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Abstract: AMC (automatic modulation classification) plays a vital role in spectrum monitoring and
electromagnetic abnormal signal detection. Up to now, few studies have focused on the complemen-
tarity between features of different modalities and the importance of the feature fusion mechanism in
the AMC method. This paper proposes a dual-modal feature fusion convolutional neural network
(DMFF-CNN) for AMC to use the complementarity between different modal features fully. DMFF-
CNN uses the gram angular field (GAF) image coding and intelligence quotient (IQ) data combined
with CNN. Firstly, the original signal is converted into images by GAF, and the GAF images are used
as the input of ResNet50. Secondly, it is converted into IQ data and as the complex value network
(CV-CNN) input to extract features. Furthermore, a dual-modal feature fusion mechanism (DMFF)
is proposed to fuse the dual-modal features extracted by GAF-ResNet50 and CV-CNN. The fusion
feature is used as the input of DMFF-CNN for model training to achieve AMC of multi-type signals.
In the evaluation stage, the advantages of the DMFF mechanism proposed in this paper and the
accuracy improvement compared with other feature fusion algorithms are discussed. The experiment
shows that our method performs better than others, including some state-of-the-art methods, and
has superior robustness at a low signal-to-noise ratio (SNR), and the average classification accuracy
of the dataset signals reaches 92.1%. The DMFF-CNN proposed in this paper provides a new path for
the AMC field.

Keywords: automatic modulation classification; feature fusion; gram angular field; deep learning;
convolutional neural network

1. Introduction

Automatic modulation classification (AMC) is automatically identified the modula-
tion scheme of the received electromagnetic signal [1,2], which plays an essential role in
spectrum monitoring, malicious electromagnetic signal identification, electromagnetic in-
terference identification and other fields. With the development of wireless communication,
the modulation types of electromagnetic signals vary, and the wireless environment is
also worse, making AMC more difficult. Therefore, it is essential to explore more effective
AMC methods. In recent years, the advantages of AMC methods based on deep learning
in feature extraction and classification accuracy have received extensive attention, but
they also face the problem of how to characterize the original electromagnetic modulation
signals properly. Specifically, before inputting the original signal into the deep neural
network, it is necessary to combine the signal characteristics for preprocessing and design a
superior neural network structure to improve AMC’s performance, which is a topic worthy
of study.

AMC methods of electromagnetic signals can be divided into two types: (1) likelihood-
based (LB); (2) feature-based (FB) [3]. LB optimizes the classification accuracy according
to the likelihood function [4] (such as mixed likelihood ratio, average likelihood ratio and
generalized likelihood ratio) of different modulation signals. However, the complexity
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and classification accuracy of the AMC algorithm are negative impacts of the number of
signal types. The computational complexity of FB is low, and a better classification effect
can be achieved by reasonably designing feature extraction methods. The FB classifica-
tion algorithm generally includes feature extraction and a classification network. Many
researchers have studied various features for extraction, including high-order cumulant
(HOC) [5], cyclic spectrum [6], approximate entropy [7], Kullback–Leibler divergence
(KLD) [8], etc. Classification networks include the artificial neural network (ANN) [9],
decision tree, support vector machine (SVM) [10] and k-nearest neighbor (KNN) [11]. In
the case of multi-type modulation signal recognition and classification, the above methods
have the problems of manual feature extraction and time-consuming operation. At the
same time, they have poor adaptability in an environment of low SNR.

To solve the above AMC problems, we can take advantage of the powerful feature
extraction ability and classification accuracy of deep learning (DL) [12]. The deep learning
network framework plays an important role in signal recognition, and many researches
have focused on improving the network framework. For example, combining multiple
CNN structures, LSTM and CNN network structures through automatically hyperparame-
ter tuning [13–16] to improve network performance, etc., has promoted signal recognition
work. In the modulation classification method based on DL, to fully use the advantages of
CNN’s classification and recognition ability, it has become a research hotspot to preprocess
and characterize the received signal in an appropriate form before inputting the signal
into the CNN [17]. The original electromagnetic modulation signal can be represented
by a signal feature [18–22], image [23–26] and sequence [27–29], but this single-parameter
conversion method ignores the complementarity between features and has certain limita-
tions. In response to this problem, some researchers began to combine multiple features
for AMC, including multi-type graph feature fusion [30–32] and multi-type sequence
feature fusion [33–35], such as cyclic spectra image and constellation diagrams [30,31],
time–frequency diagrams and instantaneous autocorrelation images [32], SPWVD and
BJD images [33], high-order cumulant and IQ sequences [34], DOST sequences and IQ
sequences [36], etc.

Although the above methods fuse multiple features, there is a common limitation:
they do not consider the complementarity between different modal features and integrate
them with an appropriate fusion mechanism. The difference and multi-dimensionality
between different modalities, such as image and time series data, will further improve
the accuracy of AMC. At the same time, most of the existing DL framework-based AMC
methods mentioned above try to characterize the original modulated signal, but rarely
consider the relationship between the signal features and network structure. Image repre-
sentation methods combined with CNN have achieved a good recognition effect, but for
sequence data, especially IQ sequences, it does not make full use of real and imaginary
part information, resulting in the inability to extract the characteristics of the modulation
signal fully. Obviously, it is better to extract the characteristics of IQ data in the complex
value domain.

Contributions

To further improve the accuracy of AMC, a modulation classification method based
on dual-mode feature fusion CNN is proposed, and GAF [37] theory is introduced into the
field of AMC for the first time. It can be summarized that the innovative elements of this
study are as follows:

In this paper, the complementarity of different modal features is fully considered. The
GAF theory is introduced into the AMC field. The one-dimensional signal is encoded into
a two-dimensional image, and the ResNet50 network structure is adjusted to extract the
features of the GAF image. At the same time, using the more vital representation ability of
complex data than real data, the original signal is transformed into IQ data, and CV-CNN
is constructed to extract amplitude and phase features.
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A dual-modal feature fusion mechanism (DMFF) is proposed to fuse the features
extracted by GAF-ResNet50 and CV-CNN. Furthermore, the DMFF-CNN classification
model is trained by combining the fusion features. In the training process, the penalty
term is added between the dual-modal feature tags to reduce the network complexity and
improve the classification accuracy of DMFF-CNN.

