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Background: Osteoarthritis (OA) is increasingly thought to be a multifactorial disease in which sustained 
gut inflammation serves as a continued source of inflammatory mediators driving degenerative processes at 
distant sites such as joints. The objective of this study was to use the equine model of naturally occurring 
obesity associated OA to compare the fecal microbiome in OA and health and correlate those findings to 
differential gene expression synovial fluid (SF) cells, circulating leukocytes and cytokine levels (plasma, SF) 
towards improved understanding of the interplay between microbiome and immune transcriptome in OA 
pathophysiology.
Methods: Feces, peripheral blood mononuclear cells (PBMCs), and SF cells were isolated from healthy 
skeletally mature horses (n=12; 6 males, 6 females) and those with OA (n=6, 2 females, 4 males). Horses 
were determined to have OA via lameness evaluation, response to intra-articular (IA) diagnostic analgesia, 
and radiographic and arthroscopic evidence. Horses were excluded who had received medications or joint 
injections within 2 months. Cytokine analyses of plasma and SF were performed via multiplex immunoassay. 
Fecal bacterial microbial 16s DNA sequencing was performed and correlated to bulk RNA sequencing of SF 
cells and PBMC performed using an Illumina based platform. 
Results: Horses with OA had higher body condition scores (P=0.009). Cytokines were elevated in plasma 
[interleukin (IL)-2, IL-6, IL-18, interferon gamma (IFN-γ), interferon gamma inducible protein 10 (CXCL10 
or IP-10), granulocyte colony-stimulating factor (G-CSF)] and SF (IL-1β, IL-6, IL-17A, IL-18, IP-10, 
G-CSF) in OA. Microbial principal coordinate analysis (PCoA) using Bray-Curtis dissimilarity for β-diversity 
demonstrated distinct grouping of samples from OA versus healthy horses (P=0.003). Faith alpha diversity 
was reduced in OA (P=0.02). Analysis of microbiome composition showed differential relative abundance of 
taxa on multiple levels in OA. Specific phyla (Firmicutes, Verrucomicrobia, Tenericutes, Fibrobacteres), correlated 
to transcriptomic differences related to cell structure, extracellular matrix, collagen, laminin, migration, and 
motility, or immune response to inflammation in OA. 
Conclusions: These findings provide compelling evidence for a link between obesity, gut microbiome 
dysbiosis and differential gene expression in distant joint sites associated with development of OA in a 
relevant large animal model, establishing a connection here that provides a platform from which development 
of therapeutic interventions targeting the gut microbiome can build.
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Introduction

Osteoarthritis (OA) is a painful condition and major source 
of disability, affecting 655 million people worldwide (1,2). 
As 66% of patients with OA are overweight, the need to 
understand possible connections between obesity and how 
it accelerates OA is paramount (3). Similarly, OA represents 
one of the most common conditions treated by equine 
practitioners with a high prevalence in aged populations, 
affecting up to 80% of horses over fifteen years of age (4). 

Obesity is further considered a risk factor for OA in horses as 
in multiple other species (5-7) which was attributed in the past 
to increased body weight exerting greater strain on weight-
bearing joints (8) and has more recently been recognized 
to be due to increased adiposity producing inflammatory 
cytokines contributing to cartilage degradation (9). Increased 
body condition in horses was further shown to be positively 
correlated to levels of pro-inflammatory biomarker 
prostaglandin E2 (PGE2) in plasma (10). The prevalence of 
obesity in riding horses has been estimated at 20% to 45% 
(11,12) representing a significant detriment to health as in 
humans and other companion animals due to development of 
insulin resistance (13). 

The systemic inflammation driving obesity-associated 
OA has been associated with gut microbiome dysbiosis, 
proposed to result in a downstream inflammatory signature 
culminating in macrophage migration to the synovium of 
the joint and accelerating knee OA in obese individuals (7).  
Chronic inflammation is commonly seen in obesity in 
humans, with an increase in pro-inflammatory cytokines 
such as tumor necrosis factor-α (TNF-α), monocyte 
chemoattractant protein 1 (MCP-1) and interleukin (IL)-1β 
driving this inflammatory phenotype (7). Ablation of CCL2 
and TNF-α in laboratory species results in protection 
from OA development without decreasing body weight, 
further supporting the concept that a decrease in systemic 
inflammation is protective in the OA of obesity (14,15). 
Concurrently, detection of bacterial DNA in intra-articular 
(IA) tissues and gut dysbiosis have been repeatedly linked to 
progressive OA (16,17). The low-grade sustained systemic 
inflammation noted in obese and aging populations with 
OA has been associated with endotoxin translocation 
from the GI tract to circulation, resulting in elevated 
lipopolysaccharide (LPS) levels which has been proposed 
as one possible mechanism to initiate synovial macrophage 
activation, although the direct link between dysbiosis of the 
gut microbiome and local joint disease progression in OA 
has not been fully elucidated (16,18-21). 

Studies demonstrating correlations between serum 
levels of bacterial metabolites and joint degeneration first 
indicated a link between gut microbiome dysbiosis with OA, 
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and that microbial communities could further be altered 
by diet, germ-free environments, and antibiotics towards 
the goal of maintaining or managing joint homeostasis 
and OA (22). Additionally, work in laboratory species has 
demonstrated the potential to manipulate the microbiome 
towards mitigating joint degeneration in OA (7). However, 
there is a paucity of available literature in large animal 
models on mechanisms of obesity-related lameness and 
furthermore the potential for therapeutic management 
of OA in the form of dietary supplementation with joint-
protective nutraceuticals that exert their action via shifts in 
native microbiome. The spontaneously occurring model 
of OA in horses is a particularly valuable model for human 
OA due to similarities in cartilage thickness, joint volume 
allowing large sample collection sizes, articular cartilage 
loading, and disease prevalence compared to other model 
species (23-26). Taken together, studies to date suggest 
that the correlation between the net inflammatory effects 
of increased adiposity (evidenced by increased body mass 
index or ‘body condition score’ in veterinary species) (27), 
microbiome dysregulation, and degenerative joint disease 
warrants further investigation.

Therefore, the objectives of this study were to compare 
fecal microbiome from horses with and without OA and to 
correlate that to the transcriptome of synovial fluid (SF) and 
peripheral blood mononuclear cells (PBMCs) and cytokine 
levels in joints and circulation from the same horses. These 
studies address the overall hypothesis that individuals 
with OA have a unique gut dysbiosis and inflammasome 
signature that can be identified by sequencing the gut 
microbiome and immunome. Key findings were that fecal 
microbial diversity was reduced in horses with OA and 
analysis of microbiome composition showed differential 
relative abundance of taxa on multiple levels. The presence 
of specific bacterial phyla (Firmicutes, Verrucomicrobia, 
Tenericutes, Fibrobacteres), correlated to transcriptomic 
differences related to cell structure, extracellular matrix, 
collagen, laminin, migration, and motility, or the immune 
response to inflammation in OA. This work builds upon 
a paradigm shift in the approach to understanding the 
pathogenesis of OA, from a historically joint-centric model 
to a new model that focuses on the critical role of microbial 
dysregulation and systemic inflammation as key driving 
factors in OA development and progression using the 
relevant naturally occurring large animal model of equine 
OA. We present this article in accordance with the ARRIVE 
reporting checklist (available at https://atm.amegroups.
com/article/view/10.21037/atm-24-109/rc).

Methods

Study overview and horse enrollment

Client-owned horses presenting to the Colorado State 
University Veterinary Teaching Hospital Surgery Service 
were convenience sampled and enrolled as OA cases. 
Control horses were university-owned research horses 
screened for OA as described below. The Institutional 
Animal Care and Use Committee and Clinical Review 
Board at Colorado State University approved these studies 
for SF, blood, and feces sample collection (CSU IACUC 
exemption and Clinical Review Board approval # 3375 
to obtain samples from client-owned horses with OA 
undergoing arthroscopy; CSU IACUC #1714 to obtain 
samples from healthy research horses as controls). Methods 
were conducted according to NIH Guidelines for the Care 
and Use of Laboratory Animals (8th edition) and national 
guidelines under which the institution operates. 

