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Abstract: Neutrophils are first-line responders of the innate immune system. Following myocardial
infarction (MI), neutrophils are quickly recruited to the ischemic region, where they initiate the
inflammatory response, aiming at cleaning up dead cell debris. However, excessive accumulation
and/or delayed removal of neutrophils are deleterious. Neutrophils can promote myocardial injury
by releasing reactive oxygen species, granular components, and pro-inflammatory mediators. More
recent studies have revealed that neutrophils are able to form extracellular traps (NETs) and produce
extracellular vesicles (EVs) to aggravate inflammation and cardiac injury. On the contrary, there
is growing evidence showing that neutrophils also exert anti-inflammatory, pro-angiogenic, and
pro-reparative effects, thus facilitating inflammation resolution and cardiac repair. In this review,
we summarize the current knowledge on neutrophils’ detrimental roles, highlighting the role of
recently recognized NETs and EVs, followed by a discussion of their beneficial effects and molecular
mechanisms in post-MI cardiac remodeling. In addition, emerging concepts about neutrophil
diversity and their modulation of adaptive immunity are discussed.

Keywords: adaptive immunity; angiogenesis; cardiac remodeling; inflammation; macrophage;
myocardial infarction; neutrophil

1. Introduction

Neutrophils are the most abundant circulating leukocytes in humans and act as the
first responders to infection and sterile inflammation. Due to their limited life span and
terminal differentiation, the bone marrow continuously produces neutrophils through
granulopoiesis to maintain homeostasis [1]. During infection or injury, the bone marrow
produces more neutrophils through emergency or reactive granulopoiesis to meet the
high demand of the host [1]. In addition, the spleen also generates neutrophils in severe
conditions through a process known as extramedullary hematopoiesis [2]. CXCL12-CXCR4
signaling is a retention signal that prevents neutrophil egress from the bone marrow, while
the CXCL1/2-CXCR2 signal drives their mobilization into the peripheral blood [3–5]. Tradi-
tional views are that naïve tissues are believed to be free of neutrophils. However, a recent
study using neutrophil reporter mice showed that in the steady state, neutrophils actively
infiltrate most tissues, including the heart [6]. Their lifespan in most tissues is one day or
less [7]. Similar to resident macrophages, tissue neutrophils adopt features tailored to the
needs of those tissues, and support organ homeostasis [7]. Following myocardial infarction
(MI), CXCL12-CXCR4 signaling is disrupted [8], which allows neutrophil mobilization to
the peripheral blood, leading to neutrophilia.

Blood neutrophils infiltrate the ischemic myocardium in large quantities, within a few
hours after MI onset [9,10]. They are attracted by cell debris and inflammatory mediators
released by activated resident cells. MI induces cardiac cell damage, which leads to the
release of an array of heterogenous molecules, including damage-associated molecular
patterns (DAMPs) and alarmins. Cardiac-resident macrophages and the endothelium
detect these danger signals, initiating neutrophil recruitment [11]. Neutrophils express a
wide range of receptors, including pattern recognition receptors (e.g., toll-like receptors)
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and receptors for chemokines, cytokines, and adhesion molecules. These receptors allow
for their recognition of and response to distinct DAMPs, alarmins, chemokines, or cytokines
released in the ischemic heart [11,12]. Neutrophil extravasation from microvessels depends
on the interaction of integrins and adhesion molecules expressed on neutrophils and
endothelial cells [13]. Once recruited into the ischemic myocardium, activated neutrophils
exert a plethora of biological functions.

Recruited neutrophils initially aim to phagocytose and clear dead cell debris caused
by ischemia. However, they concomitantly cause collateral cardiac injury by releasing
reactive oxygen species (ROS), proteolytic enzymes, and inflammatory mediators [14,15].
In addition, neutrophils are able to form extracellular traps (NETs) and release extracel-
lular vesicles (EVs) that contain a multitude of inflammatory mediators. Clinically, high
peripheral neutrophil counts are associated with adverse outcomes and high mortality in
patients with coronary syndromes [16,17]. On the contrary, accumulating evidence shows
that neutrophils also have anti-inflammatory, pro-angiogenic, and pro-reparative effects,
thus being beneficial for cardiac wound healing [10,11,18]. This review summarizes the
current knowledge on neutrophils’ deleterious effects with a focus on the role of recently
recognized NETs and EVs, followed by a discussion of their pro-reparative roles and molec-
ular mechanisms. In addition, we discuss the emerging concept about neutrophil diversity
and their regulation of an adaptive immune response.