In the experimental part, eight types of electromagnetic modulation signal samples
are generated according to different parameters, such as chip rate (CR), carrier frequency,
modulation frequency and phase difference, so as to improve the generalization of the
existing dataset.

Compared with other advanced methods, the DMFF-CNN model proposed in this
paper has achieved excellent and stable results in signal classification experiments. At the
same time, it has good robustness in a −10 dB low SNR environment, and the classification
accuracy reaches 92.1%.

2. Materials and Methods
2.1. Overview of the Proposed Method

The structure of the DMFF-CNN proposed in this paper is shown in Figure 1, and it
is divided into four parts: (1) signal preprocessing; (2) feature extraction; (3) dual-feature
fusion; (4) signal classification. In the first part, GAF image coding is used to reconstruct
and upgrade the data of the original signal, and convert the one-dimensional sequence into
a two-dimensional image, which is used as the input of ResNet50. At the same time, the
signal is down-converted to the intermediate frequency band, down-sampled, and then
demodulated to obtain IQ data, which are input to CV-CNN. The second part extracts the
GAF image and IQ data features by ResNet50 and CV-CNN, respectively. In the third part,
the DMFF-CNN is constructed, and the DMFF mechanism is used to fuse different modal
features. In the fourth part, the DMFF-CNN classification model is trained and tested
by fusion features, and the classification results of electromagnetic modulation signals
are obtained.
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Figure 1. Block diagram of the proposed scheme.

2.2. Dataset Preprocessing
2.2.1. Two-Dimensionalization of the Time Series Signal Based on GAF

GAF is a method of transforming time series into images through time coding [37,38].
The process of converting time series into images is divided into three steps: Firstly,
normalize the input time series data to [−1, 1]. Secondly, convert the normalized time
series data from the Cartesian coordinate system to the polar coordinate system, and retain
the time information of the original input signal. Finally, compare the time correlation of
each time point in polar coordinate through triangular cosine function, so as to obtain a
matrix with n × n dimension, where n is the number of sampling points in time series data.
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Suppose a time series signal expression as X = {x1, x2, · · · , xn}, which is a sequence
composed of n time points and corresponding actual observations x. In order to reduce the
bias of the inner product to the maximum value, the Min-Max scaler is used to scale the
time series to within [–1, 1]. The formula for the Min-Max scaler is as follows

X̃i
0 =

xi −min(X)

max(X)−min(X)
, (1)

Then, the value of the scaled sequence X is mapped to an angle ϕi, time ‘t’ is mapped
to radius ‘r’. The value of the time series and its corresponding timestamp is represented
by ϕi and r, so the scaled time series X is redefined in the polar coordinate system{

ϕi = arccos(x̃i),−1 ≤ x̃i ≤ 1, x̃i ∈ X
r = ti

N , ti ∈ N
, (2)

In (2), ti is the time stamp, and the interval [0, 1] is divided into N equal parts to
regularize the span of the polar coordinate system. The coding of (2) has two essential prop-
erties. Firstly, (2) is bijective because cos(ϕ) is monotonically decreasing when ϕ ∈ [0, π].
Therefore, it is unique in the polar coordinate system, and its inverse mapping is also
unique. Secondly, unlike Cartesian coordinates, polar coordinates maintain an absolute
temporal relationship.

After mapping the one-dimensional signal to the polar coordinate system, the correla-
tion between adjacent connecting points (i, j) is expressed as (3)

i
⊕

j = cos
(

ϕi + ϕj
)
, (3)

where ϕi and ϕj represent the corresponding angles of vectors i and j in the polar coordinate
system, respectively. The angular perspective is used to identify the correlation of each
time point in different intervals, so as to obtain the Gram matrix called the sum of gram
angles, as shown in (4)

G =


cos(ϕ1 + ϕ1) cos(ϕ1 + ϕ2) · · · cos(ϕ1 + ϕn)
cos(ϕ2 + ϕ1) cos(ϕ2 + ϕ2) · · · cos(ϕ2 + ϕn)

...
...

. . .
...

cos(ϕn + ϕ1) cos(ϕn + ϕ2) · · · cos(ϕn + ϕn)

 =,

X̃′·X̃−
√

I − X̃2
′
·
√

I − X̃2

(4)

In (4), I is the unit row vector [1, 1, · · · 1]. After mapping time series to the polar
coordinate system, the time series of each step is regarded as 1-D metric space. Because
GAF is more sparse, the inner product is redefined in the Cartesian coordinate system
x, y = x·y−

√
1− x2·

√
1− y2. Compared to traditional inner products, newly defined

inner products add a penalty term, which can separate the desired output from Gaussian
noise. G is a Gram matrix, expressed as (5)

G =


〈x̃1, x̃1〉 〈x̃1, x̃2〉 · · · 〈x̃1, x̃n〉
〈x̃2, x̃1〉 〈x̃2, x̃2〉 · · · 〈x̃2, x̃n〉

...
...

. . .
...

