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Purpose: This study sought to determine whether machine learning
(ML) can be used to better identify the risk factors and establish the
prediction models for the prevalence and severity of coronary artery
calcification (CAC) in nondialysis chronic kidney disease (CKD)
patients and compare the performance of distinctive ML models
with conventional logistic regression (LR) model.

Materials and Methods: In all, 3701 Chinese nondialysis CKD
patients undergoing noncontrast cardiac computed tomography
(CT) scanning were enrolled from November 2013 to December
2017. CAC score derived from the cardiac CT was calculated with
the calcium scoring software and was used to assess and stratify the
prevalence and severity of CAC. Four ML models (LR, random
forest, support vector machine, and k-nearest neighbor) and the
corresponding feature ranks were conducted. The model that
incorporated the independent predictors was shown as the receiver-
operating characteristic (ROC) curve. Area under the curve (AUC)
was used to present the prediction value. ML model performance
was compared with the traditional LR model using pairwise com-
parisons of AUCs.

Results: Of the 3701 patients, 943 (25.5%) patients had CAC. Of the
943 patients with CAC, 764 patients (20.6%) and 179 patients
(4.8%) had an Agatston CAC score of 1 to 300 and ≥ 300,
respectively. The primary cohort and the independent validation
cohort comprised 2957 patients and 744 patients, respectively. For
the prevalence of CAC, the AUCs of ML models were from 0.78 to
0.82 in the training data set and the internal validation cohort. For
the severity of CAC, the AUCs of the 4 ML models were from 0.67
to 0.70 in the training data set and from 0.53 to 0.70 in the internal
validation cohort. For the prevalence of CAC, the AUC was 0.80

(95% confidence interval [CI]: 0.77-0.83) for ML (LR) versus 0.80
(95% CI: 0.77-0.83) for the traditional LR model (P= 0.2533). For
the severity of CAC, the AUC was 0.70 (95% CI: 0.63-0.77) for ML
(LR) versus 0.70 (95% CI: 0.63-0.77) for traditional LR model
(P= 0.982).

Conclusions: This study constructed prediction models for the
presence and severity of CAC based on Agatston scores derived
from noncontrast cardiac CT scanning in nondialysis CKD patients
using ML, and showed ML LR had the best performance.
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R eports from international registries confirm that car-
diovascular disease (CVD) accounts for ~45% of all-

cause mortality among nondialysis chronic kidney disease
(CKD) subjects.1 Coronary artery calcification (CAC),
independently predicting the risk of CVD, presents in 79%
of nondialysis CKD patients and is more severe compared
with the general population.2,3 The prevalence and severity
of CAC have prognostic significance and have been linked
to all-cause mortality in nondialysis CKD patients.4

Therefore, identifying the related risk factors and building
the prediction model for the prevalence and severity of CAC
in nondialysis CKD is necessarily required.

The prevalence and severity of CAC in CKD patients
are highly associated with loss of renal function. In addition
to the traditional CAC risk factors (age, hypertension, and
hypercholesterolemia), CKD also confers nontraditional
risk factors (abnormal mineral metabolism, increased oxi-
dative stress, and inflammation) for the prevalence and
severity of CAC in nondialysis CKD patients.5 Due to the
high CAC prevalence in nondialysis CKD patients, identi-
fying the most relevant risk factors and further establishing
the prediction model have a great clinic value to prevent the
development and progression of CAC in this special sub-
population. Although many attempts have been made to
identify risk factors, the findings were inconsistent and had
limited success based on the conventional logistic regression
(LR).6,7 The development and progression of CAC in CKD
patients are complex process, conventional LR methods had
only the modest ability to work in this context.

Fundamental limitations of many conventional LR-
based models include the selection of variables and the lin-
earity of the model. Advances in machine learning (ML)
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have resulted in the creation of algorithms capable of
building models from large data sets with a multitude of
variables, facilitating the construction of models for data-
driven prediction or classification.8 There are evidences
suggesting that ML algorithms develop models from test
inputs to derive predictions that can substantially outper-
form traditional regression prediction models in heart
failure,9,10 but the data in predicting the prevalence and
severity of CAC are scant in CKD patients.