Horses that were identified to be free of lameness and 
lacking tarsal synovial effusion or radiographic evidence of 
tarsal OA (four-view) were enrolled as controls as previously 
described (28-31). Diagnosis of OA was determined by a 
combination of clinical lameness, musculoskeletal palpation, 
improvement of lameness following injection of intrasynovial 
local anesthetic solution, radiographic evidence of OA and/
or macroscopic arthroscopic visualization of cartilage lesions 
or synovial inflammation (32). Horses were excluded if 
they had received oral medications (e.g., nonsteroidal anti-
inflammatories, antibiotics, anthelmintics) or intrasynovial 
injections (e.g.,  local anesthetics, corticosteroids, 
orthobiologics) within the past two months. Horses had 
been fed a consistent diet of grass hay at the time of sample 
collection for a minimum of two months, which was 
performed non-fasted. Metadata collected from each horse 
included signalment, body condition score, joint(s) affected, 
and documentation of radiographic and arthroscopic 
evidence of OA. Body condition score for horses was graded 
on a 1 to 9 scale by two observers experienced in the scoring 
system (diplomates of the American College of Veterinary 
Surgeons or American Board of Veterinary Practitioners) 
and averaged to determine the final score as previously 
described (27). Study overview is summarized in Figure 1. As 
horses were enrolled based on inclusion/exclusion criteria 
for OA diagnosis and not assigned to receive treatment 
allocation, randomization of experimental units (i.e., horses) 
or blinding of investigators was not performed. Additionally, 
as treatments were not administered, confounders (e.g., 
order in which treatments were administered) were not 
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Figure 1 Schematic overview of study design. Horses (n=18) were screened for OA via musculoskeletal examination, lameness evaluation, 
radiographic evidence of osteoarthritis and improvement in lameness following intra-articular diagnostic analgesia of the affected joint. 
Horses that received medications including nonsteroidal anti-inflammatories, antibiotics, or anthelmintics or intrasynovial injections or 
local anesthetic blocking within the two weeks prior to presentation were excluded. Six horses with OA and twelve horses without OA 
were identified. Synovial fluid (3 to 10 mL) and peripheral blood (20 mL) was obtained from each horse. SF cells were isolated from SF 
via centrifugation and PBMCs were isolated via Ficoll density centrifugation. RNA was extracted from synovial cells and PBMC using the 
RNAeasy kit (Qiagen, Germantown, MD, USA) and sent to Novogene Corporation Inc. (Sacramento, CA, USA) for bulk RNA sequencing. 
RNA quality was determined by bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). mRNA was enriched using oligo (dT) beads, 
followed by cDNA library generation using TruSeq RNA Library Prep Kit (Illumina, San Diego, CA, USA). Sequencing was performed 
on Illumina Novaseq 6000 machine using 150 bp paired end reads. Fecal DNA was extracted using a commercially available kit (Qiagen 
PowerSoil Pro kit) according to manufacturer’s instructions. Microbial DNA was frozen at −80 ℃ and sent to ACME at University of 
Colorado Anschutz Medical Campus, Aurora, CO for microbial sequencing. Samples were run on Illumina Miseq sequencing instruments. 
Synovial fluid and plasma were aliquoted and stored at −80 ℃. Fluorescent bead-based multiplex assay (Milliplex MAP Equine Cytokine/
Chemokine Magnetic Beads Multiplex Assay, Millipore Sigma, Burlington, MA, 01803) was used to quantify the concentrations of 23 
analytes [Eotaxin/CCL11, FGF-2, Fractalkine/CS3CL1, G-CSF, GM-CSF, GRO, IFN, IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8/CXCL8, 
IL-10, IL-12 (p70), IL-13, IL-17a, IL-18, IP-10, MCP-1, RANTES/CCL5 and TNFα] in synovial fluid and plasma aliquots (Figure created 
using BioRender, courtesy of Zoe Williams). OA, osteoarthritis; SF, synovial fluid; PBMC, peripheral blood mononuclear cell; ACME, 
Anschutz Center for Microbiome Excellence; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte-macrophage colony-
stimulating factor; GRO, growth related protein; IFN, interferon; IL, interleukin; IP-10, interferon gamma inducible protein 10; MCP-1, 
monocyte chemoattractant protein-1; TNF-α, tumor necrosis factor-α.

Study overview

1. Musculoskeletal exam 

2. Lameness exam 

3. Radiographs 

4. Intra-articular diagnostic analgesia
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controlled.

Microbiome sample collection and processing

Fresh fecal samples were collected via rectal palpation from 
the mid-rectum from each horse and placed immediately 
on ice for not more than one hour for transport to the 
lab. Fecal samples were aliquoted using aseptic technique 
into cryovials, flash frozen in liquid nitrogen and stored 
at −80 ℃. Frozen fecal samples were thawed on ice and 
DNA extracted using a commercially available kit (Qiagen 
PowerSoil Pro kit) according to manufacturer’s instructions. 
The quantity and purity of DNA were assessed using a 
NanoDrop One spectrophotometer (ThermoScientific, 
Waltham, MA, USA), and samples stored at −80 ℃ until 
sequencing.

Transcriptomic sample collection and processing

SF samples were obtained in an aseptic environment (e.g., 
examination room for control horses or surgical suite for 
OA cases). In OA cases, joints were clipped, aseptically 
prepared with chlorhexidine and alcohol, and draped in 
routine fashion, then synoviocentesis was performed of 
the affected joint immediately prior to distending the 
joint with crystalloid fluids to perform arthroscopy. In 
control cases, horses were sedated with a combination of 
detomidine (0.01 mg/kg IV) and butorphanol (0.01 mg/kg 
IV) and the tibiotarsal joint was aseptically prepared with 
chlorhexidine and alcohol for synoviocentesis. To obtain SF 
samples, a 20-gauge 1.5-inch needle and a 12-mL syringe 
were used in all cases. SF samples were transported to the 
laboratory on ice for processing. To isolate synovial cells for 
sequencing, SF samples were digested with hyaluronidase 
(30 µg/mL) and incubated at 37 ℃ for 15 minutes, then 
centrifuged at 2,000 rpm at 8 ℃ for 10 minutes to obtain a 
cell pellet. Cells were lysed in 350 µL RLT buffer (Qiagen, 
Germantown, MD, USA) and frozen at −80 ℃ for RNA 
extraction. Remaining SF was aliquoted in 200 µL aliquots 
and frozen at −80 ℃ for cytokine analyses. 

Whole blood (20 mL) was obtained using a 20-gauge 
1.5-inch needle and 20 mL syringe from the jugular vein 
following septic preparation. PBMCs were isolated from 
whole blood by density gradient centrifugation (Ficoll-
Paque TM plus, GE Healthcare Bio-Sciences), washed in 
phosphate-buffered saline, and centrifuged at 2,000 rpm at 
8 ℃ for 10 minutes to obtain a cell pellet. Cells were lysed 
in 350 µL RLT buffer (Qiagen, Germantown, MD, USA) 

and frozen at −80 ℃ for RNA extraction.
RNA was extracted from frozen synovial and PBMC cell 

pellets using the RNAeasy kit (Qiagen Germantown, MD, 
USA) according to manufacturer’s instructions and sent 
to Novogene Corporation Inc. (Sacramento, CA, USA) 
for bulk RNA sequencing. RNA quality was determined 
by bioanalyzer (Agilent Technologies, Santa Clara, CA, 
USA). mRNA was enriched using oligo (dT) beads, followed 
by cDNA library generation using TruSeq RNA Library 
Prep Kit (Illumina, San Diego, CA, USA). Sequencing was 
performed on Illumina Novaseq 6000 machine using 150 bp 
paired end reads.