2. Neutrophil-Mediated Cardiac Injury

Traditionally, neutrophils are considered mostly, if not completely, detrimental in
the setting of acute MI. This idea is supported by both clinical and experimental studies.
The circulating neutrophil count positively correlates to infarct size, death, and heart
failure development [19,20]. Experimental studies have also revealed that either neutrophil
depletion or inhibition reduces cardiac injury and infarct size [21–24].

2.1. Neutrophil Respiratory Burst, Degranulation, Secretion of Inflammatory Mediators,
and No-Reflow Induced by Neutrophils

Neutrophils possess a number of weapons to defend against a challenge or cause
collateral tissue injury. Through a respiratory burst, neutrophils generate large amounts of
ROS in a nicotinamide adenine dinucleotide phosphate (NADPH)-dependent manner. ROS
can directly cause tissue injury by modifying amino acids, proteins, and lipids [14,25]. ROS
also stimulate the release of pro-inflammatory factors in the ischemic myocardium [26].
Upon degranulation, neutrophils release a wide range of pre-synthesized granular pro-
teins, including myeloperoxidase (MPO), serine proteases, and matrix metalloproteinases
(MMPs). These enzymes can cause myocyte death and ECM degradation and have been
shown to be detrimental in MI-induced cardiac remodeling [14]. In addition, neutrophils
can secrete cytokines (e.g., tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-8)
and chemokines (CXCL1, 2, 3, and 8) [13,27], which increase inflammation and negatively
affect myocyte contractility [28].

No-reflow occurs after reperfusion of an infarcted artery in the setting of MI and is mainly
caused by the obstruction of myocardial microcirculation. Patients with no-reflow have a
worse prognosis and higher mortality [29]. Endothelial cellular swelling and protrusions,
cardiomyocyte swelling, tissue edema, vasospasm, and microvascular thrombosis contribute
to microvascular obstruction [30]. In addition, activated neutrophils exhibit decreased de-
formability and can cause microvascular plugging and no-reflow after ischemia/reperfusion
(I/R) [31,32]. These deleterious effects of neutrophils in MI and I/R have been well established
and extensively discussed in several reviews (Figure 1) [14,26,31].



Cells 2021, 10, 1676 3 of 17

Figure 1. Detrimental and beneficial roles of neutrophils in myocardial infarction (MI) wound
healing. It is well known that neutrophils can promote myocardial injury by releasing reactive
oxygen species (ROS), granular components, and pro-inflammatory mediators. Recent studies show
that neutrophils are able to form extracellular traps (NETs) and produce extracellular vesicles (EVs) to
increase inflammation and cardiac injury. In addition, neutrophils enhance granulopoiesis, forming
a positive feed-forward loop for neutrophil production and acute inflammation. On the contrary,
emerging evidence reveals that neutrophils are indispensable for appropriate wound healing after
MI. They promote inflammation resolution, angiogenesis, and scar formation by generating a wide
array of pro-reparative factors, including neutrophil gelatinase-associated lipocalin (NGAL), vascular
endothelial growth factor-A (VEGF-A), cathelicidin, annexin A1 (AnxA1), and specialized pro-
resolving mediators (SPMs). MPO, myeloperoxidase; MMPs, matrix metalloproteinases. The red and
blue dots represent different proteins or other molecules. Images of cells are from Servier Medical
ART (Accessed date 1 June 2021 https://smart.servier.com).

2.2. Neutrophil Extracellular Traps (NETs)

NETs are chromatin filaments fused with granular and cytoplasmic components. NET
release mainly occurs through a cell death process referred to as suicidal or lytic NETo-
sis [33,34]. This process is accompanied by the permeabilization of the nuclear envelop
and plasma membrane rupture, causing neutrophil death. An alternative mechanism is
termed vital or non-lytic NET extrusion, which leads to the rapid release of NETs in the
absence of cell death [34]. Peptidylarginine deiminase 4 (PAD4) plays a critical role in NET
formation. PAD4 converts positively charged arginyl residues on chromatin histones to
citrulline, which lacks a charge. This reaction releases the ionic bonds that mediate the tight
association of negatively charged DNA with histones in the nucleosomes, causing DNA to
unfurl and chromatin decondensation [35]. After decoration with cytoplasmic components,
the decondensed chromatin is released into extracellular space, thereby forming NETs [13].

