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Abstract: The renewed focus on cereal landraces is a response to some negative consequences of
modern agriculture and conventional breeding which led to a reduction of genetic diversity. Cereal
landraces are still cultivated on marginal lands due to their adaptability to unfavourable conditions,
constituting an important source of genetic diversity usable in modern plant breeding to improve the
adaptation to abiotic or biotic stresses, yield performance and quality traits in limiting environments.
Traditional agricultural production systems have played an important role in the evolution and
conservation of wide variability in gene pools within species. Today, on-farm and ex situ conservation
in gene bank collections, together with data sharing among researchers and breeders, will greatly
benefit cereal improvement. Many efforts are usually made to collect, organize and phenotypically
and genotypically analyse cereal landrace collections, which also utilize genomic approaches. Their
use in breeding programs based on genomic selection, and the discovery of beneficial untapped
QTL/genes/alleles which could be introgressed into modern varieties by MAS, pyramiding or
biotechnological tools, increase the potential for their better deployment and exploitation in breeding
for a more sustainable agricultural production, particularly enhancing adaptation and productivity
in stress-prone environments to cope with current climate changes.
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1. Introduction

The growing increase of human population and environmental stresses have led to
land use changes and habitat destruction in order to produce a greater amount of food.
The advent of high input and intensive monoculture systems, based on genetically similar
individuals (elite cultivars, pure lines, hybrids, or clones) improved for particular traits (i.e.,
high yield and better end-use quality) and derived from a relatively narrow germplasm
pool, resulted in a loss of potentially useful traits, reducing genetic variability that can be
used by plant breeders for crop improvement. To cope with climate change and meet the
needs of new varieties for marginal areas, researchers and breeders are constantly looking
for new sources of genetic variability. A key component of agro-biodiversity is represented
by landraces.

Landraces adapt to specific agro-climatic conditions while maintaining considerable
diversity between and within populations [1], constituting a reservoir of genetic diversity
that is interesting for future breeding work as well as for the development of new agricul-
tural systems and new products. Therefore, the exploration of their genetic diversity and
conservation for future generations is important.

Landraces have been described by Harlan [2] as populations that had evolved in
subsistence agricultural societies as a result of “millennia-long”, “artificial” human selection
pressures, mediated by human migration, seed exchange and natural selection. The term
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has been extended, considering the association with marginal environments and the lack
of direct competition with highly bred cultivars [3]. Moreover, the definition, which well
describes landrace complexity, is that “it is a dynamic population(s) of a cultivated plant
that has historical origin, distinct identity and lacks formal crop improvement, as well as
often being genetically diverse, locally adapted and associated with traditional farming
systems” [4,5]. More generally, landraces have been proposed as autochthonous when
cultivated for more than a century in a specific region, or allochthonous if introduced in
another region due to migration (known as seed flow) [6]. A third type, called ‘Creole’
landrace, is a bred variety in origin, which will become landrace after numerous repeated
cycles of sowing and selection by the farmer in a specific place [7,8].

Cereal landraces emerged in different regions of the world as a result of centuries of
crop evolution in traditional agrosystems, leading to heterogeneous populations rather
than a few superior genotypes [9,10]. Farmers have been the keepers of cereal diversity [11],
selecting genetic materials with desired traits and saving seeds for subsequent growing
seasons [12] and increasing gene flow through seed exchanges with relatives and neigh-
bours or through the introduction of local or exotic materials. The exchange of seeds
between farmers ensures the maintenance of the genetic heterogeneity of the landraces,
which can contribute to the creation of new local varieties (populations), as well as groups
of interrelated local varieties (which could be considered as meta-populations) [13].

Over time, the ageing of rural populations and mass migration of young workers
from rural areas to cities have resulted in the abandonment of traditional agricultural
practices and have created serious threats for the cultivation and possible use of landraces
as a source of biodiversity [11,14]. The situation is further aggravated by the scarcity of
national inventories of landraces and, more generally, by the absence of national institutions
responsible for their conservation [15]. Despite this, cereal landraces are still cultivated
on marginal lands due to their adaptability to unfavourable conditions [16]. In selfing
species, the genetic diversity, held together as gene blocks in low-frequency recombination
chromosomal regions, can confer a specific adaptation to stress environments [10]. Thus,
landraces provide an interesting model for mapping genes that control adaptive variation
in crop species [17–20].

This review presents an overview of the different aspects related to the conservation
of the main cereal landraces and how these collections can be useful for modern breeding.
Landrace collections have been extensively characterized in terms of genetic diversity and
population structure and have a huge potential for the identification of genetic factors
that are valuable for improving the important agronomic traits of cereal crops such as
resistance to biotic and/or abiotic stresses, thus sustaining grain yield and quality in
unfavourable environments.

2. Conservation ‘In Situ’ and ‘Ex Situ’ of the Main Cereal Collections and Availability
of Databases

A way to defend landraces against genetic erosion and to conserve and utilize the
genetic resources for the future is their conservation.

Two methods are used for the conservation of cereal genetic resources: ‘in situ’ and ex
situ. Both conservation methods have benefits and limitations. The in situ conservation is
carried out in “the natural habitats and include the maintenance and recovery of viable
populations of species in their natural surroundings” on farms, while in the ex situ conser-
vation, “the genetic resources are outside their natural habitats”, in identified gene banks
or other national or regional conservation centres [21].

Ex situ germplasm collections could be used as base collections (by gene banks), and
as working collections (by research/breeding institutions). The ex situ materials maintain
the ‘genetic integrity’ of the accessions as they are not subjected to natural or farmers’
selection [22].

On the contrary, in situ is a dynamic conservation of cereal diversity in the centre
of origin and in the areas in which that cereal species has been domesticated under the
action of evolutionary forces (genetic drift, gene flow, mutations and selection), or simply
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traditionally grown, developing their distinctive properties and adaptation to environ-
mental changes [17,23–25]. A consistent effort to create an inventory of in situ landrace
conservation in Europe countries has been made in the frame of the Farmer’s Pride project
(Horizon 2020 Programme of the European Union) [25]. The in situ approach supports two
methodologies: (1) the genetic reserve, which is the natural long-term conservation sites
of wild populations in their places of origin and (2) on-farm conservation, which is the
sustainable management of genetic diversity (cultivars, wild and weedy species) in locally
traditional agricultural systems [26,27]. The advantage of both in situ conservations, espe-
cially that on-farm, is to conserve wide variability in gene pools within species, providing
a natural laboratory for the continued evolution of traits (i.e., adaptive response to climate
change), and matching the economic benefits of farmers resulting from food traditions,
local practices and social values [28–30].