〈x̃n, x̃1〉 〈x̃n, x̃2〉 · · · 〈x̃n, x̃n〉

, (5)

GAF contain temporal correlations because G(i,j||i−j=k) indicates that temporal correla-
tions are superimposed through the direction of time interval k and explained by relative
correlations. When k = 0, the main diagonal Gi,i consists of the original values of the scaled
time series. The time series of the original signal is approximately reconstructed by using
the Gi,i and the high-level characteristics extracted by deep learning.
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The GAF algorithm is further illustrated in Figure 2. The original signal is converted
into a polar coordinates diagram through (2) as shown in Figure 2b, and the GAF images
are transformed using (5); the result is shown in Figure 2c. It can be found that after the
2-D of the signal, the features in the time domain waveform are fully represented in the
GAF images, and the electromagnetic modulation signal is fully mapped through different
characteristics such as color, point and line at the corresponding position [38].
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2.2.2. Conversion of Time Series Signal into IQ Data

Compared with real values, complex values have more robust data representation
capabilities. The multiplication of complex values can represent the rotation and scale,
corresponding to the angle addition and modular length multiplication of IQ data. While
the multiplication of real values can only represent the scaling process, including only
modulus multiplication. The IQ vector is converted from the original time series signal,
which consists of two data vectors: in-phase components xI

j and quadrature components xQ
j

xI/Q
j =

 xIT

j

xQT

j

, (6)

In (6), xIT

j , xQT

j ∈ RN , xI/Q
j ∈ R2×N . The process of converting the time series signal

into IQ data is as follows: (1) multiply the original electromagnetic modulation signal and
the carrier frequency to obtain the mixing result; (2) the down-conversion component of the
mixed signal is obtained by low-pass filtering. The original time series modulated signal
has a high carrier frequency and significant sampling points. Therefore, the purpose of
reducing the sampling points and the computational complexity of the neural network is
achieved by down-converting and down-sampling preprocessing of the original signal.
The IQ data demodulated based on down-conversion and down-sampling time domain
signals can be used as the input of CV-CNN for model training. The process of converting
the time series signal into IQ data is shown in Figure 3.
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2.3. Network Architecture
2.3.1. The Motivation of the Network Made

In terms of feature extraction, the method based on deep learning can automatically
extract higher-level features [39]. CV-CNN is similar to ResNet50, both use the feature
extraction method from the bottom to the top to complete the classification of input data
according to the in-depth features. However, the focus of the feature information retained
by complex value CNN and two-dimensional CNN is different. The features extracted
by ResNet50 highlight the local quality of the input image, while the CV-CNN makes
full use of all the information of the IQ data. CV-CNN is a hierarchical link, including a
complex input layer, multiple complex convolution layers and complex pooling layers, etc.
Therefore, this paper uses GAF-ResNet50 and CV-CNN to extract features collaboratively
and fuses dual-modal features. The fusion features go through the fully connected and
softmax layers to achieve AMC through DMFF-CNN. Figure 4 shows the network structure
of DMFF-CNN. In the following section, GAF-ResNet50, CV-CNN and features fusion will
be introduced, respectively.

1 
 

 
Figure 4. DMFF-CNN classification network structure. (A) The GAF-ResNet50 network structure;
(B) The CV-CNN network structure; (C) Dual-modal feature fusion mechanism: DMFF.
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2.3.2. GAF-ResNet50: Image Feature Extraction

Residual network (ResNet) proposes a residual learning method to reduce the difficulty
of deep-seated training networks and solve the problem that image recognition accuracy
decreases with the deepening of network training [40]. The ResNet structure is easy to
optimize to obtain better performance. This paper builds the GAF-ResNet50 framework by
restructuring the ResNet50 pretraining model to achieve the feature extraction of the GAF
two-dimensional images. The structure is shown in Part (A) of Figure 4. The GAF-ResNet50
parameters and dimensions of each stage are shown in Table 1, and a detailed description
of the architecture is explained below.

Table 1. Detailed parameters and dimensions of the GAF-ResNet50.

Stages Layers Types Activation Kernel Size/Strides Output Size

0
Input image - -

256 × 256 × 3Zero padding - -

1
Convolution ReLU 7 × 7 × 64/2 112 × 112 × 64

Batch_Normaliz - -
56 × 56 × 64Maxpooling - 3 × 3 × 64/2

2
Conv Block×1 ReLU 64 × 64 × 256/1

56 × 56 × 256Identity Block×2 ReLU 64 × 64 × 256/-

3
Conv Block×1 ReLU 128 × 128 × 512/1

28 × 28 × 512Identity Block×3 ReLU 128 × 128 × 512/-

4
Conv Block×1 ReLU 256 × 256 × 1024/1

14 × 14 × 1024Identity Block×5 ReLU 256 × 256 × 1024/-

5
Conv Block×1 ReLU 512 × 512 × 2048/1

7 × 7 × 2048Identity Block×2 ReLU 512 × 512 × 2048/-

6 AVG pooling - 7 × 7/2 1 × 1 × 2048

7 Flatten - - 1 × 2048

(1) Input layer

Convert the original modulation signal into a GAF image with a size of 256 × 256
and as network input. ResNet50 uses the convolution step of 2 × 2, and the number of
channels is 64, so the input GAF image first compresses the height and width through the
zero padding layer, the size of the feature layer becomes 112 × 112 × 64.