https://smart.servier.com
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Although NETs were originally identified as a host defense mechanism trapping
pathogens [36], a body of evidence has revealed that they also play a detrimental role
in sepsis, autoimmune disease, cancer, thrombosis, and cardiovascular disease [37,38].
They are detected in culprit arteries of acute MI patients. Plasma thrombin is reported to
be responsible for NET generation through activating platelets [39]. NETs contribute to
thrombosis by facilitating fibrin deposition and the formation of a fibrin network [40], im-
plying that NETs may be involved in MI occurrence. NET-mediated microthrombosis also
contributes to myocardial no-reflow after I/R [41]. NETs can activate macrophage NLRP3
inflammasome to release IL-1β and IL-18 [42,43]; in turn, IL-18 stimulates NET release [42],
forming a vicious pro-inflammatory cycle. More importantly, NETs positively correlate
with the occurrence of adverse cardiac events, worse ST segment resolution, infarct size,
and cardiac dysfunction in patients with MI [44–47]. Either inhibition of NET generation
by PAD4 deficiency or degradation of NETs by DNase I has been shown to protect from
myocardial I/R injury, evidenced by smaller infarct size, less neutrophil infiltration, and
improved cardiac function [48]. Likewise, pharmacological inhibition of PAD4 activity
reduces MI-induced NET formation, inflammatory reaction, and cardiomyocyte apoptosis,
thereby improving cardiac function [49]. Mechanistically, histone H4 within NETs is shown
to induce lytic cell death [50]. It has also been reported that the DNA scaffold of NETs is
required for tissue factor to activate the coagulation cascade (Figure 1) [39]. Whether the
other functions of NETs need the structure integrity remains largely unknown.

On the contrary, NETs exhibit anti-inflammatory features. Serine proteases within
NETs can degrade cytokines and chemokines (Figure 1), thus blunting inflammation [51,52].
In neutrophilic inflammation, NET deficiency exacerbates the inflammatory response,
which is alleviated by the adoptive transfer of aggregated NETs [51]. This is associated
with the capability of NETs to promote macrophage polarization toward a reparative
phenotype [53,54]. Serine proteases, key components of NETs, have been shown to be
detrimental in MI but beneficial in gout [14,51], indicating that NETs’ role is context-
dependent. As the composition of NETs varies depending on the stimulus, the dual role of
NETs is also component-dependent.

2.3. Extracellular Vesicles (EVs)

EVs are a heterogeneous collection of membranous vesicles released by a wide array
of cells. Based on their size and the pathways involved in their production, EVs are clas-
sified into three groups: exosomes (≤100–150 nm), microvesicles (MVs; up to 1000 nm),
and apoptotic bodies (>1000 nm) [13,55]. They take part in cellular crosstalk by engaging
receptors on the cell surface or by delivering EV cargo into the target cell [56]. In spite of
being present in small amounts in the steady state, neutrophil-derived MVs are profoundly
elevated in inflammatory conditions, both in the peripheral blood and at sites of tissue
inflammation [57,58]. Neutrophil EVs can stimulate endothelial cell production of inflam-
matory mediators (IL-6, monocyte chemoattractant protein-1, and tissue factor) [59,60] and
increase endothelial microvascular permeability (Figure 1) [61], both of which contribute
to acute inflammation.

On the contrary, neutrophil-derived EVs show protective effects. Administration of
neutrophil MVs carrying annexin A1 (AnxA1) inhibits inflammation, an effect that disap-
pears when injecting MVs devoid of AnxA1 [62]. This indicates that AnxA1 is responsible
for the anti-inflammatory feature of neutrophil EVs. Similarly, intra-articular injection
of AnxA1+ MVs alleviates arthritis-induced cartilage degradation, which is associated
with increased transforming growth factor (TGF)-β1 generation, leading to cartilage pro-
tection [63]. In myocardial I/R, AnxA1 overexpression inhibits neutrophil infiltration
by activating the STAT3 signaling pathway (Figure 1) [64]. In addition, neutrophil MVs
prevent inflammatory activation of macrophages [65]. The distinct pro-inflammatory
and pro-resolving effects of neutrophil EVs depend on their cargo composition, which
varies based on the stimulus utilized for their generation and the neutrophil status during
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EV production [66,67]. However, the role of neutrophil-derived EVs in MI remains to
be defined.