For a comprehensive knowledge of cereal landrace diversity, it is essential to stan-
dardize the management strategies, starting from sampling procedures and guaranteeing a
correct conservation of landrace diversities in gene banks over time. This way, the identifi-
cation of agronomically valuable genes and untapped alleles to be used for breeding or
pre-breeding purposes is facilitated [31,32].

The effectiveness of the ex situ conservation of landraces is closely linked to the
possibility of sharing seeds and genetic information by a large community of users (e.g.,
gene bank curators, researchers, breeders, farmers and students) through a system based
on their free and open access.

The European Cooperative Programme for Plant Genetic Resources (ECP-GR, http:
//www.ecpgr.cgiar.org/ (accessed on 30 March 2021)) is a good example of standardised
procedures and compatible data documentation systems for better management, studies
and exchange of genetic resources. Valuable collections of cereal landraces are held at
several European and world gene banks.

The FAO website maintains the WIEWS on Plant Genetic Resources (PGR) (http:
//apps3.fao.org/wiews/wiews.jsp (accessed on 30 March 2021)), which contains metadata
and data on germplasm collections and provides the identification and analysis of cereal
landraces maintained in Catalogues around the world.

On a global scale, the GENESYS portal holds the information provided by three major
international project partners: the European Cooperative Programme for Plant Genetic
Resources (ECPGR-EURISCO), the System-wide Genetic Resources Programme (SGRP-
SINGER) of the Consultative Group on International Agricultural Research (CGIAR) and
the USDA Agricultural Research Service National Genetic Resources Program, accounting
for approximately 2.4 million accessions held in ex situ collections worldwide (www.
genesys-pgr.org (accessed on 30 March 2021)). In eastern Europe, one of the most important
cereal collections is maintained at the Research Institute of Crop Production in the Czech
Republic (http://genbank.vurv.cz/genetic/resources (accessed on 30 March 2021)).

The National Plant Germplasm System (NPGS) is a public germplasm collection that
maintains seed samples, representing global diversity of small grains including wheat,
barley, oat, rice, rye and triticale, and various wild relatives, including Aegilops. It is part
of the Agricultural Research Service (ARS), the research agency of the United States Depart-
ment of Agriculture (USDA) and is responsible for collecting, conserving, characterizing,
evaluating, distributing and exchanging a rich and diverse genetic resources collection
containing about 500,000 accessions. In particular, the wheat genetic resources are con-
served at the National Small Grains Collection (NSGC), which is part of NPGS-ARS [33].
A partnership involving the Global Crop Diversity Trust, USDA, and Bioversity Interna-
tional, developed and deployed a gene bank documentation system called the Germplasm
Resources Information Network (GRIN) (www.ars-grin.gov (accessed on 30 March 2021)).
The GRIN database contains passport data, information which describes where and when
an accession was collected, donated or developed and provides information on the avail-
ability and amount of seed that can be freely distributed to scientists and farmers in the
US and around the world. Gene banks are therefore provided with a global management
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system that is powerful, flexible, easy to-use to safeguard plant genetic resources and to
encourage their use by researchers, breeders and farmer-producers [33]. However, the
typically small number of seeds that users can obtain from the GRIN system is only suitable
for research use, and seeds need to be multiplied. Therefore, the continued production
of landraces through on-farm conservation gives an enormous contribution in maintain-
ing landraces diversity, ensuring timely availability of quality seed, and allowing for the
dynamic evolution of landraces under diverse agro-ecosystems.

The main issue met by the gene bank users is the scarcity of information about some
landrace characteristics, especially for some minor cereal species which play an important
role in overall crop diversity [16]. Recent advances in evaluation and characterization
of cereal landraces stored in gene banks, including molecular and biotechnological tools,
offer new opportunities in the use of these genetic resources, thus avoiding redundant
accessions [21]. Many other systems provide information on cereal crops: The International
Barley Core Collection (IBCC); the International Maize and Wheat Improvement Centre
(CIMMYT) for wheat and maize; the International Centre for Agricultural Research in the
Dry Areas (ICARDA) for most cereals; the International Crop Information System (ICIS)
that maintains data on wheat and barley; the Leibniz Institute of Plant Genetics and Crop
Plant Research (IPK) for barley, oat and rye (https://web.archive.org/web/201202200958
46/, http://www.icis.cgiar.org/icis/index.php/Main_Page (accessed on 2 April 2021)).

The CIMMYT germplasm bank contains over 170,000 wheat and 28,000 maize seed
collections from across the world. These collections represent the genetic diversity of unique
native varieties and wild relatives of maize and wheat and are studied and used as a source
of currently untapped native diversity that could be used for plant improvement. The
CIMMYT and the ICARDA wheat collections are the most important sources of landraces
for wheat.

Recently, the Expert Working Group on Durum Wheat Genomics and Breeding, in the
frame of the Wheat Initiative, and the International Durum Wheat Genome Sequencing
Consortium developed two large germplasm collections: The Global Durum Wheat Panel
(GDP) and the Tetraploid wheat Germplasm Collection (TGC), respectively [34,35]. Both
collections are suitable for identifying beneficial alleles for traits of agronomic importance
to be used in breeding and pre-breeding programs. The GDP panel contains 1028 accessions
that mainly consists of Triticum turgidum ssp. durum modern varieties/advanced breeding
lines, derived from worldwide breeding programs, durum wheat landraces (192), and
a selection of wild and domesticated emmer wheats to maximize diversity. The TGC
collection [34] consists of 1856 accessions designed to cover most of the variation present
in tetraploid wheats, based on the analysis of accession passports, and comprises wild and
domesticated emmer, durum wheat landraces and cultivars, and tetraploid subspecies.
Small seed amounts of the GDP, TGC and of a Tetraploid Core Collection (TCC), which
comprises 432 accessions capturing over 95% of the GDP and TGC biodiversity, is available
for research, breeding and training purposes at the developers, under standard MTA terms
and conditions. Furthermore, genotypic data related to thousands of single-nucleotide
polymorphism (SNP) markers [36] are also freely available at the GrainGenes site (https://
wheat.pw.usda.gov/GG3/global_durum_genomic_resources (accessed on 2 April 2021)).