(2) Hidden layer

The hidden layer consists of Stage1~ Stage5 in Part (A) of Figure 4. The GAF image is
Convolution (Conv), Batch-normalization (BN) and Activation_ReLU by Stage1, and then
the height and width of the input feature layer are compressed to 56 × 56 × 64 through
the maxpooling layer with a step size of 2 × 2. Stage2~Stage5 contains two basic modules
of ResNet50, namely Conv Block and Identity Block. Among them, the input and output
characteristic dimensions of Conv Block are different, which plays a role in changing the
dimension of GAF-ResNet50. The input and output dimensions of Identity Block are the
same, which are used to deepen the number of layers of GAF-ResNet50. The Conv Block is
divided into two parts: one is the backbone part, which has two Conv, BN, ReLU and one
Conv, BN, and the other is the residual part, which has one Conv, BN. Such a structure is
used to change the output feature layer’s width and height, and the number of channels.
The Identity Block also has a backbone part and a residual part. The difference is that its
residual part does not have a convolution operation and is directly connected to the output.
Therefore, the shape of the input and output feature layers of the Identity Block is the
same, which is used to deepen the network. This paper builds a deep network through the
concatenated structure of Conv Block and Identity Block, adds the outputs of the backbone
part and the residual part, and uses the Activation_ReLU to extract high-dimensional
features of GAF images automatically.
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(3) Output layer

The feature layer of 7 × 7 × 2048 is obtained by feature extraction from Stage2 to
Stage5. Through AVG pooling, then complete the tiling of the feature layer of 1 × 1 × 2048,
and finally output the feature vector with the length of 2048. In this paper, the network
structure of ResNet50 is adjusted, and the last full connection layer is removed. The
extracted features are tiled by adding an AVG pooling layer, which dramatically reduces
the number of network parameters, makes the extracted GAF image features more intuitive
and facilitates the fusion of dual-modal features by DMFF.

2.3.3. CV-CNN: Complex Feature Extraction of IQ Data

This paper uses CV-CNN to extract deep complex features of IQ data. The network
structure includes signal input layer, complex convolution layer (CConv), complex pooling
layer (CGAP) and output layer. The structure of the network is shown in Part (B) of
Figure 4. The CV-CNN parameters and dimensions of each frame are shown in Table 2 and
the calculation details of the architecture are explained below.

Table 2. Detailed parameters and dimensions of the CV-CNN.

Frames Feature Types Activation Pooling Batch_Normaliz Dropout Output Size

Input layers Real part and
Imaginary part - - - - 128

CConv1 Feature Map1 CReLU MaxPooling CBN - 5 × 1 × 512

CConv2 Feature Map2 CReLU MaxPooling - - 7 × 32 × 1024

CConv3 Feature Map3 CReLU MaxPooling - 50% 9 × 64 × 2048

CGAP - - - - - 1 × 1 × 2048

CGAP Modulo Calculation

Flatten - - - - - 1 × 2048

(1) Input layer

The input of CV-CNN is IQ data. The feature maps and error terms generated by the
forward and backward propagation of the network are in the form of complex values, and
the parameter update is also performed in the complex value domain. A time window
segments the IQ data with a length of 128. There are 120,000 samples in the complex
value dataset.

(2) Complex Value convolution layer

The CV-CNN classification model consists of three convolution layers (CConv1,
CConv2, CConv3). The dimensions of the convolution kernel in the three convolution
layers are 5 × 1, 7 × 32 and 9 × 64. In order to make the extracted features more expressive,
the number of convolution cores in each convolution layer is increased successively, which
are 512, 1024 and 2048, respectively. Let a(l−1)

k ∈ CWl−1×Hl−1×K be the complex convolution

layer input of layer l, where C represents the complex field and the dimension of a(l−1)
k

is Wl−1 × Hl−1 × K. At the same time, if the L-th complex convolution layer contains I
complex convolution cores w(l)

ik ∈ CF×F×K×l , the characteristic maps of the output of the

L-th complex convolution layer is z(l)i ∈ CWl×Hl×I , that is, the result of complex convolution

of the input a(l−1)
k and w(l)

ik . The calculation process is as (7)

z(l)i = f
(

R
(

V(l)
i

))
+ i f

(
I
(

V(l)
i

))
, (7)

where f (·) represents the complex nonlinear activation function, and R(·) and I(·) mean
the operation of taking the real part and imaginary part. V(l)

i represents the convolution
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result of the input feature maps a(l−1)
k and complex convolution cores w(l)

ik . The convolution
calculation process is shown in (8)

V(l)
i = ∑K

k=1 w(l)
ik × a(l−1)

k + b(l)i
= ∑K

k=1

(
R
(

w(l)
ik

)
× R

(
a(l−1)

ik

)
− I
(

w(l)
ik

)
× I
(

a(l−1)
ik

)
+ R

(
b(l)i

))
= i ∑K

k=1

(
R
(

w(l)
ik

)
× I
(

a(l−1)
ik

)
− I
(

w(l)
ik

)
× R

(
a(l−1)

ik

)
+ I
(

b(l)i

)) , (8)

The step size of the three-layer convolution is set to 1 without padding. The nonlinear
complex activation function CReLU is used to increase the nonlinear expression ability of
the network [41]. CReLU performs the ReLU operation on the real and imaginary parts of
the IQ data. The specific calculation details are as follows

CReLU(z) = ReLU(R(z)) + i× ReLU(I(z)) (9)

A CPooling layer is added after each convolutional layer to reduce the features dimen-
sion and the number of parameters of the network. The pooling method adopts Maxpooling
to increase the robustness of the modulation signal recognition network. The CBN layer
is added after the first convolution layer to accelerate the convergence speed of CV-CNN.
At the same time, the CDropout layer is introduced to reduce the overfitting phenomenon
of the network, and the deactivation rate is set to 0.5. After three-layer convolution, the
Feature Map3 in Part (B) of Figure 4 is integrated by accessing CV-CNN Global Average
Pooling (CGAP). At this time, the feature is in complex form. The calculation details of
the CPooling layer, CDropout layer and CGAP layer in the complex domain are shown
in (10)~(12)

CPooling(z) = Pooling(R(z)) + i× Pooling(I(z)) (10)

CDropout(z) = Dropout(R(z)) + i× Dropout(I(z)) (11)

CGAP(z) = GAP(R(z)) + i× GAP(I(z)) (12)

(3) Output layer

Calculate the CGAP modulo of the output characteristic graph z(l)i through (13)

z(l+1) =

√(
R
(
zl
))2

+
(

I
(
zl
))2, (13)

where z(l) is the complex feature, and the modulus eigenvector z(l+1) of the complex
feature is obtained. Finally, flatten z(l+1) to obtain a 1 × 2048 feature vector as the output
of CV-CNN. Next, it is fused with the output features of GAF-ResNet50.