2.4. Aggravating Granulopoiesis by Neutrophils

In steady-state conditions, neutrophil production is tightly regulated by granulocyte
colony stimulating factor (G-CSF), a cytokine primarily secreted by immune cells, including
neutrophils [68]. MI enhances granulopoiesis, resulting in the increased production of neu-
trophils in the bone marrow [1,69]. Following infection or sterile inflammation (e.g., MI),
granulopoiesis can be enhanced by DAMPs and inflammatory cytokines (e.g., IL-6, IL-3,
and granulocyte-macrophage colony-stimulating factor) [1,70]. A seminal study shows
that neutrophils can induce granulopoiesis [71]. Neutrophils recruited to the infarcted
heart release alarmins S100A8/A9 heterodimer, which stimulate IL-1β secretion by neu-
trophils. The released IL-1β, delivered through the blood circulation, binds with its receptor
on hematopoietic stem and progenitor cells in the bone marrow and stimulates granu-
lopoiesis (Figure 1) [71]. Thus, neutrophils enhance granulopoiesis, forming a positive
feed-forward loop for neutrophil production. More importantly, disruption of S100A8/A9
and downstream signaling cascade inhibit MI-induced granulopoiesis and alleviate cardiac
dysfunction [71]. This is in line with previous work revealing that S100A8/A9 blockade
reduces neutrophil production and infiltration into the myocardium, as well as improves
cardiac function after MI [72,73].

3. Neutrophil-Dependent Myocardial Repair

In acute infection or inflammation, neutrophils are not only essential for the removal
of pathogens or cell debris, but also for the resolution of inflammation and return to home-
ostasis [10,74]. Emerging evidence shows that neutrophils are required for appropriate
wound healing post-MI. The section below discusses the pro-reparative roles of neutrophils
in MI, as well as in infection or sterile inflammation if data on MI are not available.

3.1. Phagocytosis of Tissue and Cellular Debris by Neutrophils

As professional phagocytes, neutrophils are involved in removing necrotic myocardium
and cellular debris. This process relies on neutrophil spreading, a process involving in-
creasing the size of the neutrophil cell membrane [75]. Neutrophil phagocytosis is initiated
by adhesion of neutrophil integrins to cellular debris, which results in an increase in in-
tracellular calcium and calpain activation. Calpain activation induces its translocation
from the cytosol to the cell membrane and aids in the formation of the phagocytic cup [76].
In addition, calpain cleavage of p81 creates space between the F-actin protrusions and
the F-actin membrane, which increases the neutrophil membrane size and allows the
neutrophil to engulf the debris [75]. Ganoderma lucidum, a Chinese medical fungus, is
effective in the treatment of hypertension, hyperglycemia, neoplasia, and chronic liver
disease. These protective effects are at least partially mediated by polysaccharides purified
from Ganoderma lucidum (PS-G), which enhance neutrophil phagocytosis [77]. It would
be interesting to know whether PS-G administration could improve cardiac wound healing
after MI by increasing the phagocytotic capability of neutrophils.

3.2. Inflammation Resolution Promoted by Apoptotic Neutrophils

After fulfilling its roles, neutrophils have to be removed in a timely fashion through
apoptosis or another mode of death. Delayed neutrophil apoptosis occurs in multiple
human inflammatory diseases, including acute coronary syndromes [78,79]. Persistence of
neutrophils can cause tissue damage and chronic inflammation. As opposed to necrosis,
which releases intracellular components and induces an acute inflammatory response,
neutrophil apoptosis exposes phosphatidylserine on the cell outer surface, which sig-
nals macrophage efferocytosis (Figure 1) [78]. Tissue neutrophils are mainly removed by
macrophages and, to a small extent, by dendritic cells (DCs), exodus to draining lymph
nodes [80], or even reverse transendothelial migration back into the vasculature [81,82].
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Removal of apoptotic neutrophils initiates the process of inflammation resolution [83].
Phagocytosis of apoptotic neutrophils by macrophages, a process known as efferocytosis,
stimulates the production of anti-inflammatory and pro-resolving mediators, including
TGF-β1, IL-10, vascular endothelial growth factor (VEGF), and specialized pro-resolving
mediators (SPMs) [84–87], contributing to inflammation resolution and cardiac repair. Pro-
resolving lipids and proteins, such as lipoxin A4, resolvin E1, and AnxA1, can induce
neutrophil apoptosis and promote their removal by efferocytosis [88]. Dying neutrophils
are able to release antimicrobial α-defensins, which increases the phagocytic capacity
of macrophages and dampens their release of inflammatory factors [89]. Following MI,
MMP-12 inhibition has been shown to suppress neutrophil apoptosis, leading to delayed
inflammation resolution and maladaptive remodeling [90]. Inhibition of the macrophage
efferocytosis of apoptotic neutrophils or cardiomyocytes by recombinant CXCL4 infusion
enhances post-MI cardiac dilation and mortality [91].