Therefore, based on the Agatston scores derived from
the noncontrast cardiac computed tomography (CT) scan-
ning, this study assessed the feasibility and accuracy of ML
to predict the presence and severity of CAC, ascertained the
potential risk factors in nondialysis CKD patients, and
compared the performance with traditional LR.

MATERIALS AND METHODS

Study Participants
The local Institutional Review Board approved this

retrospective study of the registry data (ChiCTR-OCH-
14004447).11 In all, 5102 CKD patients from Jinling Hos-
pital, Medical School of Nanjing University were included
between November 2013 and December 2017 in this study.
Inclusion criteria were as follows: (a) CKD patients; CKD is
defined as abnormalities of kidney structure or function,
present for > 3 months, with implications for health,
according to Kidney Disease: Improving Global Outcomes
(KDIGO) 2012 Clinical Practice Guideline for the Evalua-
tion and Management of CKD and12 (b) ability to provide
informed consent for participation. The exclusion criteria
were as follows: (a) CKD patients undergoing dialysis or
renal transplantation; (b) patients with acute kidney injury,
cirrhosis, polycystic kidney disease, or renal cell carcinoma,
parathyroidectomy, or evident malignancies; (c) patients
with history of invasive procedure for atherosclerotic CVD
(coronary artery bypass graft, angioplasty, valve replace-
ment, pacemaker placement or other vascular surgery) or
with conditions making arterial calcification measurements
technically impossible or unreliable, such as cardiac
arrhythmias. The flowchart of this study is shown in
Figure 1.

Coronary Artery Calcification Score (CACS)
Measurements

All enrolled participants underwent cardiac CT scan
without intravenous contrast administration using a dual-
source CT scanner (Definition, Siemens Healthcare,
Germany) with the following protocols: tube voltage
120 kVp, effective tube current 80 mAs, rotation time
330 ms, reconstructed slice thickness 3.0 mm, and pitch 1.5.
The field of view was set to include the entire heart, and the
z-axis direction included data from bifurcation of the
pulmonary arteries to the apex of the heart during an
expiratory breath holding with electrocardiography gating.

Imaging data sets were subsequently transferred to a
workstation (Siemens Healthcare, Germany). A blinded reader
with 3 years of experience in reading cardiac CT imaging (C.Y.)
measured the CAC. Window width and level settings were
adjusted to the investigator’s discretion to optimally identify
calcification. The CAC score was calculated with the commer-
cially available calcium scoring software (CaScoring Software,
Siemens Healthcare, Germany), which was used to identify and
score any calcium in the 4 main coronary arteries (the left main,
left anterior descending, left circumflex, and right coronary
artery). Using a semiautomated threshold-dependent algorithm,
calcifications within the coronary artery tree above a threshold
of 130HUwere included and a minimum of 3 contiguous pixels
were used for the identification of a calcific lesion. Each focus
exceeding the minimum criteria was scored using the algorithm
developed by Agatston et al,13 calculated by multiplying the
lesion area by a density factor derived from the maximal HU
within this area.

A binary scale was used to classify the CT examination
as to the presence or absence of CAC (Agatston score= 0 vs.
Agatston score > 0). Otherwise, based on the distribution of
Agatston scores, the CKD participants were divided into 3
groups as CAC score categories of 0 (no CAC), > 1 to 300
(moderate CAC), and > 300 (severe CAC).14,15

Measurements
Medical history, laboratory data, and anthropometric

measurements were obtained for each enrolled patient. Age,
sex, race/ethnicity, and medical history information were
acquired by questionnaires.

