees of
freedom, there only are three translational and three rotational degrees of freedom for
the activated complex formed from these two molecules. For monomolecular reactions,
the situation is more complex and the ∆S 6= values can take on both positive and negative
values. Yet, the former seem more common. The techniques for theoretical estimation of
the activation entropies have been discussed in detail elsewhere [42].

As seen in Figure 4, the preexponential factor is not affected much by temperature,
which is the reason why its temperature dependence is usually ignored within relatively
narrow temperature regions used experimentally. However, it depends quite strongly on
the activation entropy. The trend is simple: an increase in the activation entropy gives rise
to an increase in the preexponential factor and, thus, to acceleration. It is worth noting
that an increase in ∆S 6= represents different situations for positive and negative activation
entropies. For the former, an increase in ∆S 6= corresponds to an increase in the gap between
SAC and SR. In the case of negative ∆S 6=, the larger value means a smaller negative number,
i.e., a decrease in the gap between SAC and SR (see Figure 4).

Figure 4. Preexponential factor as a function of the activation entropy at temperatures 300 K (solid
line) and 600 K (dashed line). SAC and SR are the entropies of the activated complex and reactants,
respectively.

The methods of determining the preexponential factor discussed earlier can be em-
ployed for estimating the activation entropy as:

∆S 6= = R ln
(

Ah
kBT

)
(11)

This parameter can provide certain insights into the experimentally observed kinetic
effects such as the reaction temperature shifts. To illustrate this point, we consider two
examples that involve the cases of the positive and negative activation entropy.

The first example deals with the temperature shift in the case of gelatin gel melting [43].
This physical gel is crosslinked by hydrogen bonds. The latter support the self-assembly of
the polypeptide chains into the network junction points that control the thermal stability
of the gel. Gel melting essentially is the process of the dissociation of hydrogen bonds
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that hold together the junction points. Figure 5 shows the dependencies of Eα and logAα

calculated by means of the Vyazovkin isoconversional method [26] for the melting of the
gel in bulk and inside 6 nm silica pores. The process in the nanopores occurs at about 10 K
larger temperature than in bulk [43]. This suggests that the confinement of the gel to the
nanopores decelerates the rate of its melting. Nevertheless, the activation energy for the
process in nanopores is significantly smaller than the value determined for bulk melting.
Clearly, the effect arises from the fact that the preexponential factor for the nanoconfined
process is dramatically smaller than that for the bulk process.

Figure 5. Isoconversional values of the activation energy and preexponential factor for melting of
gelatin gel in bulk (circles) and 6 nm nanopores (squares). Adapted with permission from Prado
et al. [43]. Copyright 2016 PCCP Owner Societies.

The application of Equation (11) to the values of Aα presented in Figure 5 affords
estimating the activation entropies for both processes. Naturally, a variable value of Aα

should give rise to a variable value of ∆S 6=. Indeed, for bulk ∆S 6= decreases from ~400
to 195 J mol−1 K−1 and for nanopores from 210 to 20 J mol−1 K−1. That is, the activation
entropy for the nanoconfined process is much smaller than for the bulk melting. Since
∆S 6= is positive, its decrease is associated with decreasing the gap between SAC and SR (see
Figure 4). Considering the values of SR and SAC separately, one can expect nanoconfinement
to diminish the aforementioned gap by either increasing SR or decreasing SAC. Taking into
account that nanoconfinement generally constrains the molecular motion, it is reasonable to
assume that the effect observed is due to a decrease in SAC. It can, therefore, be concluded
that nanoconfinement restricts the mobility of the activated complex and, thus, stabilizes it
against hydrogen bond breaking. This conclusion is in agreement with the original study
that has demonstrated [43] that nanoconfinement promotes the restoration of the broken
hydrogen bonds. Overall, both activation entropy and preexponential factor drop, giving
rise to the deceleration of the process under nanoconfinement.