In addition, apoptotic neutrophils can scavenge chemokines and cytokines (Figure 1).
Apoptotic neutrophils can bind to chemokines and cytokines, without generating biological
effects. This precludes them from binding to viable cells [92]. For instance, aspirin-triggered
SPMs increase CCR5 expression on apoptotic human neutrophils, which sequesters soluble
CCL3 and CCL5 by acting as a decoy receptor [93].

NETosis represents another form of neutrophil death. NETotic neutrophils can also
be cleared by macrophages. Macrophages are able to engulf NETs in a cytochalasin
D-dependent manner, implying that this is an active, endocytic process [94]. Upon in-
ternalization, macrophage degradation of NETs is dependent on TREX1 (DNaseIII) [95].
Similar to the efferocytosis of apoptotic neutrophils, the macrophage uptake of NETs does
not induce an inflammatory response [94]. Therefore, this may represent another novel
mechanism whereby macrophages promote inflammation resolution. Future studies are
needed to decipher whether macrophage removal of NETs contributes to favorable cardiac
repair post-MI.

3.3. Inducing a Pro-Reparative Macrophage Phenotype by Neutrophils

In general, infarct macrophages exhibit a pro-inflammatory phenotype early (days 1–3)
and become polarized toward a pro-reparative subtype later (after day 3) post-MI [96].
One study reported that co-culture of neutrophils with activated macrophages induces a
decrease in the pro-inflammatory factors released by macrophages through suppressing
nuclear factor-κB activation [97], supporting the concept that neutrophils are capable of
modulating macrophage phenotype. Infarct macrophages in neutrophil-depleted animals
exhibit lower MerTK expression [98], a receptor that mediates the clearance of apoptotic
cells [99]. This indicates that neutrophils polarize macrophages toward a reparative pheno-
type post-MI. Accordingly, neutrophil depletion results in the accumulation of apoptotic
cells, increased fibrosis, and worse cardiac function [98]. Further analysis reveals that
neutrophil gelatinase-associated lipocalin (NGAL) mediates the pro-reparative roles of neu-
trophils as NGAL administration restores macrophage phenotype in neutrophil-depleted
mice (Figure 1) [98].

In addition to pro-inflammatory effects, S100A9 exhibits pro-reparative roles. Short-
term (three days) S100A9 blockade shows beneficial effects [72], while long-term (21 days)
blockade adversely impacts myocardial repair and function [100]. Similarly, S100A8/A9
suppresses inflammation in rat autoimmune myocarditis by inhibiting cytokine produc-
tion [101]. Mechanistically, S100A9 promotes the transition from inflammatory monocytes
to reparatory Ly6CloMerTKhi macrophages by upregulating the transcription factor Nur77
(Figure 1), thus promoting the clearance of dead cells and debris [100]. In summary, S100A9
stimulates myeloid cell generation and trafficking to the ischemic heart at acute phase
(three days) post-MI, but promotes reparatory macrophage production after the acute
inflammatory period. Long-term S100A9 blockade closely recapitulates the negative effects
of neutrophil depletion on post-MI cardiac recovery [98].
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3.4. Pro-Angiogenic Neutrophils

Angiogenesis is an integral component of optimal would healing after MI. Newly
formed vessels can provide nutrients and oxygen to the tissue around the infarct border
region, limiting infarct expansion. Strategies that induce angiogenesis have been shown
to improve post-MI cardiac repair and function [102,103]. Neutrophils have long been
known to release VEGF-A, the major stimulator of angiogenesis [104]. Adenosine released
by neutrophils can induce macrophage production of VEGF [105]. Circulating CXCR4hi

neutrophils recruited by VEGF-A release a large amount of MMP-9 [106], and MMP-9
can induce angiogenesis by degrading ECM to release matrix-bound VEGF-A and gen-
erate pro-angiogenic ECM fragments [18,107]. Interestingly, MMP-9 deletion facilitates
angiogenesis following MI [108], indicating that MMP-9 also displays antiangiogenic roles.
A recent study identified a blood pro-angiogenic subset of neutrophils in humans and
mice that are CD49d+VEGFR1hiCXCR4hi, and inhibiting their recruitment impairs vessel
neoformation in a transplantation-based angiogenesis model [109]. In a mouse model
of transplanting pancreatic islets into the cremaster muscles, neutrophils migrate in a
directional manner to angiogenic hotspots around the islet, where endothelial sprouting
occurs [110]. More importantly, neutrophil depletion inhibits vessel growth. In a mouse
model of artery injury, neutrophil-borne cathelicidin (mouse CRAMP and human LL-37)
facilitates reendothelization and limits neointima formation after stent implantation, thus
reducing stenosis [111]. Whether cathelicidin also promotes post-MI angiogenesis and
cardiac wound healing needs to be investigated.