Cytokine analyses 

Fluorescent bead-based multiplex assay (Milliplex MAP 
Equine Cytokine/Chemokine Magnetic Beads Multiplex 
Assay, Millipore Sigma, Burlington, MA, 01803) was used 
to quantify the concentrations of 23 analytes [Eotaxin/
CCL11, fibroblast growth factor (FGF)-2, Fractalkine/
CS3CL1, granulocyte colony-stimulating factor (G-CSF), 
GM-CSF, growth related protein (GRO), interferon (IFN), 
IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8/CXCL8, IL-10,  
IL-12 (p70), IL-13, IL-17a, IL-18, IP-10, MCP-1, 
RANTES/CCL5 and TNFα] in SF and plasma aliquots. 

Statistical analysis

To analyze microbiome data,  microbial DNA was 
frozen at −80 ℃ and sent to ACME (Anschutz Center 
for Microbiome Excellence), at University of Colorado 
Anschutz Medical Campus, Aurora, CO for microbial 
sequencing. The library was prepared according to Earth 
Microbiome project protocol (https://earthmicrobiome.
org/protocols-and-standards/16s/), using 515F and 806R 
primers. Samples were run on Illumina Miseq sequencing 
instruments. Microbial sequence analyses were performed 
with QIIME2 (version QUIIM2-2022.8, classifier green 
genes gg-13-8-99-515-806-nb-classifer) (33). Microbial 
community similarity was displayed with principal 
coordinate analysis (PCoA) plots. Alpha diversity was 
determined using Shannon, Faith, and pielou indices. Beta 
diversity using weighted and unweighted UniFrac, as well as 
Bray Curtis. Alpha diversity indices were compared using a 
paired t-test, and beta diversity metrics were compared with 
PERMANOVA. Analysis of composition of microbiomes 
(ANCOM) was employed to determine the sequence 
variants that differed significantly between treatment 

https://earthmicrobiome.org/protocols-and-standards/16s/
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groups (34). In addition, Linear discriminant analysis 
Effect Size (LEfSE) was also used to calculate the taxa that 
best discriminated between OA or healthy group (https://
huttenhower.sph.harvard.edu/lefse/) (35). Microbial features 
were filtered for a minimum frequency of 150 were removed 
and features not present in >3 samples were also removed, 
resulting in a total of 972 total features. Median frequency for 
n=18 samples was 36,952.5 and total frequency was 681,082. 
Correlative analyses were performed to determine microbial 
clades associated with OA status, age, and body condition.

To analyze RNA sequencing data, demultiplexed Fasq 
reads generated by Novogene were analyzed using Partek® 
Flow® software, v10.0 (Partek Inc. Chesterfield, MO, 
USA). Reads were trimmed for Phred score of 20, adapters 
removed using cutadapt (36). Trimmed reads were aligned 
using STAR 2.7.3 using EquCab3.0 and annotated with 
Ensembl EquCab3.0.107. Feature counts were generated 
with HTseq (37). Differential analysis was computed using 
counts normalized to CPM, using DESeq (6). Pathway 
analysis was performed with Gene Set Enrichment Analysis 
(GSEA) v4.2.1 using Hallmark pathways (38). 

To analyze cytokine data, age, and body condition score 
between horses with and without OA, raw data was plotted 
and visually assessed for normality prior to statistical 
analyses. Unpaired nonparametric Kolmogorov-Smirnov 
t-tests were used to compare cumulative distributions. 
Statistical analyses, graphical analyses and graph generation 
were performed using Prism software v8.4.1 (GraphPad 
Software Inc., La Jolla, CA). For all analyses, statistical 
significance was assessed as P<0.10 due to small sample size.

To perform interactome correlation of transcriptome to 
microbiome data, significant differentially expressed genes 
(DEGs) were extrapolated from the RNA sequencing data, 
these genes were then filtered for an average normalized 
expression of >100 reads, correlation analysis input included 
638 genes in the SF RNAseq and 97 genes from the 
PBMC RNAseq. The median ratio normalized reads from 
individual samples were then correlated to the percent 
relative abundance of 45 unique bacterial genus found 
in n=12 samples (healthy and OA) using rcorr (39,40). P 
values for significance and r values for correlation were 
generated for each gene to genus pair. Protein coding 
genes with correlations P values ≤0.05 were then entered 
into string protein database (https://string-db.org) (41) 
for categorizing the protein sets. Significantly correlated 
genes from the PBMC DEGs did not yield any common 
categories, therefore we focused on the SF transcriptome to 
microbiome correlations. 

Results

Horses

Sixty-two horses were initially enrolled based on population-
based sampling that presented to the Colorado State 
University Veterinary Teaching Hospital. Horses (n=31) 
identified as having OA ranged in age from 2 to 22 (median 
15 years) and included 1 Paint, 3 Arabians, 3 Warmbloods, 
and 24 Quarter Horses, with 13 gelding, 2 stallions, and 15 
mares. Horses identified as controls were Quarter Horses 
ranging in age from 2 to 4 (median 3 years) and included 17 
geldings and 14 mares. Horses identified as having the most 
severe cases of OA that underwent arthroscopy and had 
SF available for transcriptomic correlations to microbial 
abundance were further evaluated and compared to available 
control horses. Further correlative analyses were performed 
to assess the effect of age and body condition on microbial 
abundance relative to OA status.

Six horses (5 Quarter Horses, 1 Arabian; age 7 to 15 years, 
median 12 years; 2 mares, 4 geldings) were identified with 
severe OA that underwent arthroscopic surgical evaluation. 
Twelve Quarter Horses (age 2 to 3 years, median 2.75 years;  
6 mares, 6 geldings) for which SF was available were 
identified as study controls to perform further transcriptomic 
analyses and correlations to microbiome data. All horses were 
skeletally mature based on survey radiographs of the sampled 
joint. In this limited group, age was significantly greater in 
horses with severe OA compared to healthy horses (P=0.001). 
Body condition score of horses with severe OA (median 6/9, 
range 5 to 8/25) was significantly higher (P=0.009) than that 
of healthy horses (median 4/9 range 3 to 5).

SF samples for comparative transcriptomic analysis to 
microbiomic outcomes were obtained from the tibiotarsal 
joint in all cases for healthy horses and from the radiocarpal in 
4/6 cases, tibiotarsal in 1/6 cases and femorotibial in 1/6 cases 
in OA horses. SF volume obtained did not differ between 
groups (control cases range 3 to 10 mL, mean 7.1 mL, SD 2.7; 
OA cases range 4 to 7 mL, mean 5.2 mL, SD 1.3). 

Transcriptomic and cytokine analyses

Comparison of transcriptomes of SF cells from OA 
versus healthy horses revealed marked changes, including 
upregulation of 810 genes and downregulation of 352 genes 
with fold change ≥2 or ≤−2 and significant FDR (false 
discovery rate) adjusted P value of ≤0.05 (Figure 2A,2B, table 
available at https://cdn.amegroups.cn/static/public/atm-24-
109-1.xlsx). Sufficient RNA for sequencing was available 

https://huttenhower.sph.harvard.edu/lefse/
https://huttenhower.sph.harvard.edu/lefse/
https://string-db.org
https://cdn.amegroups.cn/static/public/atm-24-109-1.xlsx
https://cdn.amegroups.cn/static/public/atm-24-109-1.xlsx
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Figure 2 RNA sequencing analysis comparing transcriptomes of synovial fluid cells from horses with and without OA. (A) PCA or 
normalized counts from synovial cells. Blue dots show n=11 biological replicates of healthy horses and red dots show n=5 biological 
replicates of OA horses with sufficient RNA for sequencing. (B) Volcano plot of synovial fluid from OA versus healthy horses. X-axis shows 
fold change and y-axis shows FDR adjusted P value, with significantly upregulated genes shown as red dots and significantly downregulated 
genes shows as blue dots. Significance defined as FDR ≤0.05 fold change ≥2 or ≤−2. Differential gene expression of synovial fluid cells from 
OA versus healthy horses. List of genes, description, unadjusted P value and fold-change of top 20 (C) upregulated and (D) downregulated 
genes in differential analysis results from OA versus healthy horses. PCA, principal component analysis; SF, synovial fluid; OA, osteoarthritis; 
FC, fold change; FDR, false discovery rate. 
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from n=5 OA horses and n=11 healthy horses. The most 
upregulated genes in synovial cells of OA horses included 
those related to translation initiation in protein synthesis 
(ENSECAG), cyclic adenosine 3'-5' monophosphate 
(cAMP) signaling (A-kinase anchor protein), inflammatory 
response and host defense at epithelial and mesenchymal 
surfaces (DEFB4B), serotonin receptor expression (HTR2A) 
and gene transcription (HOXD10, HOXD11, GBX2) 
(Figure 2C). Downregulated genes mapped to categories 
including structural stability (ENSECAG00000030788), 
neuronal migration (ASTN2, KIAA0319), intracellular 
signaling (TNK1), chemotaxis (CXCL13) (Figure 2D). 
Pathway analysis revealed that OA disease processes triggered 
significant upregulation of epithelial-mesenchymal transition 
pathways associated with loss of cell polarization and basement 
membrane interaction, oxidative phosphorylation, Myc targets 
involved in regulation of gene transcription involved in cell 
growth and proliferation, as well as adipogenesis, glycolysis 
and fatty acid metabolism (Figure 3A,3B).