2.3.4. Dual-Modal Feature Fusion Mechanism: DMFF

This paper proposes a DMFF mechanism to fuse the dual-modal features extracted by
GAF-Resnet50 and CV-CNN. The structure is shown in Part (C) in Figure 4. The input of
DMFF-CNN contains features from dual-modal, so the penalty between the two predicted
label distributions needs to be considered. By adding penalty terms between each modal
feature and connection feature, the classification accuracy and stability of the network can
be improved. Jensen–Shannon (JS) divergence is used to calculate the penalty term. Let p
and q represent the probability distribution of the GAF diagram and IQ data classification,
respectively. JS divergence is defined as

JS(p ‖ q) =
1
2

KL
(

p ‖ p + q
2

)
+

1
2

KL
(

q ‖ p + q
2

)
, (14)

Let xm
i (m ∈ {1, 2}, i ∈ {1, · · · , N}) represent the m-th feature of the i-th data samples,

and define xc
i as the fusion feature of the i-th data sample. � = {θc, θm} is obtained through
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model training, and the loss function of the classification model DMFF-CNN is expressed
as (15)

L(�) =
1
N ∑N

i=1 JS(ti ‖ pθc(xc
i )) +

µ

2
‖ θc ‖ 2 +

1
N ∑2

m=1 ∑N
i=1 JS(pθc(xc

i ) ‖ pθm(xm
i )) +

µ

2
‖ θm ‖ 2, (15)

In (15), ti represents the true probability distribution, µ is a hyperparameter, N rep-
resents the number of training samples, and the loss function includes a regularization
term to avoid overfitting. The fusion process of the GAF diagram feature x1 and IQ data
feature x2 continuously updates the parameters through the loss function θ until the result
converges, and the final fusion feature xc is obtained. xc passes through a fully connected
layer and softmax layer, and the classification probability distribution pθ(xi) of the network
model is calculated, the operation process expression as (16):

pθ(xi) = so f tmax(zi) =

[
eθT

1 zi , eθT
2 zi , · · · , eθT

k zi
]T

∑K
k=1 eθT

k zi
, (16)

In (16), the output result of the softmax layer is a vector of [1, K], where K is the
classification type of the DMFF-CNN, and K = 8 is adopted in this paper. zi is the i-th
value in the vector of the softmax layer, which is indexed by the softmax layer and batch
normalized. With the increase in zi, the change rate of eθT

k zi will be much higher than zi.
Therefore, the purpose of zi indexation is to make the maximum value in the input softmax
layer more prominent. Meanwhile, make the prediction result of softmax layer output more
significant, and improve the convergence efficiency of the model in training. In DMFF-
CNN model prediction, p is defined as the expected label distribution. The probability
distribution of the modulation signal proposed in this paper is calculated as (17) and (18)

min
p

L(p|pθ1 , pθ2) = ∑2
m=1 ∑8

k=1 p(k)ln
(

p(k)
pθm(k)

)
, (17)

s.t. ∑8
k=1 p(k) = 1, (18)

Finally, the Lagrange function is constructed by (19), and the classification probability
of the model for various types of modulation signals can be obtained.

p(k) =
√

∏m pθm(k)

∑8
j
√

∏m pθm(j)
, (19)

3. Experiments and Results
3.1. Parameter Settings and Datasets Description

Traditional datasets based on DL methods (such as rml2016.10a) lack generalization
ability in construction. Considering the characteristics of abnormal electromagnetic signals
in the actual environment, this paper filters and expands the signal types of the existing
datasets. The dataset is constructed according to the parameters in Table 3, including
eight types of electromagnetic signal samples of digital modulation and analog modulation
(2FSK, AM, DSB, FM, OFDM, QAM16, QPSK, SSB). The signal parameters include chip
rate (CR), carrier frequency, modulation frequency and phase difference. The SNR is set
to −10 dB to 10 dB, and the step size is 2 dB. The signal is assumed to be acquired in the
environment disturbed by Additive White Gaussian Noise (AWGN). SNR is defined as
SNR = 10log10

(
σ2

s
)
/
(
σ2

ε

)
, where σ2

s is the signal variance and σ2
ε is the variance of AWGN.

The signal sampling frequency is 102 MHz, the sampling time of each group is 10 ms, the
IF sampling frequency is 3.2 MHz and the target frequency of down-conversion is 300 KHz.
All kinds of modulated signals generate 1500 samples under each SNR situation. The
number of signal samples in the datasets is 120,000, of which 70% are used as training
samples and 30% are verification samples. The parameters of the multi-type modulation
signals are shown in Table 3.
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Table 3. Sample parameters of the electromagnetic modulation signal.

2FSK AM DSB FM SSB QAM16 QPSK OFDM

CR (kHz) 2~20 / 2~20

Carrier Frequency (MHz) f1 : 1.5 ∼ 30
f2 : f1 + (10 ∼ 80)

1.5~30

Modulation frequency (kHz) /

f1 = 1~3
f2 = 3~5
f3 = 5~7
f4 = 7~9

f5 = 9~11

/

Amplitude
(V) 0.25~1

3.2. The Result of the Datasets Preprocessing

According to the signal preprocessing method in Section 2, the eight types of one-
dimensional electromagnetic modulation signal samples in Table 3 are processed, respec-
tively. Based on GAF theory, the time series signal is mapped to 2D images, the image size is
256 × 256 and the resolution is 300 dpi, which meets the input format of the GAF-ResNet50.
The results with SNR of 5 dB are selected for display, as shown in (1–8) in Figure 5. We
can find that there are apparent differences in the color features of 2D images generated by
GAF for different types of signals, which is beneficial to GAF-ResNet50 for deep feature
extraction. At the same time, the time series signal is converted into IQ data, and the signal
is segmented through a rectangular window. Each segment of data consists of in-phase
sequence and quadrature sequence. Figure 6 (1–8) show the IQ sequences converted from
eight types of modulated signals used as the input of CV-CNN for feature extraction.
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1 
 

 

Figure 6. IQ sequences converted from eight types of modulated signals.