Neutrophils also promote angiogenesis indirectly. Neutrophils are the primary source
of AnxA1 in the infarcted heart [112]. AnxA1 facilitates macrophage polarization toward a
pro-angiogenic phenotype, which favors angiogenesis by secreting VEGF-A [112].

3.5. Neutrophil Generation of Specialized Pro-Resolving Mediators (SPMs)

SPMs are derived from essential fatty acids, including arachidonic acid (AA; C20:n-6),
eicosapentaenoic acid (EPA; C20:n-3), and docosahexaenoic acid (DHA; C22:n-3) in a
lipoxygenase (LOX)-dependent manner [113]. The major SPM families consist of lipoxins
from AA, E-series resolvins from EPA, as well as D-series resolvins, protectins, and maresins
from DHA. SPMs exert their biological functions by activating corresponding receptors. For
example, the lipoxin A4 receptor ALX, also known as FPR2, binds LXA4 and 15-epi-LCA4
to orchestrate the resolution of inflammation [113]. Other high-affinity receptors have
also been identified: CMKLR1 and CHEMR23 for resolvin E1 [114], GPR32 and ALX for
resolvin D1 [115], as well as GPR18 for resolvin D2 [116].

SPMs have essential roles in facilitating the resolution of inflammation. They can
limit neutrophil recruitment, counter-regulate pro-inflammatory cytokines, and facilitate
macrophage phagocytosis (Figure 1) [113]. SPMs are also able to enhance neutrophil-mediated
bacterial clearance and permit neutrophil apoptosis to take place (Figure 1) [117]. Defects
in SPM pathways contribute to the development of unresolved chronic inflammation. Neu-
trophils are able to produce lipoxin A4, resolvin D1, and 13-series resolvins in a 5-LOX depen-
dent manner [118,119]. Moreover, activated neutrophils highly express ALX/FPR2 [118,120].
Pharmacological inhibition of FPR2 disturbs leukocyte recruitment and elicits non-resolving
inflammation following MI [120]. However, the relative contribution of neutrophil-derived
SPMs to inflammation resolution in an MI setting is largely uninvestigated.

3.6. Regulation of Fibroblast Functions by Neutrophils

In response to MI, cardiac fibroblasts differentiate into myofibroblasts, which se-
crete collagens and other ECM proteins to form a scar [121]. Insufficient scar formation
contributes to cardiac rupture and adverse remodeling post-MI [122], while excess ECM
deposition in the non-infarct remote region can cause cardiac fibrosis [121]. TGF-β1 is the
master cytokine that regulates scar formation. TGF-β1 is mainly produced by fibroblasts,
macrophages, and T cells in the heart [123]. Neutrophils have been shown to upregulate
TGF-β1 expression by fibroblasts (Figure 1). In vitro, co-culture of naïve neutrophils with
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cardiac fibroblasts upregulates TGF-β1 expression [124]. NETs have also been shown to
upregulate TGF-β1 expression and collagen production by fibroblasts and to increase their
proliferation and migration [53,125]. Depletion of neutrophils in vivo prevents TGF-β1
upregulation post-MI [124]. Neutrophil-derived S100A8/A9 activates cardiac fibroblasts in
angiotensin II infusion induced hypertension [126], implying that S100A8/A9 may mediate
neutrophil-induced TGF-β1 upregulation by fibroblasts.