In SF, cytokine concentrations were measurable for 17 
cytokines evaluated (FGF-2, eotaxin, G-CSF, IL-13, IL-5,  
IL-18, IL-1β, IL-6, IL-17A, IL-4, IL-12, IFN-γ, IP-10, 
GRO, MCP-1, IL-10, TNF-α). Significant differences were 
seen between horses with and without OA with elevated 
cytokine levels in horses with OA for 6 cytokines: IL-1β 
(P=0.02), IL-6 (P=0.005), G-CSF (P=0.02), IP-10 (P=0.08), 
IL-17A (P=0.09), and IL-18 (P=0.09) (Figure 3C).

Comparison of transcriptomes of PBMC isolated from 
OA versus healthy horses revealed moderate changes, 
including upregulation of 41 genes and downregulation of 
55 genes with fold change ≥2 or ≤−2 and significant FDR 
(false discovery rate) adjusted P value of ≤0.05 (Figure 4A,4B, 
table available at https://cdn.amegroups.cn/static/public/
atm-24-109-2.xlsx). Sufficient RNA for sequencing was 
available from n=6 OA horses and n=8 healthy horses. 
The most upregulated genes in PBMC of OA horses 
included those related to cell cycle progression and 
neuronal differentiation (DMRTA2), reverse transcriptase 
(ENSECAG00000037442) and acute phase response 
(ENSECAG00000021580) (Figure 4C). Downregulated 
genes mapped to categories including collagen dysregulation 
(COL28A1), epidermal and lymph development (SVEP1) 
and NAD synthesis implicated in neurodegenerative 
disorders (ACMSD) (Figure 4D). Pathway analysis revealed 
that OA disease processes triggered significant upregulation 
of inflammatory responses, eicosanoid and complement 
pathways associated with inflammation, immune response 

and cell proliferation, protein secretion, TNF-α, IL-2 and 
IL-6 Jak Stat3 signaling and downregulation of mTORC1 
signaling (Figure 5A,5B). Upregulation of IL-6 and IL-2 
pathways were reflected in elevated cytokine levels detected 
via multiplex immunoassay as well.

In plasma, cytokine concentrations were measurable for 
19 cytokines (FGF-2, eotaxin, G-CSF, IL-1α, fractalkine, 
IL-5, IL-18, IL-1β, IL-6, IL-17A, IL-2, IL-4, IL-12, IFN-γ, 
IL-8, IP-10, GRO, IL-10, TNF-α). Significant differences 
were seen between horses with and without OA with elevated 
cytokine levels in horses with OA for 6 cytokines: IFN-γ 
(P=0.004), IL-18 (P<0.001), IL-6 (P=0.02), IP-10 (P=0.02), 
IL-2 (P=0.09), and G-CSF (P=0.09) (Figure 5C).

Further comparison of gene expression pathways that 
were up- or downregulated in both SF cells and PBMCs was 
performed (Figure 6A-6C). Findings yielded 111 pathways 
that were upregulated in both SF cells and PBMC, and 34 
pathways that were downregulated in both cell lines. Several 
of the most upregulated pathways mapped to processes 
related to cell communication, cellular response to stimuli 
and movement of cells or subcellular components. Several 
of the most downregulated pathways mapped to metabolic, 
cellular, and immune system related processes, response to 
stimuli and biological regulation (Figure 6D-6G). 

Fecal microbiome comparison between OA and healthy 
horses

The predominant bacterial phyla present in equine feces 
of horses both with and without OA were Firmicutes and 
Bacteroidetes (Figure 7A-7C). PCoA using Bray-Curtis 
dissimilarity for beta diversity quantification of differences 
allowed visualization of overall bacterial taxonomic 
composition from fecal samples from horses with and 
without OA, demonstrating distinct grouping of OA samples 
(red) compared to healthy controls (blue) (Figure 7D). 
PERMANOVA testing identified significant differences 
in beta-diversity comparing horses with OA to controls 
(P=0.003). Faith alpha diversity was also significantly 
reduced (P=0.02) in horses with OA compared to healthy 
controls (Figure 7E). ANCOM Differential analysis of 
microbial populations between OA and Healthy control 
feces revealed a statistically significant higher abundance 
of class Epsilonproteobacteria, order Campylobacteria and also 
family Dehalobacteriaceae in the OA feces, whereas there 
was a statistically significant lower abundance of phylum 
Lentisphaerae and also genus Sarcina in the healthy feces 

https://cdn.amegroups.cn/static/public/atm-24-109-2.xlsx
https://cdn.amegroups.cn/static/public/atm-24-109-2.xlsx
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Figure 3 Pathway analysis of differential gene expression of synovial cells and synovial fluid cytokine expression profiles from horses with 
and without OA. Pathway analyses were determined using normalized counts from n=11 biological replicates of healthy horses and n=5 OA 
horses indicating the top 20 (A) upregulated and (B) downregulated pathways. With unadjusted P value and FDR adjusted P value (q-value) 
shown in table. (C) Cytokine levels in synovial fluid were determined via multiplex immunoassay. Y-axis shows MFI of each cytokine. In 
synovial fluid, cytokine concentrations were measurable for 17 cytokines (FGF-2, eotaxin, G-CSF, IL-13, IL-5, IL-18, IL-1β, IL-6, IL-
17A, IL-4, IL-12, IFN-γ, IP-10, GRO, MCP-1, IL-10, TNF-α). Significant differences were seen between horses with and without OA 
with elevated cytokine levels in horses with OA for 6 cytokines (IL-1β, IL-6, IP-10, G-CSF, IL-17A, IL-18). Bars are mean and standard 
deviation of biological replicates performed in duplicate. Due to small sample size, significance was assessed at P<0.1. SF, synovial fluid; OA, 
osteoarthritis; HC, healthy control; FDR, false discovery rate; MFI, mean fluorescence intensity; KEGG, Kyoto Encyclopedia of Genes 
and Genomes; FGF, fibroblast growth factor; G-CSF, granulocyte colony-stimulating factor; IL, interleukin; IFN-γ, interferon gamma;  
IP-10, interferon gamma inducible protein 10; GRO, growth related protein; MCP-1, monocyte chemoattractant protein-1; TNF-α, tumor 
necrosis factor-α.