Body mass index is calculated as weight in kilograms
divided by height in meters squared. Smoking is defined as

FIGURE 1. Flowchart of this study.
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continuously smoking ≥1 cigarette a day for 6 months. Blood
pressure in the seated position was measured using an aneroid
sphygmomanometer after at least 5 minutes of quiet rest and
the average of 3 measurements was used as the final result.
Hypertension is defined as systolic pressure ≥140mmHg,
diastolic pressure ≥ 90mmHg, or self-reported use of an
antihypertensive medication. Diabetes is defined as a fasting
plasma glucose level of 126mg/dL or greater, a nonfasting
plasma glucose level of 200mg/dL or greater, or self-reported
use of any antidiabetic medication.

Blood samples were drawn in a fasting state. Levels of
glucose, total and high-density lipoprotein (HDL) choles-
terol, low-density lipoprotein cholesterol, triglycerides, cys-
tatin C, phosphorus, calcium, total parathyroid hormone
(PTH), urea nitrogen, uric acid, creatinine, and alkaline
phosphatase were measured from blood and urine samples
using standard laboratory methods. Levels of C-reactive
protein were measured using the particle-enhanced immu-
nonephelometry method.

An overnight random morning urine sample was col-
lected. Urine albumin was quantified using the turbidimetric
method. Estimated glomerular filtration rate (eGFR) was
calculated in the modified calculated using the 4-variable
Modification of Diet in Renal Disease (MDRD) Study
equation.16

ML Algorithms
ML methods were independently developed by in

DeepWise Medical Research platform (https://research.
deepwise.com/) and the detailed performance protocol as
described previously.17 Supervised ML algorithms with binary
classification were used to build predictive models. Pre-
processing of data included calculating complex parameters
and manually marking each input variable as either numeric or
categorical. To apply the data more efficiently and facilitate
the construction of MLmodels, one-hot encoding was used for
categorical data dimension. The primary steps involved the
following: (1) splitting data into training (n=2957 for the
prevalence of CAC and n=750 for the severity of CAC) and
validation set (n=744 for the prevalence of CAC and n=193
for the severity of CAC; validation set is part of the training
sets and only used for model super-parameter searching); (2)
based on the input data and labels (patient demographic,
clinical, and biochemical parameters information), we trained
4 ML models (LR, random forest [RF], support vector
machine [SVM], and k-nearest neighbor [KNN]). LR model is
a regression model. For each data sample, the LR model will
output the probability of being positive. In the training stage,
the goal of the model is to estimate a weight for each data
dimension to minimize the differences between prediction and
label. This weight matrix can tell us how each data dimension
will influence the final prediction and this is why LRmodel has
good interpretability. SVM is a binary classification model.
For each data sample, the SVM model will output distance
between the current data sample; the sign symbol of this dis-
tance indicates prediction is positive or negative. The goal of
this model in training stage is to find a linear hyperplane
separating positive data samples from negative data samples in
the training set with maximum margin. Besides, we applied
kernel function to the SVM model to map data into higher
dimensions to make a more accurate hyperplane. RF model is
an ensemble algorithm and consists of a collection of regres-
sion or classification decision trees. In the training stage, this
model is to fit these trees to data. Besides, in the prediction
stage, the model will output the average prediction of trees in

the forest. KNNmodel is a regression model and consists of an
input layer, a 64-unit hidden layer, and an output layer.

Given the sample size, performance evaluation was
assessed using a 10-fold cross-validation. For the imple-
menting procedure, the feature-selection method was used to
reduce the overfitting problem. The best hyper-parameters
and regularization parameters of each model would be
searched automatically based on different metrics in a
10-fold cross-validation. After optimal hyperparameters and
regularization parameters were chosen, the entire training
cohort was used to train the model, and the performance
was evaluated on internal validation cohorts.