4. Neutrophil Heterogeneity and Plasticity

Neutrophils are historically considered a homogenous population of cells with highly
conserved functions. However, accumulating evidence over the past decade shows phe-
notypic heterogeneity of blood neutrophils in homeostasis and tissue neutrophils after
infection or injury. Distinct subsets of neutrophils in the steady state, infection, and sterile
inflammation have been reviewed elsewhere [127–129]. We focus here on neutrophils
in the MI heart. We previously showed the existence of N1 (Ly6G+CD206-) and N2
(Ly6G+CD206+) neutrophil phenotypes in the MI heart [130]. N1 is pro-inflammatory
with high expression of pro-inflammatory markers (Ccl3, Il1b, Il12a, and Tnfα), while
N2 expresses high levels of anti-inflammatory Cd206 and Il10 (Figure 2). Although N1
neutrophils are always predominant (>80% of total neutrophils at each time point), the
percentage of N2 neutrophils increases post-MI, from 2.4% at day 1 to 18.1% at day 7.
In vitro, N1 and N2 phenotypes can be induced by interferon-γ+ lipopolysaccharide or
IL-4, respectively. Correlation analysis further reveals that N1 is positively associated with
infarct wall thinning, probably due to higher generation of MMP-12 and MMP-25. The
peripheral blood does not contain CD206+ N2 neutrophils, indicating that N2 is formed
locally in the ischemic heart microenvironment. Exogenous administration of IL-4 after
MI reduces the expression of pro-inflammatory cytokines in neutrophils [131], implying
the inhibition of the N1 phenotype. Ly6GhiCXCR2+ and Ly6GloCCR2+ neutrophil subsets
have also been identified in the blood and MI heart [73]. Infiltration of CXCR2+ neutrophils
peaks at 12 h post-I/R, returning to baseline levels at day 7. In contrast, recruitment of
CCR2+ cells peaks at day 3 and remains elevated at day 7 after I/R [73]. N1 vs. CXCR2+

and N2 vs. CCR2+ neutrophils appear to temporally coincide in the ischemic heart. It
would be interesting to know whether they represent the same type of neutrophils.

Figure 2. Neutrophils in the infarcted myocardium at different time points post-MI exhibit distinct
phenotypes and functions.

Using an aptamer proteomics approach, we identified cardiac neutrophil proteome
shift over the first week after MI [132]. Day 1 cardiac neutrophils exhibited a high de-
granulation with increased MMP activity. D3 neutrophil profiles showed upregulation of
apoptosis and induction of ECM organization. D5 neutrophils further increased their ECM
reorganization profile, and D7 neutrophils display a reparative signature (Figure 2). More
recently, using single-cell RNA sequencing combined with cell surface epitope detection, six
different clusters with specific time-dependent patterning and proportions were identified
in cardiac neutrophils from days 1, 3, and 5 post-MI mice [133]. Day 1 neutrophils were
characterized by a gene expression pattern similar to bone marrow neutrophils (Cd177,
Lcn2, and Fpr1) and putative activity of the transcriptional regulators involved in the
hypoxic response (Hif1a) and emergency granulopoiesis (Cebpb). In contrast, days 3 and
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5 neutrophils exhibited two major subsets: SiglecFhi vs. SiglecFlo phenotypes. SiglecFhi

neutrophils accounted for approximately 25% of cardiac neutrophils at day 1 and repre-
sented more than 50% of neutrophils at day 4 post-MI [134]. The SiglecFhi subtype was
enriched for Icam1 and Tnf and displayed enhanced effector functions (e.g., phagocytosis
and ROS production), while SiglecFlo was abundant in Slpi and Ifitm1 expression (Figure 2).
SiglecF has been shown to induce apoptosis in eosinophils [135]. Since SiglecF upregulation
on neutrophils coincides with the inflammation resolution phase, it has been proposed
that SiglecF upregulation on neutrophils may induce its apoptosis, which contributes to
macrophage efferocytosis and subsequent resolution of inflammation. Future studies are
warranted to determine the functional consequences of neutrophil temporal heterogeneity
in post-MI cardiac remodeling.

5. Neutrophils and Adaptive Immunity

Increasing evidence suggests that neutrophils modulate an adaptive immune response.
Under normal conditions, a small but persistent population of neutrophils is present in
the parenchyma of lymph nodes [136,137]. Following infection, blood neutrophils rapidly
traffic into lymph nodes across high endothelial venules (HEVs) [137]. This process is
mediated by the ligation of L-selectin and P-selectin glycoprotein ligand-1 on neutrophils
with peripheral node addressin (PNAd) on HEVs and P-selectin on platelets [137,138].
In addition, neutrophils recruited to inflamed tissue can cross lymphatic vessels, thereby
entering lymph nodes, which is dependent on CD11b and CXCR4 [139,140].

Lymph node neutrophils may exert multiple functions, including pathogen killing,
antigen transport, innate immune cell recruitment and removal, and regulation of an
adaptive immune response [141]. Neutrophils exhibit temporary residency within the
lymph node parenchyma and can act as sentinel cells to attract additional neutrophils in
the event of bacterial dissemination to the lymph node [142]. Following ex vivo stim-
ulation with an IgG immune complex, neutrophils upregulate the expression of ma-
jor histocompatibility complex II (MHCII) and costimulatory molecules and increase T
cell activation (Figure 3) [136]. In vivo, neutrophils are capable of delivering a circulat-
ing immune complex to lymph nodes, suggesting they can act as professional antigen-
presenting cells [136,143,144]. Neutrophils activate DCs and enhance the subsequent T
cell response [145,146]. Neutrophils induce T cell proliferation and cytokine production,
supported by the finding that neutrophil depletion prevents T cell expansion in lymph
nodes [139,147]. They also modulate B cell activation and survival by secreting B cell-
activating factor (BAFF) [148] and a proliferation-inducing ligand (APRIL) [149].