3.3. Experimental Results and Evaluation

This paper’s data generation and processing are based on matlab2021b and python
3.9. The classification model training experimental environment is based on Tensorflow 3.0
on Intel (R) Gold 5188 CPU and NVIDIA Quadro P400 GPU.

3.3.1. Training Results of Three Classification Models

The classification accuracy training of GAF-Resnet50, CV-CNN and DMFF-CNN
are discussed.

(1) The AMC of the modulation signal based on GAF combines GAF-ResNet50 and
the softmax layer for feature extraction and classification recognition. The training
process mainly updates the weight parameters of the CNN. The classifier obtains the
modulation classification results and completes the backpropagation.

(2) The AMC based on IQ data combines the CV-CNN and softmax layer. The training
process mainly updates the CV-CNN weight parameters. The classifier obtains the
modulation recognition results and completes the backpropagation.

(3) The input of the DMFF-CNN is obtained by fusing the output feature vectors of
the above two classification models through DMFF. After passing through the full
connection layer, the fused features are input into the softmax classifier. Unlike GAF-
ResNet50 and the CV-CNN, the DMFF-CNN training process only trains the softmax
classifier. The learning rate of the above three classification network models is 0.0005,
the batch size is 64 and the epochs is 90.

The loss value and ACC indicators evaluate the performance of the three classification
models, and the results are shown in Figure 7. It can be concluded that when the ACC
value rises and the loss value decreases and tends to be stable, the DMFF-CNN proposed in
this paper is better than the other two classification models, which proves the performance
of the classification model can be improved based on the DMFF mechanism. The CV-CNN
performs the worst among the three classification models. The reason may be that the
dimension of IQ data is much lower than the GAF image.
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To further illustrate the advantages of the DMFF-CNN, the average recognition accu-
racy of the three models under different SNR situations is tested. The experimental results
are shown in Figure 8.
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Figure 8. The average recognition accuracy of three models under different SNR.

It can be seen from Figure 8 that with the improvement in SNR, the classification
accuracy of the three models is significantly improved. In the case of deteriorating SNR,
the classification accuracy of the DMFF-CNN is better than the other two networks and can
reach 92.1% with SNR at −10 dB. Among them, the recognition accuracy of GAF-Resnet50
is 87.6%, which is in the middle, while the recognition accuracy of the CV-CNN is poor,
only 85.3%.

Considering the learning rate parameters in the training process of the DMFF-CNN,
and in order to maximize the classification accuracy and optimize the training time, the
learning rate is adjusted and the impact on the accuracy of AMC is recorded. The results
are shown in Figure 9.
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Figure 9. Classification accuracy of DMFF-CNN under different learning rates and SNR.

The DMFF-CNN has the best classification accuracy at a learning rate of 0.0005, and
it drops at 0.005 and 0.00005. This is because the low learning accuracy requires a high
number of epochs for the classification model, which leads to the slow convergence speed of
the model and the inability to achieve the optimal solution in the limited number of epochs.
Conversely, a high learning rate will lead to the rapid convergence of the network model,
resulting in the optimal solution being ignored, especially in the case of low SNR situations.

3.3.2. Classification Accuracy of Three Models under Different SNR

In order to study the factors that limit the AMC accuracy of the three network models
under different SNR, the SNR interval is divided into high SNR interval (4~10 dB) and
low SNR interval (−4~10 dB). The classification accuracy of the three models is tested by
using validation samples. The recognition accuracy in the two SNR intervals is averaged to
obtain the confusion matrix, which is the average classification accuracy results of the three
classification network models. The results are shown in Figure 10.

The prediction results of the three classification network models for various types
of modulation signals can be seen intuitively in Figure 10. Each column of the confusion
matrix represents the real category, and each row represents the prediction category. The
results show that the DMFF-CNN classification model has high discrimination accuracy
for all types of signals and excellent robustness in a low SNR environment. The advantages
of DMFF-CNN are mainly reflected in two aspects: One is that GAF-ResNet50 and the
CV-CNN realize complementary advantages in dual-modal feature extraction; the other is
the role of the DMFF feature fusion mechanism.

Figure 11 plots the classification accuracy of each modulation type under the three
classification models to obtain the performance of a specific modulation type that varies
with SNR. The DMFF-CNN model proposed in this paper is better than the other two,
especially at low SNR. Considering the poor signal transmission conditions in the actual
communication environment, it is more meaningful to have high classification accuracy at
the state of low SNR. In the modulated signal datasets, QAM16 has the highest accuracy,
as shown in Figure 11f, from which it can be understood that QAM16 contains multiple
frequency components. It can also be found that GAF-ResNet50 performs better than the
CV-CNN in various types of signal classification, especially in 2FSK, OFDM, QAM16 and
SSB. The reason is that a GAF image contains higher dimensional information than IQ data,
which is reflected in the high-level feature extraction of neural networks. The above results
further reflect the advantages of GAF in the characterization of modulated signals.
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Figure 10. The average classification accuracy confusion matrix of GAF-ResNet50, CV-CNN
and DMFF-CNN models under high SNR interval (4~10 dB) and low SNR interval (−4~10 dB).
(a–c) correspond to the three models at high SNR interval; (d–f), respectively, correspond to the three
models at low SNR interval.
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4. Discussion

In this section, a series of comparative experiments are carried out with the eight types
of electromagnetic modulation signals shown in Table 3 to evaluate the performance of our
method. Firstly, the methods of using Single-Feature for AMC are analyzed and compared
with the dual-modal fusion method proposed in this paper, which proves the effectiveness
of the feature fusion mechanism (DMFF). Furthermore, comparing with AMC methods
using different feature combinations, the results are discussed with our method, which
demonstrates the advantages of feature fusion using GAF images and IQ sequences.