3. Exploration of Genetic Diversity and Population Structure

Selection activities in the frame of the ongoing breeding programs led to a reduction
of the diversity in genetic materials and are considered as a bottleneck in crop evolution
after the domestication process. This assumption is accompanied by the idea that many
alleles useful for breeding could have been lost in the selection process. Therefore, in the
last few years a growing interest has focused on analysing genetic diversity in landrace
collections in cereal crops.

In some cases, these studies were aimed at characterizing a limited number of impor-
tant genotypes, such as those traditionally grown by farmers in particular areas. The genetic
analyses, carried out on a proper number of individuals for each accession, often showed
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a certain degree of heterogeneity in each landrace. As an example, Mangini et al. [37]
carried out a phenotypic and molecular analysis of three durum and one common wheat
Italian landrace population, and the SNP characterization revealed different haplotypes
within each landrace, indicating a genetic structure based on a mixture of genotypes. In
other cases, landraces were maintained as inbred lines, and analysis on very large collec-
tions became possible. These analyses were often focused on panels of landraces with a
specific geographical origin, as in the case of durum or common wheat landraces from
Ethiopia [38,39], Sicily [40], Morocco [41], Iran [42], Palestine and Israel [43], Pakistan [44],
Turkey [45] and Mexico [46]; barley from Nepal [47], the Canary Islands [48], Tunisia [49,50]
and Jordan [51]; oat from Poland [52] and Spain [53]; rice from Pakistan [54] and India [55]
and millets from Senegal [56] and China [57,58]. If focusing on specific geographic areas has
the advantage of exploring within a range of genotypes well adapted to that environment,
examining wider collections opens the possibility of investigating the genetic relationship
across landraces spread around the world, and having a more precise estimation of the
genetic diversity within the group of landraces and with respect to advanced breeding lines
or modern cultivars. To quote some examples, studies carried out on panels of hundreds
of landraces have been considered in durum and common wheat [35,59,60], barley [61,62]
and rye [63]. In general, a higher genetic diversity has been observed in the group of
landraces compared to the groups of advanced breeding lines and modern cultivars, indi-
cating landraces as a useful source of variation for breeding. Additionally, when clustering
and population structure analyses have been considered, the total genetic variation was
higher within than between groups, and the groups were in general consistent with the
geographical origin of the lines, except in a few cases. Mzid et al. [64] assessed genetic
diversity in a panel of 53 Lebanese barley landraces through the electrophoretic pattern
of the seed storage proteins, hordeins. In this case, the absence of correlation between the
genetic variability and the geographic origin of sample provenance was explained by the
fact that Lebanon is a small country where seeds are easily exchanged between farmers’
communities in the different regions. Similarly, Yadav et al. [47] phenotypically evaluated
25 naked barley landraces from different regions of Nepal. The UPGMA cluster analysis,
carried out with qualitative phenotypic descriptors and quantitative traits, categorized
the landraces in five clusters with no distinct regional grouping patterns. In this case,
principal component analysis revealed the quantitative traits, such as grain yield, plant
height and earliness, and qualitative traits, such as grain colour, lemma awn/hood and
lemma awn barbs, to be the principal discriminatory characteristics of the Nepalese naked
barley landrace collection.

Phenotypic evaluation of landraces is important to identify sources of useful loci
for traits of interest in breeding and pre-breeding programs, in relation to traits with a
simple genetic basis as the resistance to diseases, but also to complex traits such as grain
yield (reviewed by Dwiwedi et al. [5]). Nevertheless, a clearer picture, in terms of genetic
diversity, can be achieved using molecular markers. Markers based on polymorphisms
at the level of seed storage proteins have been used in different cereal species such as
Ethiopian emmer accessions [49], durum wheat and barley landraces [64,65]. Molecular
markers based on DNA have been developed, both at the chromosome and the DNA
sequence level. Polymorphisms were identified at the level of chromosome banding,
through cytofluorometry [66,67]. The analysis of 58 varieties and landraces demonstrated a
remarkable reproducibility and sensitivity of flow cytometry for the detection of numerical
and structural chromosome changes [68]. In this regard, the dissection of complex genomes
by flow cytometric sorting into the individual chromosomes reduces its complexity in a
lossless manner, having a significant impact in many areas of research and giving a strong
impulse to the sequencing of complex plant genomes [69–71]. At sequence level, DNA-
based molecular markers have become the most suitable tool in this kind of study, thanks
to their informativeness and to the great reduction in time processing and costs observed
in the last few years. Random Amplified Polymorphic DNA (RAPD) markers were initially
used for assessing genetic diversity in cereal landraces [49], but they were characterized
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by a low reproducibility, therefore Simple Sequence Repeat (SSR) markers became the
method of choice thanks to their reproducibility and informativeness with a high number
of alleles detected per locus. As an example, 8.1 alleles per locus were detected in a panel
of 66 barley landraces from Tunisia [50], and 14.6 alleles per locus were identified in a
collection including 36 oat commercial varieties and 141 landraces from Spain [53]. In more
recent times, high-throughput methods have been developed, such as those based on fixed
markers arrays, which include Diversity Array Technology (DArT) markers and SNP arrays.
These methods have been shown to be suitable for genetic studies on cereal landraces
and can assess a large number of entries, as in the case of panels with several hundreds
of durum wheat landraces from Spain, assessed with DArT markers, or from Ethiopia
and different countries worldwide, tested with SNP arrays [35,39]. An important aspect
is that a certain ascertainment bias should be considered, as these platforms were mainly
developed starting from cultivars [34]. For this reason, methods based on Genotyping
by sequencing, including DArTseq, are also used in this kind of study [46,72]. The use of
high-throughput markers allowed, in particular, the collection of more precise information
on decay of linkage disequilibrium in landrace panels, which showed a higher resolution
compared to commercial cultivars, for their use in association mapping analysis [51,73].
Moreover, the availability of a large number of markers with a good coverage of the genome
is important to identify rare and private alleles, which are present only in a defined group
of genotypes [35–60]. This kind of knowledge is very important for breeding, as landraces
can be chosen not only based on their diversity per se, but also for specific alleles of interest
in a particular breeding program.