On the contrary, neutrophils can also dampen adaptive immunity, serving as a neg-
ative feedback mechanism to prevent the overactivation of lymphocytes. Neutrophils
suppress the T cell response by secreting thromboxane A2 [150], IL-10 [151], upregulating
programmed death ligand 1 (PD-L1), and inhibiting DC functions (Figure 3) [147,152,153].
Lymph node neutrophils also dampen the humoral response in a TGF-β1-dependent man-
ner [154]. Whether post-MI neutrophils enter heart-draining mediastinal lymph nodes and
play essential roles in orchestrating an adaptive immune response is yet to be investigated.
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Figure 3. Neutrophil regulation of adaptive immunity. Following infection or inflammation, cir-
culating neutrophils are recruited to lymph nodes, where they modulate the adaptive immune
response. On the one hand, neutrophils are able to activate T cells and induce T cell proliferation and
cytokine generation by upregulating major histocompatibility complex II (MHCII) and costimulatory
molecules, presenting antigens, as well as activating dendritic cells. They also modulate B cell
activation and survival by secreting B cell-activating factor (BAFF) and a proliferation-inducing
ligand (APRIL). On the other hand, neutrophils can dampen adaptive immunity to prevent its over-
activation by generating thromboxane A2, interleukin (IL)-10, transforming growth factor (TGF)-β1,
upregulating programmed death ligand 1 (PD-L1), and inhibiting dendritic cell functions. Images of
cells are from Servier Medical ART (Accessed date 1 June 2021 https://smart.servier.com).

6. Anti-Neutrophil Strategies and Future Perspectives

Anti-neutrophil strategies include depletion of neutrophils, inhibition of neutrophil
recruitment, blockade of neutrophil-derived deleterious mediators, and promotion of
neutrophil clearance [155,156]. Depletion of neutrophils with the anti-Ly6G antibody has
been extensively utilized in animal models [157]. This depletion, however, is only partially
effective and transient, needing repetitive administration of anti-Ly6G antibodies. A recent
study revealed that residual neutrophils, after anti-Ly6G treatment, are newly generated
from the bone marrow, which have lower Ly6G expression and thus could escape anti-Ly6G-
mediated depletion [158]. Furthermore, the authors developed a double antibody-based
depletion strategy (anti-Ly6G plus anti-rat IgG) that achieves a more efficient, durable, and
controlled reduction of neutrophils in vivo [158]. Neutrophil depletion can also be achieved
by crossing MRP8-Cre mice with ROSA-iDTRK1 mice to generate PMNDTR mice followed
by diphtheria toxin treatment, or by crossing LysM-Cre mice with myeloid cell leukemia-1
(Mcl-1)flox/flox mice followed by tamoxifen treatment [159]. Moreover, there are mouse
models with constitutive neutropenia, including granulocyte colony-stimulating factor
receptor (G-CSFR)−/− and CXCR2−/− mice [157]. Each model has its own limitations;
please refer to the review by Stackowicz et al. for further details [157].

Although many experimental anti-neutrophil approaches have been shown to alle-
viate cardiac damage in the acute phase [10,160,161], the translation of this to the clinical
scenario has not been successful. While the reasons are complex, one is our incomplete
understanding of neutrophils’ multifaceted functions. In particular, the pro-reparative role
of neutrophils should be taken into account when designing anti-inflammatory approaches.
Any therapeutic strategies targeting neutrophils have to achieve a fine balance between the
efficient reduction of pro-inflammatory roles and the preservation of the pro-reparative
roles of neutrophils. For instance, one could combine the early administration of an agent
that inhibits the pro-inflammatory response of neutrophils with the subsequent admin-
istration of an agent that activates the reparative response of neutrophils. In addition,
the interaction of distinct immune cells with one another and with non-immune cardiac
cells, such as cardiomyocytes, endothelial cells, and fibroblasts, further complicates the
wound healing response after MI [162]. Therefore, this also needs to be taken into consider-
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ation when targeting immune cells, and further in-depth understanding of the underlying
molecular mechanisms is required.
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