(Figure 8A-8E). 
LEfSe also identified an additional 11 genera that 

are significantly higher in abundance in the OA samples 
(Akkermansia, Campylobacter, p75a5, Phascolarctobacterium, 
Oscillospira, Pseudobutyrivibrio, Dorea, Butyrivibrio, Blautia, 
Ruminococcus, Mogibacterium) and 6 additional genera that 
are significantly higher in abundance in the healthy feces 
(Anaeroplasma, RFNN20, Epulopiscium, Sarcina, Clostridium, 
Fibrobacter, BF311) (Figure 8F). Due to the higher median 
BCS and age of the OA horses compared to the 12 healthy 
controls, a larger cohort of OA horses (n=29) with 16S data 

available was used to perform correlations between genus 
level relative abundance, BCS and age. Of the above genera, 
3 of the OA enriched (Blautia, Phascolarctobacterium, Dorea) 
and 4 of the heathy enriched genera (Clostridium, Sarcina, 
Fibrobacter, Anaeroplasma) were not correlated with age 
or body condition, indicating the differential abundance 
appeared solely attributed to OA status (Table 1). When 
this larger OA population (n=29) was examined for relative 
abundance of microbial taxa by age (< or ≥15 years) or body 
condition (< or ≥5 on 9-point scale), there was no difference 
in relative abundance of microbial taxa by ANCOM or 
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Figure 4 RNA sequencing analysis comparing transcriptomes of PBMCs from horses with and without OA. (A) PCA or normalized counts 
from synovial cells. Blue dots show n=9 biological replicates of healthy horses and red dots show n=6 biological replicates of OA horses 
with sufficient RNA for sequencing. (B) Volcano plot of PBMC from OA versus healthy horses. X-axis shows fold change and y-axis shows 
FDR adjusted P value, with significantly upregulated genes shown as red dots and significantly downregulated genes shows as blue dots. 
Significance defined as FDR ≤0.05 fold change ≥2 or ≤−2. Differential gene expression of peripheral blood mononuclear cells from OA 
versus healthy horses. List of genes, description, unadjusted P value and fold-change of top 20 (C) upregulated and (D) downregulated genes 
in differential analysis results from OA versus healthy horses. PCA, principal component analysis; PBMC, peripheral blood mononuclear 
cell; OA, osteoarthritis; FDR, false discovery rate; FC, fold change.
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Figure 5 Pathway analysis of differential gene expression of peripheral blood mononuclear cells and cytokine expression profiles in plasma from 
horses with and without OA. Pathway analyses were performed using normalized counts from n=9 biological replicates of HC horses and n=6 
OA horses indicating the top 20 (A) upregulated and (B) downregulated pathways. With unadjusted P value and FDR adjusted P value (q-value) 
shown in table. (C) Cytokine levels in plasma were determined via multiplex immunoassay. Y-axis shows MFI of each cytokine. Cytokine 
concentrations were measurable for 19 cytokines (FGF-2, eotaxin, G-CSF, IL-1α, fractalkine, IL-5, IL-18, IL-1β, IL-6, IL-17A, IL-2, IL-4,  
IL-12, IFN-γ, IL-8, IP-10, GRO, IL-10, TNF-α). Significant differences were seen between horses with and without OA with elevated 
cytokine levels in horses with OA for 6 cytokines: IFN-γ, IL-18, IL-6, IP-10, IL-2, and G-CSF. Bars are mean and standard deviation of 
biological replicates performed in duplicate. Due to small sample size, significance was assessed at P<0.1. PBMC, peripheral blood mononuclear 
cell; HC, healthy control; FDR, false discovery rate; KEGG, Kyoto Encyclopedia of Genes and Genomes; MFI, mean fluorescence intensity; 
FGF, fibroblast growth factor; G-CSF, granulocyte colony-stimulating factor; OA, osteoarthritis; IL, interleukin; IFN-γ, interferon gamma;  
IP-10, interferon gamma induced protein 10; GRO, growth related protein; TNF-α, tumor necrosis factor-α.
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Figure 6 Comparison of gene expression pathways up- and downregulated in both synovial fluid cells and peripheral blood mononuclear 
cells of horses with OA. (A) Venn diagram of differentially expressed genes for each comparison group. (B) Top 20 shared genes upregulated 
in both SF and PBMC of horses with OA with fold changes listed. (C) Top 20 shared most downregulated genes in SF and PBMC with 
fold changes listed. (D) GO pathways represented in the 111 shared upregulated genes. Bar graphs show top 20 with observed gene count 
from list in blue, red bar for total genes in GO category, green bar for strength (enrichment) and purple for FDR P value (dotted line at 
0.05). (E) Significant Reactome, KEGG and protein sets found in 111 upregulated gene list. (F) Significant GO pathways for 34 shared 
upregulated genes. (G) Significant Reactome pathways found for 34 shared downregulated genes. OA, osteoarthritis; PBMC, peripheral 
blood mononuclear cell; SF, synovial fluid; FC, fold change; FDR, false discovery rate; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of 
Genes and Genomes.
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Figure 7 Fecal microbiome sequencing results. Relative abundance averaged of n=6 OA and n=12 healthy horse fecal microbial taxa. 
(A) Stacked bar graph of average relative abundance on phylum level with high to low shown in color scale on right. OA in left column, 
heathy in right column. (B) Average relative abundance on the class level. (C) Average relative abundance on the order level. (D) Bray-
Curtis beta diversity plot, OA samples in red, heathy in blue. P value 0.001 by PERMANOVA. (E) Faith alpha diversity phylogenic distance 
measurement, P=0.04 by Kruskal-Wallis pairwise t-test (*, P<0.05). OA, osteoarthritis; PD, phylogenetic diversity.

alpha diversity by age or body condition. Beta diversity was 
demonstrated to differ by age within the OA group (P=0.007) 
but not body condition (P=0.20). In summary, these findings 

reveal that specific microbial genera are enriched in relation 
to OA diagnosis unrelated to differences in age or body 
condition between groups analyzed.
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Figure 8 Differential abundance of microbial taxa in OA compared to healthy. (A) ANCOM differential analysis test of A0 phylum 
level taxa, blue indicated significantly lower abundance of Lentisphaerae in OA samples. (B) Significantly higher abundance (red) of class 
Epsilonproteobacteria. (C) Significantly higher abundance (red) of order Campylobacteria in OA samples. (D) Significantly higher abundance 
(red) of family Dehalobacteriaceae in OA. (E) Significantly lower abundance of genus Sarcina in OA samples. In (A-E), the W statistic 
represents the number of pairwise comparisons where there is a significant difference between comparisons. (F) LEfSe differential analysis 
results, y axis shows LDA effect size of genus level taxon, red bars show higher abundance in OA, blue bars higher abundance in healthy. 
OA, osteoarthritis; ANCOM, Analysis of Composition of Microbiomes; LEfSe, Linear discriminant analysis Effect Size; LDA, Linear 
discriminant analysis.
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Interactome between microbial taxonomic dysregulation and 
differential gene expression in SF cells and PBMC in OA 

To correlate the host transcriptomic responses to 
microbiome 639 DEGs (FC (fold change) ≥2log2 or ≤2log2, 
FDR P value ≤0.05) were extrapolated and paired with 
microbial abundance at the genus level from the same 
samples. Significant gene correlations were filtered for a P 
value ≤0.05, and the genus that were statistically different 
between OA and Healthy were selected for further analysis. 

In Figure 9A for example, the genus Akkermansia (phylum 
Verrucomicrobia) shows a significant correlation with 149 
genes, and the genus Clostridium (lower abundance in 
OA) has a significant correlation with 16 genes. The r 
values for significantly correlated genes are shown in 
Figure 9B,9C for the genus that have higher abundance in 
OA and health, respectively, ranging from −0.6 to +0.6. 
To more clearly illustrate these correlation findings, the 
significantly correlated genes were categorized by pathway, 
protein type, biological and molecular processes using the 

Table 1 Correlation analyses of microbial clades associated with osteoarthritis

Genes
Age BCS

Correlation significance Correlation r value Correlation significance Correlation r value