The second example is concerned with the effect of nanoconfinement on the trimer-
ization of potassium and rubidium dicyanamide (KDCA and RbDCA, respectively) [44].
The process in 4 and 30 nm pores of silica reveals significant acceleration detected as the
lowering of the reaction temperature by 20–50 K relative to the bulk process. Table 2 collects
the Arrhenius parameters for both bulk and nanoconfined processes. The values have
been estimated via the Kissinger method as discussed above. It is seen that the process
in nanopores has a markedly larger activation energy than that in bulk. Therefore, the
observed acceleration should be linked to the dramatic increase in the preexponential
factor. Table 2 also presents the activation entropies estimated by plugging the A values
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in Equation (11). The nanoconfined process consistently demonstrates significantly larger
∆S 6= values (i.e., significantly smaller negative numbers). The activation entropies are
negative, as should be expected for a bimolecular process. As ∆S 6= is negative, its increase
for the nanoconfined process is associated with diminishing the gap between SAC and SR
(see Figure 4). The gap can be decreased by either lowering SR or raising SAC. As already
mentioned, nanoconfinement generally suppresses molecular mobility. Thus, it should be
expected that ∆S 6= rises because of the drop in SR. As suggested in the original study [44],
the reactant molecules appear to undergo some ordering along the nanoconfining surface,
attaining a preferential reactive situation. In all, the activation entropy and preexponential
factor rise, causing the nanoconfined process to accelerate.

Table 2. Kinetic parameters for trimerization of KDCA and RbDCA in the nanopores and bulk.
Reproduced with permission from Yancey and Vyazovkin [44]. Copyright 2015 PCCP Owner
Societies.

System E/kJ mol−1 log(A/s−1) ∆S 6=/J mol−1 K−1

Bulk KDCA 54.5 ± 1.8 2.4 ± 0.1 −206
30 nm KDCA 93.3 ± 6.8 5.7 ± 0.1 −142
4 nm KDCA 101.6 ± 7.4 6.8 ± 0.2 −121
Bulk RbDCA 50.1 ± 4.5 2.4 ± 0.1 −205

30 nm RbDCA 92.3 ± 9.4 6.8 ± 0.1 −120
4 nm RbDCA 91.9 ± 5.3 6.7 ± 0.1 −122

As a final point, a brief word of caution is necessary in regard to the entropic interpreta-
tions of the preexponential factor of the condensed phase reactions. The underlying theory
is the theory of an elementary reaction act occurring in the absence of a reaction medium.
The condensed phase reactions tend to occur as a complex interplay of various elementary
reaction acts oftentimes complicated by diffusion. For that reason, the activation energies
or the preexponential factors, determined experimentally by such methods as DSC or TGA,
generally have a meaning of effective (or overall, global, apparent, etc.) parameters [11].
The effective activation energy and preexponential factor typically represent more than
one elementary reaction act. The effective nature of the activation energy and preexpo-
nential factor naturally propagates into other parameters derived from them, such as ∆S 6=,
∆H 6=, and ∆G 6=. Therefore, their interpretation in terms of elementary act theories must
be conducted sensibly. In particular, it is sensible to limit the entropic interpretations of
the preexponential factor to semi-quantitative trends. As shown in the above examples,
identifying such trends can be sufficient in obtaining deeper kinetic insights.

4. Conclusions

This article has highlighted the importance of determining the preexponential factor
as a part of model-free kinetic analysis. The emphasis has been on using a model-free way
of estimating the preexponential factor because it is suitable for both single- and multi- step
kinetics, i.e., for cases when the isoconversional activation energy does not practically vary
with conversion and when it varies with conversion significantly. It has been stressed that
experimentally observed effects such as reaction temperature shifts are typically associated
with changes in both the activation energy and preexponential factor. Thus, they are
better understood by quantifying the joint effect of both parameters in the form of the rate
constant. A technique for building Arrhenius plots from the isoconversional values of the
activation energy and preexponential factor has been discussed. Lastly, attention has been
drawn to the fact that the experimental effects that entail changes in the preexponential
factor can be interpreted in terms of the activation entropy changes, thereby providing
deeper insights into the process kinetics. It is hoped that this brief article will inspire more
workers to extend their model-free kinetic analyses beyond exclusively estimating the
activation energy.
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34. Jelić, D.; Liavitskaya, T.; Vyazovkin, S. Thermal stability of indomethacin increases with the amount of polyvinylpyrrolidone in

solid dispersion. Thermochim. Acta 2019, 676, 172–176. [CrossRef]
35. Wang, X.; Huang, Z.; Wei, M.; Lu, T.; Nong, D.; Zhao, J.; Gao, X.; Teng, L. Catalytic effect of nanosized ZnO and TiO2 on thermal

degradation of poly (lactic acid) and isoconversional kinetic analysis. Thermochim. Acta 2019, 672, 14–24. [CrossRef]
36. Galukhin, A.; Liavitskaya, T.; Vyazovkin, S. Kinetic and Mechanistic Insights into Thermally Initiated Polymerization of Cyanate