4.1. Advantages of Dual-Modal Feature Fusion Mechanism: DMFF

In the AMC methods based on DL, the Single-Feature representation is mostly used.
There are three representative categories: Feature representation [21], Sequence represen-
tation [29,42] and Image representation [23,25]. In the low SNR environment of −10 dB,
combined with the dual-modal feature (GAF images and IQ sequence) method, the average
classification accuracy of the dataset is shown in Table 4.

Table 4. Comparison of accuracy between DMFF and other Single-Feature methods in AMC. (Bold is
the best experimental result).

Feature GAF Image (a) IQ Sequences (b) Spectral
Features [21] IQ Sequence [42]

Network GAF-ResNet50 CV-CNN SAE-DNN CNN
SNR (dB) −10 −10 −10 −10
Average

Accuracy 87.6% (↑ 4.5%) 85.3% (↑ 6.8%) 32% (↑ 60.1%) 65% (↑ 27.1%)

Min Accuracy 86.2% (↑ 4.8%) 84.4% (↑ 6.6%) 31.3% (↑ 59.7%) 64.2% (↑ 26.8%)
Max Accuracy 88.9% (↑ 5.6%) 87% (↑ 7.5%) 33.1% (↑ 61.4%) 65.3% (↑ 29.2%)

Feature Constellation
Density Matrix [23]

Cyclic Correntropy
spectrum Graph [25] FFT Sequence [29]

GAF and IQ
Sequences
(Proposed)

Network ResNet50 Deep-ResNet MTL-CNN DMFF-CNN
SNR (dB) −10 −10 −10 −10
Average

Accuracy 86.8% (↑ 5.3%) 82.3% (↑ 9.8%) 59.4% (↑ 32.7%) 92.1%

Min Accuracy 84.9% (↑ 6.1%) 80.8% (↑ 10.2%) 57.6% (↑ 33.4%) 91%
Max Accuracy 87.6% (↑ 6.9%) 83.5% (↑ 11%) 62.1% (↑ 32.4%) 94.5%

Table 4 shows that the DMFF mechanism proposed in this paper has obvious ad-
vantages over the Single-Feature AMC methods. The shortcomings of the Feature rep-
resentation method [21] are obvious. Compared with other Single-Feature classification
methods, the reasons for the poor effect are as follows: Firstly, the method of extracting
features directly from the original signal leads to a large increase in computational com-
plexity and a sharp drop in performance in low SNR environments. Secondly, feature
selection depends on human experience, which leads to poor applicability in different
signal classification tasks. Finally, for multi-type electromagnetic modulation signals, the
incomplete characterization easily leads to the loss of key information in the original signal.
It is worth mentioning that the method in this paper has a 60.1% improvement compared
to Spectral Features.

The method’s performance based on Sequence representation b, [29,42] is at the middle
level. Although the Sequence representation method takes advantage of electromagnetic
signal samples that are sequentially received, the amount of calculation is small. However,
the CV-CNN proposed in this paper combines the characteristics of IQ data to extract
complex features of the signal, and the classification effect is better than [29,42]. Therefore,
the method of Sequence representation requires an actual and reasonable CNN network
according to the signal characteristics. If the network structure is poor, converging is not
easy. At the same time, the performance of this method declines in low SNR, so different
representation methods need to be selected according to the noise environment.
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Image representation-based methods a, [23,25] represent the received signal as im-
ages and combine the DL framework to achieve automatic feature extraction. Converting
sequential signal recognition to a 2D image has better performance than Feature represen-
tation and Sequence representation methods. Compared with a, [23,25], the feature fusion
method proposed in this paper is improved by 4.5%, 5.3% and 9.8%, respectively. However,
using the single-image method alone also has limitations as image layered information
requires a deeper and more complex CNN to achieve feature extraction tasks.

To avoid the above problems, a dual-modal feature fusion mechanism is designed
to avoid the defects of single-feature representation. GAF image and IQ data feature
extraction are achieved by GAF-ResNet50 and CV-CNN, respectively, by adding penalty
terms between dual-modal features to reduce the complexity of the network, and Jensen–
Shannon being used to map the classification problem to a probability problem. At the
same time, in DMFF-CNN training, a regularization term to avoid overfitting is added to
the loss function to improve the convergence rate of the classification model in the training
process. By fusing GAF image and IQ sequence features, the complementary advantages of
different modal features of the modulation signal are realized.

4.2. Experimental Results and Evaluation

Many research achievements have been made in representing the original modulated
signal through the combination of different signal features [30–36]. Table 5 lists some
state-of-the-art methods for AMC by fusing different modal features. The comparative
experiment is carried out within the SNR range of (−10 dB, 10 dB), and the experimental
modulation signals are affected by AWGN. Table 5 records the average classification
accuracy of various methods on the signals of the dataset.

Table 5. Comparison of the method’s accuracy proposed in this paper and other feature fusion
methods in AMC.( Bold is the best experimental result.)