4. Landraces as a Genetic Resource to Identify the Genetic Factors Responsible for
Resistance to Biotic and Abiotic Stresses

The evolution of plant breeding with the consequent genetic erosion and the gradual
shift towards a model of agriculture based on genetic uniformity results in the need to
re-gain genetic variability to adapt crops to climate changes [74]. The importance of
keeping diversity in breeding programmes has been well established. The possibility of
accessing the information present in the gene banks offers a significant contribution to
the identification of genes/alleles useful in the populations of landraces preserved in the
various ex situ collections.

4.1. Abiotic Stresses and Traits of Agronomic Importance in Limiting Environments

The identification of abiotic stress tolerant alleles in landraces of cereal crops through
mapping and GWAS approaches is of great importance to improve cereal crop adaptation
to stress-prone environments. Two types of studies have been carried out in this regard:
on one hand, traits directly associated to tolerance to abiotic stresses have been analysed
by assuming their importance in improving the agronomic performance of crops in stress-
prone environments. On the other hand, landraces have been evaluated for grain yield and
quality, or related traits in limited environments. For the first kind of investigation, in rice,
the discovery of submergence-tolerant landrace ‘FR13A’ led to the identification of the locus
SUBMERGENCE 1 (SUB1) located on chromosome 9, which codes for ethylene response
factor [75]. The positional cloning of SUB1 locus revealed three genes: SUB1A, found in
tolerant lines, and SUB1B and SUB1C, found only in intolerant lines [76,77]. In turn, it
was found that SUB1A has two allelic forms, SUB1A-1, associated with tolerant lines, and
SUB1A-2, associated with intolerant line. Two QTLs for drought tolerance, based on leaf
wilting, were recently identified on chromosomes 2H and 5H in the Chinese barley landrace
‘TX9425’ [78], which account for 42% and 14% of phenotypic variation, respectively. The
QTL on 2H was closely linked with a gene controlling ear emergency, while the candidate
gene underlying the QTL on 5H was suggested to be 9-cis-epoxycarotenoid dioxygenase 2
(HvNCED2), which is involved in the synthesis of abscisic acid. In another study of GWAS,
two candidate genes, HvCBF10B and HvCBF10A, underlying this QTL were identified,
which have regulatory function under drought condition [79]. Attempts to apply GWAS to
drought resistance are limited due to the intrinsic complexities of investigating drought
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stress and its associated responses. Using 645 wheat landraces collected from 10 Chinese
agroecological zones, Lin et al. [80] identified 26 QTLs associated with drought through the
evaluation of 16 seedling traits related to root and shoot growth and water content under
normal and drought (induced by polyethylene glycol) conditions. Extremely resistant and
sensitive accessions were identified for future drought resistance breeding and further
genetic analyses.

Rice productivity in both rain-fed and irrigated agro-ecosystems is also affected
by salt stress. Rice landraces ‘Nona Bokra’ and ‘Pokkali’ are excellent sources of salt
tolerance. Nona Bokra contributed a major QTL for shoot K+ concentration on chromosome
1 (SKC-1) [81], and additive QTLs with small effects, mainly affecting Na+/K+ ratio [82,83].
The SKC-1 gene, isolated by map-based cloning, encodes a sodium transporter that control
K+/Na+ homeostasis under salt stress [81]. Pokkali contributed a major QTL, Saltol1,
associated with Na+/K+ ratio and salinity tolerance [84] and additive QTLs associated
with Na+ and K+ concentration and with salt injury score [85]. Further researches revealed
that Saltol1 is a complex locus, mapped on chromosome 1, with multiple Pokkali alleles
regulating shoot Na+/K+ homeostasis [86,87]. Similarly, the barley landrace ‘TX9425’
contributed a major QTL for salinity tolerance on chromosome 7H, explaining 28% of
phenotypic variation estimated by plant survival under salt stress [78], and a significant
QTL on chromosome 2H that explains 45% of phenotypic variation in the potting mixture
trials, using plant survival and leaf chlorosis as evaluation criteria [88]. Finally, another
salt tolerant locus, HvNax4, was identified on chromosome 1HL in the Algerian landrace
‘Sahara 3771’ [89].

Another trait, potentially limiting crop production, is boron toxicity. Tolerance to
toxicity is associated with the ability to maintain low boron concentrations in the shoot [90].
The Bot1 gene, responsible for the high boron-toxicity tolerance of the Algerian barley
landrace ‘Sahara 3771’, was identified [91]. In bread wheat, the boron tolerant landrace
‘G61450’ contributed the boron toxicity gene, Bo4, which was mapped on chromosome
4AL [92].

Cereal landraces are also important sources of beneficial alleles for grain yield and
quality in low-producing environments. For this reason, collections of landraces have been
assessed in mapping studies to identify genetic determinants for these traits. As grain yield
is a trait with a very complex genetic basis and a strong genotype x environment interaction,
in some cases traits which are strongly correlated with yield have been considered. As
an example, different leaf traits were assessed in a panel of 180 Vietnamese rice landraces
in controlled conditions, such as leaf dry matter percentage, which can be considered a
proxy for the photosynthetic efficiency per unit leaf area, contributing to yield [93]. Genetic
analysis with more than 21,000 SNP markers led to identified QTLs, some of which were in
a position where genes with a known function in leaf development or physiology were
located. Similarly, Ta et al. [94] analysed several traits related to panicle architecture, one of
the key components of rice yield, in a panel of Vietnamese landraces.