Osteoarthritis enriched

p__Firmicutes.g__Blautia ns 0.454 ns 0.3294

p__Firmicutes.g__Butyrivibrio ** 0.6265 ns 0.3526

p__Firmicutes.g__Epulopiscium *** −0.7566 * −0.5778

p__Firmicutes.g__Mogibacterium *** 0.7265 ns 0.4111

p__Firmicutes.g__Oscillospira *** 0.7299 ** 0.6127

p__Firmicutes.g__p.75.a5 * 0.5389 * 0.5457

p__Firmicutes.g__Phascolarctobacterium ns 0.4273 ns 0.3119

p__Firmicutes.g__Pseudobutyrivibrio * 0.5415 * 0.5107

p__Firmicutes.g__Ruminococcus. ** 0.6579 ns 0.2006

p__Proteobacteria.g__Campylobacter * 0.5737 ns 0.2795

p__Verrucomicrobia.g__Akkermansia * 0.5682 ns 0.4587

p__Firmicutes.g__Dorea ns 0.3298 ns 0.1017

Healthy control enriched        

p__Fibrobacteres.g__Fibrobacter ns −0.4195 ns −0.456

p__Firmicutes.g__Clostridium ns −0.3828 ns −0.3028

p__Firmicutes.g__RFN20 ** −0.5917 * −0.5544

p__Firmicutes.g__Sarcina ns −0.4429 ns −0.2119

p__Tenericutes.g__Anaeroplasma ns −0.4624 ns −0.4257

p__Firmicutes.g__Epulopiscium *** −0.7566 * −0.5778

p__Bacteroidetes.g__BF311 ns −0.3644 ns −0.1941

Correlation analyses were performed using a larger cohort of n=29 OA horses on the differentially expressed genus shown in  
Figure 8 using relative abundance correlated to BCS or age. All genera identified as correlated to OA status (Figure 8) are presented 
below; highlighting those that were not also correlated to age or body condition (i.e., highlighted genera were solely associated with OA 
status in this analysis) with non-significant (ns) P value or *P<0.05, **P<0.01, ***P<0.001. Pearson r values shown in table for BCS and age. 
Correlation analysis was performed with Graphpad Prism v10. Highlighted genera are not significantly correlated with BCS or age. OA, 
osteoarthritis; BCS, body condition score. 
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Figure 9 Immunome of OA: correlation between synovial fluid transcriptome and fecal microbiome. (A) Number of significantly correlated 
genes with each genus that was found to have a significantly different abundance between OA and healthy groups. Bars colored by phylum. 
Firmicutes (red), Proteobacteria (blue), Verrucomicrobia (gray), Tenericutes (purple) and Fibrobacteres (yellow). (B) For each genus significantly 
higher abundance in OA (11 total), the r value for correlation in shown in color scale, total of 543 genes represented on heatmap. Negative 
correlations in dark purple. Genes with P value <0.05 (non-significant) left blank (white). (C) For each genus with significantly higher 
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purple for negative correlation (r=−0.55), bright yellow for highest positive correlation (r=0.95). (D) Each set of genes with correlation to 
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percentage shown in bar graph). (E) For each genus significantly more abundant in OA, correlated genes were mapped to STRING 
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fluid; LDA, Linear discriminant analysis; OA, osteoarthritis; ECM, extracellular matrix; MMP, matrix metalloproteinase; EGF, epidermal 
growth factor.
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STRING database. Interestingly, 3 of the genera (Sarcina, 
Fibrobacter, Anaeroplasma) that have lower abundance in OA 
are associated exclusively with pathways related to “immune 
response” (Figure 9D), whereas the genus with a higher 
abundance in OA are correlated to diverse categories such 
as ECM (extracellular matrix), endothelium and signaling 
(Figure 9E). 

Discussion

This work compared the structure and diversity of gut 
microbiome communities of horses with and without 
OA and correlated bacterial community assemblages to 
differential gene expression of SF cells obtained from 
joints of horses within each group. Key findings of this 
study were that the fecal microbiome differed at multiple 
taxonomic levels in horses with naturally occurring OA 
disease processes compared to those without OA. Notably, 
horses identified as having OA in this case population were 
significantly older and had higher body condition scores 
than healthy horses, indicating further studies exploring 
the interaction of age and obesity in the gut-joint-axis are 
warranted. Furthermore, the presence of specific microbiota 
taxa in feces correlated to differential gene expression 
within SF cells in OA versus healthy horses, including 
those related to cell structure and innate immunity. These 
findings present opportunities for future avenues of 
treatments directed towards microbial dysregulation and 
systemic inflammation versus the joint-centric approaches 
that have been historically employed in the treatment of 
OA, with translational relevance across species.

Preceding studies in the equine model have supported 
the importance of microbiota to maintenance of health 
and explored the association of microbiome dysregulation 
in disease processes other than OA (42). Differences 
in the microbiome of horses have been demonstrated 
in specific disease states such as colic, laminitis, gastric 
ulceration, equine recurrent uveitis, trigeminal mediated 
headshaking, equine grass sickness (38,43-47) and as the 
result of individual, treatment and management factors 
including signalment, sex, diet, body condition, geographic 
location, season, and administration of antibiotics and 
gastroprotectants (37,48-55). Microbial community 
structures have further been shown to vary between 
sampling locations within the hindgut of horses (54). 
Interestingly, network analyses of correlations between body 
condition, blood analytes and microbial composition at 
the genus level within feces revealed that specific bacterial 

species and assemblages may be signatures of obesity versus 
leanness in horses, representing a first step towards targeted 
strategies for microbial intervention (55). Roth et al. built 
on this to further compare the inflammatory response of 
macrophages exposed to fecal extracts from obese (BCS 
≥7/9) versus lean BCS (4–5/9) horses and demonstrated 
that fecal extracts from obese individuals presented higher 
concentrations of lipopolysaccharide (LPS) and induced 
increased expression of pro-inflammatory cytokines 
interleukin-1B (IL-1β), tumor necrosis factor-a (TNF-α), 
and interleukin-6 (IL-6) from macrophages (56). These 
findings suggest important differences in enteric microbial 
composition of lean versus obese horses and demonstrate 
a role for the microbiome in mediating the inflammatory 
response, which may be highly relevant to propagation of 
multiple disease states, including OA. 

Building support for the concept that systemic 
inflammation drives inflammation at distant sites (i.e., 
joints), prior work in horses has further shown that 
inflammation seen in OA is systemic and not strictly 
isolated to the affected joint. In experimentally induced 
carpal OA, differential regulation of specific genes 
(ADAMDEC1, GRP94, HCST, hUNC-93A, RRM2) in 
peripheral leukocytes of horses following OA induction 
was shown (57). In addition, remote site as well as local 
treatment effects following intra-synovial corticosteroid 
injection with triamcinolone with respect to articular 
cartilage glycosaminoglycan content were seen, further 
suggesting that downstream OA effects and treatments 
applied are not limited to the joint involved; however, the 
impact on the microbiome of native tissues has not been 
explored until now (58). These authors previously discussed 
that the link between expression of specific genes and OA 
was more intuitive for some compared to others, which 
was attributed to an incomplete knowledge of the systemic 
effects of OA and the intercellular signaling cascade that 
promotes disease progression (57). Furthermore, this 
study concluded that future work should be conducted to 
examine the gene expression profile in horses with naturally 
developing OA which will likely yield a greater degree of 
variability due to duration and severity of disease compared 
to the experimental model used in that study (57). 

Therefore, the work described here built upon the 
previous body to literature to correlate microbiome 
dysregulation in OA to transcriptomic analyses of SF 
cells from joints of the same horses, which were identified 
to have naturally occurring progressive OA based on 
stringent inclusion criteria including arthroscopic evidence 
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of cartilage damage. Transcriptomic analyses revealed 
marked differential gene expression in SF cells (810 genes 
upregulated, 352 genes downregulated in OA) while 
pathway analysis revealed upregulation of inflammatory 
responses, eicosanoid and complement pathways in OA. 
Specific bacterial phyla (Firmicutes, Verrucomicrobia, and 
proteobacteria), correlated to these transcriptomic differences, 
generally related to either cell structure, extracellular 
matrix, collagen, laminin, migration, and motility, or to the 
immune response to inflammation, with the Firmicutes phyla 
being overrepresented as most frequently associated to up- 
and down-regulated transcriptomic pathways in OA. The 
correlation of microbial dysregulation to transcriptomic 
findings was particularly interesting in the context of the 
human and rodent literature available related to OA (7,22). 
While there is limited information to support whether an 
overabundance of a particular bacterial strain can trigger 
disease processes in OA or predict an increased risk for 
disease development, several trends have been noted in 
taxa reported as associated with OA status (16). Specifically, 
increased Clostridium genus (59-63), Streptococcus genus 
(64-68), and Firmicutes phylum, particularly abnormally 
elevated Firmicutes/Bacteroidetes (F/B) ratios (63,69-73), 
have been repeatedly linked to OA, indicating similarities 
in microbial dysregulation in OA across species, which 
warrants further investigation. Interestingly, a recent 
paper (55) examining microbiome differences in lean 
versus obese horses identified similar trends, with a higher 
relative abundance of Firmicutes and lower numbers of 
Bacteroidetes and Actinobacteria in obese horses, suggesting 
some of the alterations seen in microbiome of the OA case 
population reported here may be the result of increased 
body mass rather than OA status alone, and indicating that 
further evaluation of the interplay between body condition, 
microbiome dysregulation and OA progression is indicated 
in horses. Therefore, an important future direction of 
this work will be to further investigate transcriptomic 
and metabolic signatures of dominant bacterial species 
potentially impacting the host immune system function and 
overall physiology of the horse.