Esters with Different Bridging Groups. Macromol. Chem. Phys. 2019, 220, 1900141. [CrossRef]
37. Deng, J.; Bai, Z.-J.; Xiao, Y.; Laiwang, B.; Shu, C.-M.; Wang, C.-P. Thermogravimetric analysis of the effects of four ionic liquids on

the combustion characteristics and kinetics of weak caking coal. J. Mol. Liq. 2019, 277, 876–885. [CrossRef]
38. Adil, S.; Murty, B.S. Effect of milling on the oxidation kinetics of Aluminium + Boron mixture and nanocrystalline Aluminium

Boride (AlB12). Thermochim. Acta 2019, 678, 178306. [CrossRef]
39. Galukhin, A.; Taimova, G.; Nosov, R.; Liavitskaya, T.; Vyazovkin, S. Polymerization Kinetics of Cyanate Ester Confined to

Hydrophilic Nanopores of Silica Colloidal Crystals with Different Surface-Grafted Groups. Polymers 2020, 12, 2329. [CrossRef]
40. Huang, Z.; Wang, X.; Lu, T.; Nong, D.; Gao, X.; Zhao, J.; Wei, M.; Teng, L. Isoconversional kinetic analysis of thermal decomposition

of 1-butyl-3-methylimidazolium hexafluorophosphate under inert nitrogen and oxidative air atmospheres. J. Therm. Anal. Calorim.
2020, 140, 695–712. [CrossRef]

41. Glasstone, S.; Laidler, K.J.; Eyring, H. The Theory of Rate Processes; McGraw-Hill Book Co.: New York, NY, USA, 1941.
42. Benson, S.W. Thermochemical Kinetics; Wiley: New York, NY, USA, 1968.
43. Prado, J.R.; Chen, J.; Kharlampieva, E.; Vyazovkin, S. Melting of gelatin gels confined to silica nanopores. Phys. Chem. Chem. Phys.

2016, 18, 29056–29063. [CrossRef]
44. Yancey, B.; Vyazovkin, S. The kinetics and mechanism of nanoconfined molten salt reactions: Trimerization of potassium and

rubidium dicyanamide. Phys. Chem. Chem. Phys. 2015, 17, 10209–10217. [CrossRef]

http://doi.org/10.1002/1096-987X(20010130)22:2&lt;178::AID-JCC5&gt;3.0.CO;2-
http://doi.org/10.1016/j.tca.2008.05.003
http://doi.org/10.1016/0040-6031(79)87059-8
http://doi.org/10.3390/molecules25122813
http://www.ncbi.nlm.nih.gov/pubmed/32570880
http://doi.org/10.1021/acs.jpcc.9b06272
http://doi.org/10.1021/acs.iecr.8b00516
http://doi.org/10.1016/j.molliq.2020.114824
http://doi.org/10.1016/j.ijpharm.2018.09.020
http://doi.org/10.1016/j.tca.2019.04.011
http://doi.org/10.1016/j.tca.2018.12.008
http://doi.org/10.1002/macp.201900141
http://doi.org/10.1016/j.molliq.2019.01.004
http://doi.org/10.1016/j.tca.2019.178306
http://doi.org/10.3390/polym12102329
http://doi.org/10.1007/s10973-019-08845-x
http://doi.org/10.1039/C6CP03339C
http://doi.org/10.1039/C5CP01056J

	Introduction 
	How to Determine the Preexponential Factor 
	Why to Determine the Preexponential Factor 
	Preexponential Factor for Understanding Reaction Temperature Shifts 
	Entropic Interpretation of Changes in the Preexponential Factor 

	Conclusions 
	References