Numerous studies have focused on the evaluation of grain yield and yield components
directly. Huang et al. [95] identified ~3.6 million SNPs by sequencing 517 rice landraces
and performed GWAS for 14 agronomic traits based on a high-density haplotype map of
the rice genome. Many chromosomal regions were mapped in this study, as the overall
genetic variation observed in this panel represented at least 80% of the world’s rice cul-
tivars. In this case, characterizing a large panel of cereal landraces with a high-density
marker system, based on genome re-sequencing, provided useful information not only
on genetic determinants of traits of agronomic importance, but also on genetic relation-
ships across groups of genotypes adapted to various agro-climatic conditions. A panel of
150 Jordanian landraces was evaluated for yield and yield components in Jordan under
rain-fed conditions [51]. The GWAS analysis allowed the identification of three significant
QTLs located at 1H, 2H and 7H, important for grain yield in dry environments. Moreover,
three accessions with high yield and stability across environments were identified [51].
Studies in which favourable and limiting environments were compared allowed the iden-
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tification of genomic regions specifically involved in sustaining grain yield and quality
in difficult conditions. Alleles that were adaptive under drought stress conditions for a
number of agronomic traits, including yield, were identified in a collection of 298 Iranian
bread wheat varieties and landraces [96] (Rahimi et al. 2019). Fourteen large-effect QTLs
for grain yield associated with drought adaptation were identified in rice landraces, six
of which were effective in multiple genetic backgrounds and environments [97]. A set of
472 rice genotypes comprising landraces and breeding lines was evaluated under field
conditions with low and recommended nitrogen to identify genotypes with relative higher
yield under low nitrogen, together with 12 genomic regions for yield and yield associated
traits and three candidate genes from QTL regions showing enhanced expression in the
genotypes with promising yield under low N [98]. As regards phosphorus deficiency,
widespread in tropical soils, the well-known gene Phosphate uptake 1 (Pup1), identified in
the rice landrace ‘Kasalath’ and located on chromosome 12, increases phosphorus uptake
and confers significant grain yield advantage in phosphorus deficient soils [99,100]. Pup1
is found in landraces or cultivars adapted to drought-prone environments [101] and it is
effective in different genetic backgrounds and environments [102]. A study on the func-
tional mechanism of Pup1 revealed the presence of a Pup1-specific protein kinase gene,
named Phosphorus starvation tolerance 1 (PSTOL1), which is absent in intolerant cultivars.
The overexpression of POSTL1 significantly enhances grain yield in phosphorus deficient
soils, promoting early root growth, thereby enabling plants to acquire more phosphorus
and other nutrients [103].

For a good agronomic performance in stress-prone environments, it is important to
sustain not only grain yield but also quality. A good variation has been found in landraces
as an example for storage proteins in wheat grain [104]. In the last few years in particular, a
great interest has arisen for traits related to the nutritional quality of cereal grain for human
nutrition. A core set of 190 rice landraces was used to decipher the genetic structure and
to discover the chromosomal regions containing QTLs affecting the grain micro-nutrients
and fatty acids, as well as yield-related traits [105]. A total of 22 significant QTLs were
identified, comprising those involved in the control of content of Zn, oleic acid and Fe.
Landraces with a strong expression of the traits analysed in this study and the closely
linked molecular markers represent a valid tool for the use of these QTLs in rice breeding
for developing new varieties with high yield and nutritional value.

These results confirm that landraces, thanks to their long evolutionary history and
adaptation to stressful environments, are ideal genetic resources to explore novel genetic
variation for responses to environmental constraints. In particular, landraces are an effective
source of useful alleles to sustain grain yield and quality in both favourable and limiting
environments. In some cases, the loci involved in the control of yield in good conditions
can still maintain a good level of production when stresses are mild [106]. In other cases,
alleles which specifically express in environments with more pronounced stress conditions
have been identified in landraces, which can help in breeding for improved lines well
adapted to specific areas.

4.2. Biotic Stresses

Plant diseases are serious constraints to the production of cereal crops. During the
vegetation period, the largest infections are caused by pathogenic fungi. Powdery mildew
and rusts of cereals and grasses are the most dangerous diseases of wheat and barley. Head
blight caused by different fungi of the genus Fusarium also affect wheat, rye, triticale,
barley and oat crops, but also maize. Genetic improvement of resistance to pathogens
through breeding represents the best economical and eco-friendly alternative to minimize
yield losses. Many studies aimed at identifying resistance genes/loci against various
diseases are available for cereals. Most of these studies were based on the analysis of
biparental populations and, more recently, GWAS has been employed. Landraces may
carry new sources of resistance that can be exploited to enrich the narrow resistance
spectrum currently found in adapted cultivars. Studies that have reported screening with
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molecular markers linked to specific resistance genes of panels including landraces grown
in a particular geographic area are available, such as the collection of rice landraces and
breeding lines from India evaluated for 22 genes against the fungus Magnaporthe oryzae,
from which two landraces emerged for high resistance to blast, and were therefore useful in
breeding programs [107]. In particular, the landrace Tetep was the donor of the Pi54 gene
for broad-spectrum blast resistance, which has been cloned, and transgenic lines harboring
Pi54 showed a high degree of resistance to diverse strains of blast pathogen [108].