Analyses of differential gene and pathway expression in 
OA cases identified several unique potential therapeutic 
targets that, when dysregulated, have been implicated in 
other disease processes but not, to the authors’ knowledge, 
in OA. One of the most upregulated genes in SF cells of 
OA horses, eukaryotic translation initiation factor 4E, 
plays a vital role in translation initiation, the rate limiting 
step in protein synthesis, and has been implicated in 

aberrant function of the nervous system (74). A-kinase 
anchoring proteins (AKAPs) are essential enzymes in 
the cAMP signaling cascade and their dysregulation has 
been associated with pathophysiological conditions in the 
cardiovascular system including atherosclerosis and heart 
failure (75). 

In addition, induction of expression and regulation of 
human beta-defensins, which were upregulated in OA 
horses in this study, have been implicated in osteoarthritic 
cartilage which suggests a role in the pathogenesis of 
OA conserved across species (76) and warrants further 
investigation in horses. Multiple homeobox genes with 
roles in transcription were upregulated in OA processes, 
specif ical ly HOXD10, which has previously been 
implicated in human fibroblast-like synoviocyte migration 
in rheumatoid arthritis (77) were upregulated in synovial 
cells in OA horses, indicating a potential functional role 
in disease progression. Overall pathways implicated in OA 
here including AMP-activated protein kinase (AMOK) 
and mechanistic target of rapamycin (mTOR) have further 
been previously associated with metabolism in chondrocyte 
dysfunction and OA progression (78). Several themes 
arose when evaluating differences overall, including 
dysfunction of intercellular signaling, innate immune cell 
chemotaxis, and neurodegenerative processes which may 
represent future therapeutic pathways. When evaluating 
pathways upregulated both systemically (in PBMC) and 
locally (in synovial cells) of horses with OA, pathways 
related to cell communication, response to stimuli and 
movement of cellular or subcellular components, vesicle 
mediated transport, and actin-filament and microtubule-
based processes were some of the most upregulated. When 
evaluated overall pathways downregulated in both cell 
types, metabolic, cellular, and immune system processes as 
well as response to stimuli and biological regulation were 
significantly suppressed in horses with OA. 

Finally, the significant upregulation of serotonin receptor 
5-HTR2A in synovial cells of OA horses warrants further 
discussion in the context of future therapeutic targets 
in OA. Humans with clinical depression and suicidal 
ideation have been reported to have higher concentrations 
of serotonin receptors than healthy patients, suggesting 
that post-synaptic receptor density is involved in the 
pathogenesis of depression (79). Furthermore, physician-
diagnosed depression has been reported in up to 60% of 
human patients with OA, a much higher rate than that of 
the population overall, presumably due to loss of function 
and associated comorbidities (80). When the presented here 
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data were interrogated further specifically for serotonin-
related pathways and differential gene expression, serotonin 
receptor 467 and NR3C signaling pathway was significantly 
upregulated (P<0.05) with two additional significantly 
upregulated DEGs related to serotonin receptor function: 
GNAS complex locus and serotonin receptor HTR7 
5-hydroxytryptamine receptor 7. A previous in vitro study 
using equine chondrocytes from osteoarthritic equine joints 
implicated neurotransmitter 5-HT and opioid receptors in 
OA as chondrocytes in different inflammatory stages reacted 
differently to 5-HT with respect to intracellular Ca2+ release 
and expression of peripheral pain mediators (81). As our 
findings represent the first instance of objective detection 
of upregulation of serotonin receptors in horses with OA 
to the authors’ knowledge, which has been associated 
with depression in humans, these findings suggest 
that further investigation of serotonin antagonism as a 
multimodal approach to OA in horses may be indicated. 
Serotonin receptor antagonists and reuptake inhibitors 
such as trazadone are available in equine practice and 
have been recently described in the context to treat other 
musculoskeletal disorders in horses such as laminitis (82), 
although further investigation of more selective serotonin 
reuptake inhibitors (SSRIs) to treat OA represents a 
potential future direction of this work. Forthcoming studies 
integrating multi-omic analyses may shed further light on 
the pathogenesis of pain in OA and lack of congruency 
between radiographic findings of OA and clinical lameness 
or pain detected on examination in individual cases, which 
represents a future direction of this work.

Of note, multiple cytokines that were differentially 
expressed in the SF and plasma of OA and healthy horses 
have been previously implicated to play a role or have 
prognostic value in assessing the severity of OA. Six 
cytokines were found to be upregulated in SF of OA 
horses including IL-1β, IL-6, G-CSF, IP-10, IL-17A, and  
IL-18. IL-1β is well-recognized as one of the primary pro-
inflammatory cytokines involved in OA pathogenesis, 
inducing cartilage degradation, reducing cartilage 
extracellular matrix, and inhibiting collagen synthesis 
(83-85). The roles of these cytokines in OA progression 
have been comprehensively reviewed elsewhere (83) with 
specific examples mentioned here. For example, both 
IL-6 and IP-10 have been associated with increased pain 
in human hip OA and were detected at greater levels in 
SF (IL-6 and IP-10) and synovium (IP-10) in human 
OA patients (86). Granulocyte colony-stimulating factor 
(G-CSF) regulates granulocyte lineage development 

and plays a role in inflammation, and G-CSF receptor 
blockade has been shown to ameliorate arthritis pain 
and disease progression (87). A role for IL-17A in OA 
pathophysiology has been described as IL-17 is found at 
higher levels in OA joints in people and noted to induce gene 
expression associated with experimental OA, human knee 
OA and other musculoskeletal disease gene-sets (88). Finally,  
IL-18, an IFN-γ inducing factor, has been described to be 
elevated in human knee OA patients and to correlate strongly 
with matrix metalloproteinase (MMP)-3 in people (89).  
In addition to some of the above cytokines, IL-2 and IFN-γ 
were additionally elevated in plasma of OA horses in this 
study cohort. Interleukin-2 is an essential cytokine for 
T-regulatory cell function and can further inhibit Th17 
cell proliferation (90). IL-2 directed therapies have been 
investigated in the treatment of rheumatoid arthritis and 
may warrant further evaluation in the context of OA. 
Interestingly, IL-6 and IL-2 were upregulated in PBMC of 
OA horses, which correlated well to elevated cytokine levels 
detected via multiplex immunoassay.

The findings of this work build further support to 
investigate strategies to manipulate the gut microbiome 
have to mitigate joint degeneration. Interestingly, greater 
concordance in the literature actually exists to support 
administration of specific bacteria strains to alleviate OA 
symptoms (e.g., Streptococcus thermophilus, Bifidobacterium 
longum, Lactobacillus casei) rather than to distinguish OA 
from healthy controls (16). Obesity has been associated with 
loss of beneficial Bifidobacteria while other pro-inflammatory 
species gain in abundance (7). These findings highlight the 
complexity of the role of microbiota, even within a specific 
genus (e.g., Streptococcus), to perpetuate joint disease. 
Administration of prebiotic fibers such as oligofructose 
has been shown to restore a lean gut microbial profile, 
suggesting this may be a novel approach to management 
of obesity-associated OA (7). Furthermore, a decrease in 
butyrate-producing bacteria is known to be associated with 
obesity and metabolic disorders, and more recently with 
multiple orthopedic conditions, which has been postulated 
to be due to limited physical activity in those situations 
and further supports metabolite supplementation as a 
potential therapeutic avenue (91). Antibiotic use has been 
historically cited to adversely affect microbial diversity, 
potentially leading to dysbiosis and translocation of bacteria 
themselves, or their metabolites and toxins as a result of 
increased gut permeability (92). However, multiple studies 
support a therapeutic benefit for specific antibiotics (e.g., 
tetracyclines, macrolides, chloramphenicol, rapamycin, 
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penicillins, aminoglycosides) to mitigate OA disease 
progression (71,93-97). These findings are concordant with 
a body of literature utilizing preclinical models of other 
musculoskeletal conditions (e.g., osteoporosis, maintenance 
of muscle mass, and orthopedic surgical procedures), where 
microbiome regulation has been associated with positive 
outcomes (98). 