Statistics Analysis
Statistical analyses were performed with SPSS 25.0 stat-

istical software (IBM, Armonk, NY). The statistical sig-
nificance levels were all 2-sided, with statistical significance set
at 0.05. Continuous data were depicted as mean±SD for
normally distributed data, while median and interquartile
range [interquartile range] was provided for non-normally
distributed data. Categorical data were depicted as frequencies
and percentages. For normally distributed data, independent
sample t tests or analysis of variance tests were used if
appropriate. For non-normally distributed data, independent
samples nonparametric test (Mann-WhitneyU test or Kruskal-
Wallis H) was used for analysis. For categorical data, Pearson
χ2 tests or Fisher exact tests were used, if appropriate. The
statistic value between the noncalcification and the calcifica-
tion group was called P1, while the statistic value between
moderate and severe groups was called P2.

The output of the classification model was calculated as
the prediction probability of the prevalence or severity of CAC
class. The performances of the models were shown as the
receiver-operating characteristic curve (ROC) and area under
the curve (AUC). The sensitivity and specificity were deter-
mined by the Youden index. DeLong test was used to compare
AUCs of these models and Bonferroni correction was applied
to determine the best performed ML model.18 Feature
importance was ranked according to the coefficient of each
parameter provided by the corresponding ML algorithms.

RESULTS

Study Characteristics
Of the 5102 CKD patients, 1401 patients were excluded.

The remaining 3701 patients were enrolled in the final analysis.
Of the 3701 patients, 943 (25.5%) patients had CAC, while
2758 (74.5%) patients had no CAC. Of the 943 patients with
CAC, 764 patients (20.6%) and 179 patients (4.8%) exhibited
an Agatston CACS of 1 to 300 and ≥ 300, respectively. After
random ranking, 2957 patients (Agatston score= 0: n=2207;
1≤ Agatston score <300: n= 614; Agatston score ≥300:
n=136) and 744 patients (Agatston score=0: n=551; 1≤
Agatston score <300: n=150; Agatston score ≥300: n=43)
comprised the primary training cohort and the independent
validation cohort, respectively. Table 1 shows the demo-
graphical, clinical, and biochemical characteristics in the
training and validation cohorts. No difference was found for
all variables between the primary training cohort and the
validation cohort (P=0.051 to 0.924).

Risks Factors for the Prevalence and Severity
of CAC

Baseline characteristics of participants according to
CAC score categories (Agatston score= 0 and Agatston
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score > 0) are illustrated in Table 2. Compared with those
without CAC, participants with CAC were to be older,
male, more likely to have a history of diabetes, hyper-
tension, on oral calcium agents and smoking, lower level of
eGFR, greater level of body mass index, total cholesterol,
HDL, calcium, phosphorus, alkaline phosphatase, urine
protein, PTH, 25-(OH)2-D3, glucose, urea nitrogen, crea-
tinine, cystatin C, and calcium phosphorus product (CPP)
(all P< 0.001). A multivariable analysis identified older age,
male, diabetes, hypertension, oral calcium agents, PTH,
creatinine, HDL, glucose, and CPP as independent pre-
dictors for the presence of CAC in nondialysis CKD
patients (age: 1.079 [1.070-1.088]; sex [male]: 1.904 [1.512-
2.397]; diabetes: 2.177 [1.759-2.694]; hypertension: 1.393
[1.137-1.707]; oral calcium agent: 1.564 [1.283-1.07]; PTH:
1.002 [1.001-1.003]; creatinine: 0.922 [0.859-0.989]; HDL:
0.688 [0.520-0.911]; glucose: 1.107 [1.052-1.165]; and CPP:
1.582 [1.320-1.897], Table 3).