Many studies that have focused on landraces as a good reservoir of resistance genes
against rusts are available for wheat [109–121]. The Portuguese durum wheat landrace
PI 192051 has been used to map leaf and stem rust resistance QTLs on chromosomes
4A and 7A, respectively, and to develop SNP markers tightly linked to the identified
loci [122]. A GWAS was performed using 152 wheat landraces from China to identify
effective stripe rust resistance loci, which resulted in 19 accessions displaying stable and
high degrees of resistance to stripe rust development when exposed to mixed races of Pst
at the adult-plant stage in multi-environment field assessments, and 40 QTL regions for
adult-plant resistance [123]. A multi-pathogen resistance gene, Lr67, which confers partial
resistance to all three wheat rust pathogen species (Pt, Pst, Pgt) and powdery mildew
(Bgt), as demonstrated by using a combination of comparative genomics, mutagenesis and
transformation studies, was isolated from a bread wheat landrace (PI250413) [124]. Wheat
landraces have also been studied for other diseases, including Fusarium Head Blight [125],
barley yellow dwarf (BYD) [126], powdery mildew [127–129] and stem sawfly [130]. A
recombinant inbred line (RIL) population derived from Haiyanzhong, a Chinese wheat
landrace showing a high level of resistance to FHB spread within a spike (type II resistance),
has been used to map six QTLs (one major and five minor) and obtain KASP markers useful
for MAS [125]. In particular, it is known that Germplasm from East Asia harbours highly
resistant genotypes, including landraces (e.g., Wangshuibai, Nobeokabozukomugi) [131].
Indeed, Wangshuibai is an FHB-resistant Chinese landrace unrelated to cv. Sumai 3, the
most commonly used FHB-resistant source, and it was the source of two major type I
resistance FHB resistance QTLs, named Fhb4 and Fhb5, that were fine mapped by using
NIL populations [132,133].

Landraces from China were also considered very good sources of powdery mildew
resistance. For example, the Chinese wheat landrace Xuxusanyuehuang has been found by
comparative genomics analysis to possess a single recessive powdery mildew resistance
gene, Pm61, on chromosome 4A [128], whereas the landrace Duanganmang has been used
to map a new gene, PmDGM, conferring powdery mildew resistance [134]. Resistance
genes Pm24, Pm24b and MlHLT were identified in wheat landraces Chiyacao, Baihulu and
Hulutou, respectively [135]. In particular Pm24 was map-based cloned, and it was found to
be a rare natural allele of tandem kinase protein (TKP) with putative kinase pseudokinase
domains. A 6-bp deletion at the kinase domain was considered critical for the gain of pow-
dery mildew disease resistance [135]. Finally, the gene Pm3b, originating from the hexaploid
wheat landrace Chul, was found by positional cloning to be a member of the coiled-coil
nucleotide binding site leucine-rich repeat (NBS-LRR) type of disease resistance genes [136].
Regarding barley landraces, most studies are focused on resistance against fungus Blumeria
graminis f. sp. Hordei [137–139]. The mlo (Mildew resistance locus o)-based resistance is
considered the most reliable weapon to protect plants from infection by this fungus [140].
Loss of function of one or more of such genes is associated with plant immunity. Ethiopian
landraces of barley were the first known examples of natural mlo mutants [140]. Moreover,
three QTLs conferring broad spectrum resistance to powdery mildew were identified on
chromosomes 7HS, 7HL and 6HL in the Spanish barley landrace-derived lines SBCC097
and SBCC145 [137], whereas the barley line 2553-3, selected from a Moroccan landrace, has
been reported to possess a new resistance gene, named MlMor [139]. QTL/genes for net
blotch disease [141,142], stem rust [143], barley yellow mosaic virus (BaYMV), barley mild
mosaic virus (BaMMV) [144] and barley scald [141] have also been documented.
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Very recently, a genetic analysis of a worldwide barley collection, including 277 landraces,
for resistance to net blotch disease (Pyrenophora teres f. teres) has been carried out, resulting
in 15 QTL regions, four of which had never been described in previous studies [142]. Finally,
stem rust resistance has been characterized in barley landraces, in particular against the
African TTKSK race, and the rpg4/Rpg5 locus has been indicated to be involved in conferring
resistance [143].

Few genetic studies for disease resistance in maize and oat landraces are available.
The well-known gene Htn1, reported to code a wall-associated receptor-like kinase by
high-resolution map-based cloning, represents an important source of genetic resistance
against northern corn leaf blight that was originally introduced from a Mexican landrace
into modern maize breeding lines in the 1970s [145]. Very recently, two European maize
landraces were analysed individually for Gibberella ear rot (GER) resistance using genome-
wide association studies and genomic selection (GS) [73]. Loci with small effects were
found, and for two SNPs candidate genes were proposed belonging to functional groups,
including binding activity, kinase activity, response to stress/stimulation, signal trans-
duction, catalytic activity and metabolic and biosynthetic processes. Moreover, two RIL
populations were constructed to elucidate the genetic basis of resistance to Maize rough
dwarf disease (MRDD), a significant viral disease caused by rice black streaked dwarf virus
(RBSDV), resulting in the resistance QTL (qZD-MRDD8-1) with the largest effect (more
than 23% of the phenotypic variability observed) [146]. Finally, Montilla-Bascòn et al. [147]
analysed, by GWAS, a panel of 177 oat accessions, including cultivars and landraces, for
crown rust and powdery mildew, providing markers as good candidates for MAS.

In conclusion, cereal landraces have a great potential as sources of novel disease
resistance genes, and a good combination of these genes could help to alleviate diseases.
Therefore, more efforts are needed to utilize genomic approaches in order to exploit genetic
variability across landrace collections worldwide.

The QTLs/Genes for abiotic and biotic stresses identified in cereal landraces have
been summarized in Table 1.

Table 1. QTLs/Genes for abiotic and biotic stresses identified in cereal landraces.

Species Landrace (Origin) Gene/QTL Trait Analysis Type Refs.

Abiotic Stress

Wheat G61450
(Greece) Bo4 Boron tolerance Molecular mapping [92]

Rice FR13A
(India) SUB1 Submergence tolerance Molecular mapping [75]

Rice
Aus, Indica, and

Basmati accessions
(India)

14 QTLs Drought tolerance Molecular mapping [97]

Rice Nona Bokra
(India) qSKC-1 Salinity tolerance Molecular mapping [81]

Rice Nona Bokra
(India) 16 QTLs Salinity tolerance Molecular mapping [82,83]

Rice Pokkali
(India) Saltol1 Salinity tolerance Molecular mapping [84]

Rice Pokkali
(India) 10 QTLs Salinity tolerance Molecular mapping [85]

Rice Kasalath
(india) PUP1 Phosphorus uptake increase Molecular mapping [99,100]

Barley TX9425
(China) 2 QTLs Drought tolerance Molecular mapping [78]

Barley Accessions from diverse
geographic areas QRdw.5H Drought tolerance GWAS [79]

Barley Chinese accessions 26 QTLs Drought tolerance GWAS [80]

Barley TX9425
(China) 1 QTL Salinity tolerance Molecular mapping [78]
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Table 1. Cont.