Fur thermore ,  ev idence  sugges t s  tha t  d i e t a ry 
supplementation with joint-protective neutraceuticals such 
as glucosamine, chondroitin, and type 2 collagen (UT2C) 
reduce symptoms associated with OA, which could be 
related to a gut microbial role in disease progression 
(7,22). For example, mice fed UT2C, or glucosamine 
demonstrated improvement in markers of joint health 
evidenced by increased uncalcified cartilage and Safranin 
O+ chondrocytes compared to vehicle controls, which was 
mirrored by global changes in the microbiome including 
phyla alterations with an increased Bacteroidetes/Firmicutes 
ratio in treated mice (22). Efficacy of neutraceuticals has 
been historically difficult to define using available biological 
measures, but these recent studies suggest they exert a 
beneficial action on joint health through modulation 
of the gut microbiome, although causal proof requires 
additional study. Finally, reducing adiposity with the goal of 
minimizing systemic inflammation in OA warrants further 
investigation related to alteration of the gut microbiome. 
The impact of weight loss on lameness associated with hip 
OA has been previously evaluated in Labrador Retriever 
dogs (8). A weight-loss protocol that involved feeding a high 
protein low-fat diet for 90 days resulted in reduced body 
condition and lameness scores as well as improvement in 
other markers of systemic inflammation including decreased 
mean relative neutrophil counts, serum cholesterol, calcium, 
and C-reactive protein (8). Although alteration of the gut 
microbiome was not evaluated in this study as the source of 
inflammation, these findings further support the benefits of 
weight loss as part of a multimodal treatment plan for OA. 
In summary, future studies will investigate modulation of 
microbiome niches with therapeutic interventions to correct 
microbial shifts that induce inflammation and subsequent 
degeneration in diarthrodial joints.

Several limitations to study design warrant further 
discussion. A primary goal of this work was to use next-
generation sequencing approaches to interrogate the 
microbiome and transcriptome to demonstrate functional 
differences in feces, SF and PBMC in healthy horses 
compared to those with naturally occurring OA disease 
processes. These analyses provide a more comprehensive 

understanding of pathways affected during natural 
degenerative joint disease progression which may be 
relevant towards identification of specific genes in 
modulation of OA progression. These initial findings 
represent a platform from which future studies will 
build, towards elucidating molecular mechanisms of 
pathophysiology and identifying novel therapeutic targets 
in OA tailored to individuals in terms of body mass index, 
stage of disease, and OA subset such as synovitis versus 
post-traumatic conditions. This study is limited in terms 
of the small number of biological replicates, which further 
precluded evaluating sex differences or comparisons 
between transcriptomes of cells isolated from different joints 
(e.g., carpus vs. tarsus). While the sample size reported 
here was sufficient to detect differences in microbiome and 
inflammasome and correlations to OA specifically (unrelated 
to age or body mass), there was significant overlap in 
microbial species associated with OA and elevated body 
condition score and age concurrently. Additionally, an 
alternative interpretation of the elevation in inflammatory 
cytokines seen in plasma of OA cases may represent age-
associated ‘inflammaging’ differences rather than a true 
alteration due to OA alone. Finally, while horses enrolled 
had been administered a consistent diet for a minimum of 
two months prior to sample collection, it is unclear from 
mouse studies and, to the authors’ knowledge, unknown in 
horses how plastic the gut microbiome is (i.e., how long it 
would take for dietary changes to have a strong effect on the 
gut microbiome), which represents an additional limitation. 
Further enrollment of cases is necessary to fully account 
for variables such as body mass index, age, diet, and sex by 
OA diagnosis. Analyses were performed using samples from 
horses with naturally occurring OA and it is recognized that 
this small sample size is unlikely to be representative of the 
heterogeneity of disease processes considered OA. 

In addition, further transcriptomic analyses are warranted 
to elucidate the variability in gene expression profiles in 
OA patients due to individual factors including disease 
duration, severity and number of joints affected; however, 
the cases presented here are likely more representative 
of the clinical scenario faced by physicians treating OA 
compared to employing a model of experimentally induced 
PTOA. In this study, the identity of SF cells used for 
transcriptomic analyses was not determined as there was 
insufficient cells to perform additional biomarker evaluation 
(e.g., by flow cytometry). It is further acknowledged that 
the transcriptomes of the PBMC may have been altered 
by cell subtype differences; however, immunophenotyping 
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of these mixed cellular populations was beyond the scope 
of the current study. Additional cross-sectional studies 
encompassing multiple time points may represent the 
best approach to distinguish core vs transient bacterial 
populations in disease progression. While environmental 
contamination is always a concern with studies of this 
nature, during all steps of the analysis, measures were 
taken to reduce bacterial contamination including sterile 
preparation of all collection tools and utilization of clean 
and controlled laboratory environments while performing 
library prep and sequencing steps. Furthermore, negative 
controls were included from each sampling step which did 
not yield evidence of contaminants. 

Finally, although detection of bacterial DNA in IA 
tissues and gut dysbiosis has been repeatedly linked to 
progressive OA in humans and rodent models (16,17), 
it is not clear if these represent live organisms, or how 
microorganisms are transported to the joint. Microbes or 
their DNA have been proposed to most likely arrive in 
the synovium carried within leukocytes (e.g., monocytes 
or neutrophils), though it is possible they circulate freely 
in plasma (16,17). Gut microbiota have been presumed to 
be the major source of microbial PAMPs such as LPS as 
well as pro-inflammatory cytokines (e.g., IL-1β, TNF-α, 
IL-6) which are proposed to initiate synovial macrophage 
activation in OA (18). Moreover, recent evidence suggests 
that microbial populations present in plasma may also 
contribute directly to OA progression (99). However, the 
nature of gut inflammation at the level of the gut exfoliome 
has not been incorporated in previous studies, nor have all 
three potential sources of microbes in the joint (i.e., gut, 
circulating leukocytes, joint) been interrogated concurrently 
to determine how closely related the populations may be. 
Therefore, future directions of this work will concurrently 
interrogate all three potential sources of microbes in the 
joint (i.e., gut, circulating leukocytes, joint tissues) to 
determine how closely related the populations may be, to 
distinguish core versus transient populations or subsets of 
populations within individual articular tissues longitudinally, 
and investigate the downstream systemic inflammatory 
signature culminating in macrophage migration to the 
synovium and accelerate OA. These studies will fill a 
critical gap in our understanding of how the dysbiotic gut 
and the systemic inflammatory response of obesity may 
drive progressive OA and further our understanding of 
the mechanistic underpinnings of microbiome-skeletal 
interactions in disease, with important translational impact 
to humans and other species suffering from similar disease 

processes.
 

Conclusions

The gut microbiome has a profound influence on systemic 
inflammation and chronic musculoskeletal disease such as 
OA. These findings provide compelling evidence for a link 
between obesity, gut microbiome dysbiosis and development 
of naturally occurring OA in horses, establishing a 
connection here to further investigate disease modifying 
therapies. Further analysis of causation integrating fecal 
microbiota transplant methods with metabolomic studies 
of mediators produced by microbiota and examination of 
their impact on host physiology to perpetuate degenerative 
joint disease is indicated. As currently available treatments 
for OA are palliative, future studies will seek to further 
define mechanistically the pathogenic roles of key microbial 
species and their interactions with innate immune cells 
towards disease-modifying interventions in the OA of 
obesity.
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