Method
Fourth-Order

Cumulants and IQ
Sequences [34]

IQ Sequences and
Constellation
Diagram [35]

Cyclic Spectra Image and
Constellation Diagram [30]

JTF Image and
Instantaneous

Autocorrelation Image [32]

Network CNN and LSTM DrCNN CNN CNN

Accuracy LSTM: 39–83%
CNN: 67–86% 77.6–93% 58–90% 88.3–98.6%

Method SPWVD and BJD
Image [33]

IQ Sequences and
DOST Sequences [36] Multi-Cue Fusion [43] GAF and IQ Sequences

(Proposed)

Network ResNet-152 CNN CNN DMFF-CNN
Accuracy 89–98.5% 46.5–98.3% 91.5–97.9% 92.1–99%

The modulation classification algorithm based on DL in Table 5 represents the original
signal in various formats. It is clear that the original modulation signal is represented
by the combination of multiple features, images or sequences, which can integrate the
advantages of various features and obtain better classification performance. Figure 12a
shows the relationship between the average classification accuracy and SNR of different
methods in Table 5. Meanwhile, to explain the influence of varying feature fusion methods,
the eight methods included in Table 5 are divided into three categories: dual-sequence
features [34,36], dual-image features [30,32,33] and different modal features [35,43] and the
proposed. Figure 12b–d show the comparison of classification accuracy between the three
fusion categories and the methods presented in this paper.
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Figure 12. (a) The relationship between the average classification accuracy and SNR range of methods
in Table 5; (b) the comparison results of the classification accuracy using the dual-sequence features
fusion methods vs DMFF-CNN; (c) the comparison results of the classification accuracy using the
dual-image features fusion methods vs DMFF-CNN; (d) the comparison results of the classification
accuracy using the different modal features fusion methods vs DMFF-CNN.

By contrast, in the case of low SNR, the classification methods using different modal
features fusion has obvious advantages. We can clearly observe from Figure 12b–d where
the dual-sequence features fusion method performs worst, which also verifies the conclu-
sions obtained in Table 4. It also shows that the use of uncorrelated and different modal
combined features will improve the performance of AMC. The classification accuracy
of image-feature fusion methods [30,32,33] is better than that of sequence feature fusion
methods [34,36]. Combined with the analysis results in Table 5, it can be seen that the di-
mension of the sequence feature (1D) is much lower than the image feature (2D). The image
feature fusion method [33] combined with ResNet-152 has better classification performance
than [30,32] (increased by 31% and 0.7%, respectively) at low SNR. Therefore, it can be
considered that a deeper network structure will lead to better classification performance.

Furthermore, the factors that limit the average classification accuracy of modulated
signals under low SNR conditions are further explored. The methods in references [32,33]
all adopt image-feature combination and achieve good classification results, and the classifi-
cation accuracy reaches 88.3% and 89% under low SNR (-10 dB). Compared with the above
two methods, the dual-modal feature fusion method proposed in this paper improves by
3.8% and 3.1%, respectively. The reason for the analysis is that the classification method
of JTF image and instantaneous autocorrelation image combined with CNN is adopted
in [32], but JTF image is not sensitive to amplitude and phase modulation signals, and
instantaneous autocorrelation images easily confuse the frequency coded signals. However,
there are AM and FM signal types in the dataset mentioned in Table 3, so the classification
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accuracy is affected. In the method of [33], SPWVD and BJD images are used for modulation
signal characterization. Still, the disadvantage is that there is no corresponding classifica-
tion network designed for different types of images. Conversely, [33] used the same CNN
network structure for feature extraction, causing the same kind of and multiple feature
defects to accumulate and play a dominant role, affecting the classification performance.

To sum up, the feature combination needs to be reasonably selected according to the
fusion mechanism for AMC. At the same time, it is imperative to build a suitable network
model. The DMFF-CNN proposed in this paper combines the features of dual-modal with
significant differences and complementarity. Compared with other advanced methods, it
shows good robustness in different SNR environments and superior performance in AMC
classification accuracy.

5. Conclusions

The focus of this paper is to solve the problem of AMC methods ignoring the comple-
mentarity and feature fusion between different modal features in feature selection, and we
propose a new classification model based on the dual-modal feature fusion convolutional
neural network (DMFF-CNN). GAF image coding theory is introduced into the field of
AMC for the first time, by converting the received original modulation signal into GAF
image and IQ data, respectively. The network structure of GAF-ResNet50 and CV-CNN
is further optimized to realize the feature extraction of data with a dual-modal approach.
Most importantly, a dual-modal feature fusion mechanism (DMFF) is proposed, and the
DMFF-CNN is trained through the dual-modal fusion features. The experimental verifica-
tion is carried out through the datasets of eight kinds of modulation signals. Finally, the
experiment results show that the DMFF-CNN classification model proposed in this paper
achieves an accuracy of 92.1% in the SNR environment of −10 dB, which further indicates
that this method has good robustness for AMC in the harsh communication environment.
Based on theory and experiment, we draw the following conclusion.

• Dual-modal feature fusion CNN makes full use of the complementarity between
different modal features, gram angular field (GAF) images and IQ data combined
with DMFF-CNN demonstrate excellent AMC performance. Therefore, using the
different advantages of images and time series in signal representation, combined
with a suitable fusion mechanism, will greatly improve the performance of AMC.

• It will be of great value to research the impacts of representations on modulated
signals. Different representations retain different received signal characteristics, as
with two-dimensional images converted by GAF and one-dimensional IQ data. In
addition, since there are advantages of different networks in handling different types
of signals, an appropriate network structure should be designed to consider the signal
representation fully. In this way, the advantages of different networks can be fully
utilized and combined.

In further works, we will focus on the following two aspects. Firstly, to improve
the generalization and applicability of the proposed network model and electromagnetic
modulation signal classification method, we will try to fuse the features of higher-order and
more types of modulation signals, and carry out classification and recognition experiments.
In addition, this paper considers dual-modal feature fusion and combines neural networks
for AMC, which can lead us to further explore multi-modal and multi-network feature
fusion methods. Solving the AMC problem is the focus of our work by taking into account
the operation speed and classification effect.
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