Species Landrace (Origin) Gene/QTL Trait Analysis Type Refs.

Barley TX9425
(China) 1 QTL

Salinity and
waterlogging

tolerance
Molecular mapping [88]

Barley Sahara 3771
(Algeria) HvNax4 Salinity tolerance Molecular mapping [89]

Barley Sahara 3771
(Algeria) Bot1 Boron tolerance Molecular mapping [91]

Biotic Stress

Wheat AUS27858
(Australia) Yr51 Stripe rust resistance Molecular mapping [109]

Wheat CItr 4311
(Iran) Sr9h Stem rust resistance Molecular mapping [110]

Tetraploid
Wheat

Accessions from diverse
geographic areas 35 QTLs Stem rust resistance GWAS [111]

Wheat Ethiopian accessions 24 QTLs Stem and stripe
resistance GWAS [113]

Wheat PI 182103
(Pakistan) Yr79 Stripe rust resistance Molecular mapping [114]

Wheat Americano 44
(Uruguay) 3 major QTLs Leaf rust resistance Molecular mapping [115]

Tetraploid
Wheat

Accessions from diverse
geographic areas 22 QTLs Stem rust resistance GWAS [116]

Wheat PI 362698
(Montenegro) 5 QTLs Stem rust resistance Molecular mapping [117]

Wheat
Pingyuan 50/Mingxian

169
(China)

8 QTLs Leaf rust resistance Molecular mapping [118]

Wheat Iranian accessions 54 QTLs Stem rust resistance GWAS [119]
Wheat ICARDA accessions 19 QTLs Stripe rust resistance GWAS [120]

Wheat Mexican accessions 17 QTLs Stripe and stem rust
resistance GWAS [121]

Durum
Wheat

PI 192051
(Portugal)

2 major and 3
minor QTLs

Leaf and stem rusts
resistance Molecular mapping [122]

Wheat Chinese accessions 40 QTLs Yellow rust
resistance GWAS [123]

Wheat PI 250413
(Pakistan) Lr67

Leaf, stem and stripe rust,
and powdery mildew

resistance

Mutagenesis and
transformation [124]

Wheat Haiyanzhong
(China) 6 QTLs Fusarium Head Blight

resistance Molecular mapping [125]

Wheat Chinese and Australian
accessions 36 QTLs Barley yellow dwarf virus

resistance GWAS [126]

Wheat Hulutou
(China) MlHLT Powdery mildew

resistance Molecular mapping [127]

Wheat Xuxusanyuehuang
(China) Pm61 Powdery mildew

Resistance Molecular mapping [128]

Wheat Honghuaxiaomai
(China) PmHHXM Powdery mildew

resistance Molecular mapping [129]

Wheat Duanganmang
(China) PmDGM Powdery mildew

resistance Molecular mapping [134]

Wheat
Chiyacao, Baihulu

Hulutou
(China)

Pm24, Pm24b,
MIHLT

Powdery mildew
resistance Molecular mapping [135]

Wheat ChuI Pm3b Powdery mildew
resistance Positional cloning [136]

Durum
Wheat

PI 166471
(Turkey) 9 QTLs Stem sawfy

resistance Molecular mapping [130]
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Table 1. Cont.

Species Landrace (Origin) Gene/QTL Trait Analysis Type Refs.

Wheat Wangshuibai
(China)

2 QTLs
(Fhb4, Fhb5)

Fusarium Head Blight
resistance Molecular mapping [132,133]

Rice Tetep
(Vietnma) Pi54 Blast resistance Molecular mapping [108]

Barley SBCC097/SBCC145
(Spain) 3 QTLs Powdery mildew

resistance

Molecular mapping
and positional

cloning
[137]

Barley Chevallier
(UK) 5 QTLs Powdery mildew

resistance Molecular mapping [138]

Barley
Landrace 255 (ICARDA

No. ICB 31956)
(Morocco)

MlMor Powdery mildew
resistance Molecular mapping [139]

Barley Ethiopian and American
accessions 51 QTLs Leaf scald and net blotch GWAS [141]

Barley Accessions from diverse
geographic areas 15 QTLs Net blotch GWAS [142]

Barley
Hv501, Hv545,
Hv602, Hv612
(Switzerland)

Rpg5 Stem rust BSA [143]

Barley HOR3298
(Iran) eIF4E Barley yellow

mosaic virus BSR-seq [144]

Maize

Kemater Landmais
Gelb/Petkuser
Ferdinand Rot

(Germany)

8 QTLs Gibberella ear rot GWAS [73]

Maize Pepitilla
(Mexico) Htn1 Northern Corn leaf blight Map-based cloning [145]

Maize D863F/ZS301
(China) 10 QTLs Rough dwarf disease Molecular mapping [146]

Oat Spanish accessions 6 QTLs Crown rust and
powdery mildew GWAS [147]

GWAS = Genome-wide Association study; BSA = Bulked segregant analysis; BSR = Bulked segregant RNA.

5. Use of Landraces in Cereal Breeding

Plant breeders who want to create new high-yielding varieties tend to make crosses
among élite lines where they have the highest likelihood of developing new varieties.
Currently, climate change is affecting grain yields worldwide, threatening food quality and
security. The cereals grown in many areas worldwide, such as the Mediterranean area, are
often exposed to biotic and abiotic stresses, such as high temperatures and water stress,
especially during the filling kernels period. Compared to modern cultivars, landraces are
often resilient to stresses and represent a valuable source of germplasm for meeting the
future needs of sustainable agriculture in the context of climate change [16,148,149].

The wide genetic variability and high potential for adaptation to extreme climatic
conditions of landraces make them important for the genetic improvement of cereals,
particularly in improving agronomic traits such as yield and yield stability [150–153].
Indeed, they can provide new genes or ‘new’ allelic variants for known functional genes
which could be introgressed into modern varieties by hybridization and other approaches in
breeding programs [153]. For these reasons, it is important to monitor the genetic diversity
maintained in the landraces, intensifying phenotypic and genetic characterization to find
new beneficial alleles/loci for the traits of interest to use in breeding programmes [154]
(Figure 1).
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Improving resistance to biotic stresses is, in general, a simple task, as many resistance
genes provide a complete, even if race-specific, resistance. Examples are available in
different cereal species. Yr51, associated to marker sun104 in wheat landrace AUS27858, is
currently backcrossed into Australian and Indian wheat cultivars through marker-assisted
selection, to improve resistance to yellow rust [109]. As single gene-based resistance can
be easily overcome by new virulent pathogen races; the pyramiding of several R genes
into the same genetic background has been recognized as an efficient strategy to increase
and prolong disease resistance in cultivars. As many resistance genes have been mapped
in the landraces of different crops, they can be used as valuable sources in pyramiding
breeding programs. Interestingly, in recent years, single genes providing durable and multi-
pathogens resistance have been identified and cloned. One example is the landrace-derived
Lr67 gene, which was introduced into wheat cultivar Thatcher to produce the near-isogenic
Thatcher + Lr67 line, RL6077, confirming a resistance phenotype to a number of races
of wheat rusts and powdery mildew [124,155]. The availability of genome sequences of
different species has made possible the development of functional markers to be used in
breeding. For example, for one of the major blast resistance genes in rice, Pi54, a PCR-
based co-dominant molecular marker targeting an InDel identified in the exonic region of
the gene, co-segregating with blast resistance, has been developed and used for routine
deployment in MAS in breeding programs [156,157].

Improving tolerance to abiotic stresses is a more complex issue due to the quantitative
nature of this trait. Nonetheless, landraces have also been shown to be valuable sources of
beneficial alleles in this case.

Extensive studies have been done in rice, given the importance of this cereal in world
food supply. SUB1A-1 allele, found only in flooding tolerant lines, has been introgressed
through MAS into locally adapted and widely grown rice cultivars in Asia [158], improving
grain yield with no yield penalty under non-flooding [159]. This locus has also been
pyramided with the Saltol1 allele, associated with Na/K ratio to obtain rice cultivars highly
tolerant to salt stress [160]. Good results have also been obtained for tolerance to drought
stress. Indeed, the pyramiding of large-effect QTLs associated to drought tolerance and
carried by landraces led to the development and release of 17 height-yielding drought-
tolerant rice cultivars in Asia and Africa [97]. Other environmental constraints are due
to deficiency of nutrients or the presence of toxic metals in the soil. Rice has been greatly
improved for phosphorus uptake through the introgression into elite cultivars of Posphate
uptake 1 (Pup1) from the rice landrace Kasalath [100]. These lines showed significantly
increased grain yield on P-deficient soils [102]. In barley, the locus Bot1 responsible for the
high boron-toxicity tolerance was introgressed by MAS into commercial barley cultivars,
and the lines obtained showed lower yield than the recipient cultivars, which have been
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further tailored to develop lines carrying recombination events directly adjacent to Bot1
for use in barley breeding [91]. Improving grain yield is a very complex task due to the
high number of yield components and loci involved in their genetic control. Usually,
landraces are a valuable source for beneficial alleles to improve yield in low-producing
environments. Monteagudo et al. [161] improved an élite cultivar of barley through the
introgression of alleles from two local landraces, SBCC042 and SBCC073, selected from the
Spanish Barley Core Collection (SBCC), with high performance under low productivity
conditions. Favourable alleles from both landraces have been mapped on chromosome 1H,
encompassing the HvFT3 gene, which contributed to an acceleration of flowering and an
increase in thousand-kernel weight (TKW), and on chromosome 6H, which contributed to
increasing plant height and TKW. Favourable alleles responsible for an increased ground
coverage after winter, which could be exploited as an adaptive trait, were contributed only
by SBCC042. South American maize landraces are known for high-altitude adaptation
and tolerance to abiotic stresses [162]. Recently, the introgression of alleles from different
landraces into adapted maize cultivars has led to building new populations that are more
productive than recurrent parents, which can be used to develop cultivars and parental
lines of hybrids combining drought adaptation and high grain yield [162–164]. In general,
breeding programs aim to increase crop yield while maintaining, as much as possible, the
grain quality features of the lines. A successful example in this regard is the obtainment
of improved lines from the sorghum landrace M35-1, which out-yielded its parent in the
Indian drought-prone environment while maintaining its grain quality [165]. Nonetheless,
landraces can also contribute to actively improving grain quality. A classic example is
the Opaque-2 mutation, which improves kernel protein quality, and was identified in a
Peruvian maize landrace [166].

Despite the scientific literature on the role of cereal landraces in breeding, landrace
potential has not been fully exploited in modern breeding [167], as indicated by a study
on a worldwide wheat landrace collection, analysed with high throughput genotyping
platforms, that revealed a substantial amount of novel genetic diversity in the landraces,
which is either not captured in current breeding programs or has been lost due to previous
selection pressures [168]. The reduced utilization of durum landraces in breeding programs
has also been confirmed by Lodhi et al. [169]. Given the complexity of the problem, it is
clear that new strategies are required to overcome the limits of traditional approaches, such
as those based on the development of introgression lines, which is slow and affected by the
loss of genetic variability occurring when a new population is established by a very small
number of individuals from a larger population, or the negative effect of epistasis when
dealing with complex multigenic traits.

6. Conclusions

The use of cereal landraces as a genetic resource for breeding is a response to some negative
consequences of domestication, modern agricultural practices and conventional farming, which
led to the loss of genetic diversity and a reduction of yield in unfavourable environments.

Most of the genetic diversity present in cereal landraces is still little known and even
less used. A major part of this valuable landrace diversity is conserved in the farmers
and the world’s gene bank networks and should be largely exploited for traits of interest.
The information derived from gene banks, phenotypic assessment and high-throughput
genetic tools is valuable for the choice of parental lines to use in crosses aimed at obtaining
improved varieties, especially for enhancing the adaptation and productivity of crops in
situations of global climate change, to increase the sustainability of cereal crop production
in the future.
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