We next evaluated the risk factors and prediction
model for the severity of CAC in all participants and 3
subgroups subdivided by CAC score categories (Agatston
score= 0, 1 to 299, and ≥ 300). Older age and diabetes were
associated with increasing CAC. There was a graded rela-
tionship between increasing CAC and higher levels of PTH,
glucose, urea nitrogen, creatinine, cystatin C, CPP, and
lower level of 25-(OH)2-D3 and eGFR (all P< 0.001)
(Table 2). Due to the non-normal distribution of CAC score
categories, negative log-log was first chosen as the connected
function and then the hierarchical LR analysis was per-
formed. A multivariable analysis identified older age, 25-
(OH)2-D3, urea nitrogen, glucose as independent predictors

for the severity of CAC in CKD patients (age: 1.049 [1.021-
1.078]; 25-(OH)2-D3: 0.971 [0.943-0.999], urea nitrogen:
1.010 [1.000-1.019], and glucose: 1.140 [1.067-1.219]
(Table 3).

ML Models and Performance
Figure 2 illustrates the ROC curves for training and

internal validation sets, along with the corresponding AUCs
of the LR, RF, SVM, and KNN. The AUCs for the training
cohort are shown in Table 3. For the prevalence of CAC,
the AUC was 0.82 (95% confidence interval [CI]: 0.80-0.83)
for LR, 0.80 (95% CI: 0.79-0.82) for RF, 0.82 (95% CI: 0.80-
0.83) for SVM, and 0.78 (95% CI: 0.76-0.79) for KNN,
respectively. For the severity of CAC, the AUC was 0.67
(95% CI: 0.63-0.70) for LR, 0.70 (95% CI: 0.66-0.73) for
RF, 0.69 (95% CI: 0.66-0.73) for SVM, and 0.67 (95% CI:
0.63-0.70) for KNN, respectively.

To further assess the models’ performance, ROC
curves and the corresponding AUC, sensitivity, and spe-
cificity of the 4 ML models and traditional LR prediction
model were assessed in the internal validation data sets
(Table 4). For the prevalence of CAC, the highest AUC
was LR (0.80, 95% CI: 0.77-0.83) and SVM (0.80, 95% CI:
0.77-0.82), intermediary for RF (0.78, 95% CI: 0.75-0.81),
and next for KNN (0.76, 95% CI: 0.73-0.79). LR had a
good prediction ability for the prevalence of CAC that was
better than the other three models (P= 0.048, 0.024, and
0.002 for RF, SVM, and KNN, respectively). There was no
significant difference in performance when compared LR
with the traditional LR prediction model (AUC: 0.80, 95%
CI: 0.77-0.83; P= 0.254). For the severity of CAC, the

TABLE 1. Characteristics of Demographic Information, Clinical Data, and Biochemical Parameters in the Primary and Validation Cohorts

Grouping

Indicators Primary Cohort (n= 2957) Validation Cohort (n= 744) P

General information
Number, n (%) 2957 (80.0) 744 (20.0)
Sex (male), n (%) 1987 (67.2) 489 (65.7) 0.446
Age (y) 45.86± 13.61 46.32± 13.16 0.400
Diabetes (yes), n (%) 800 (27.1) 200 (26.9) 0.924
Hypertension (yes), n (%) 1466 (49.6) 381 (51.2) 0.426
Oral calcium (yes), n (%) 1113 (37.6) 251 (33.7) 0.049
Smoking (yes), n (%) 790 (26.7) 190 (25.5) 0.515
Body mass index (kg/m2) 24.31± 3.67 24.44± 3.78 0.405

Biochemical indicators
Triglycerides (mmol/L) 1.72 [1.24-2.48] 1.72 [1.25-2.41] 0.529
Total cholesterol (mmol/L) 5.10 [4.22-6.21] 5.09 [4.25-6.12] 0.815
Low-density lipoprotein (mmol/L) 3.10 [2.29-3.47] 3.10 [2.37-3.52] 0.647
High-density lipoprotein (mmol/L) 0.93 [0.69-1.06] 0.93 [0.69-1.07] 0.986
Calcium (mmol/L) 2.19 [2.04-2.30] 2.19 [2.06-2.30] 0.439
Phosphorus (mmol/L) 1.20 [1.04-1.38] 1.21 [1.06-1.38] 0.089
Alkaline phosphatase (U/L) 68 [54-76] 69 [52-76] 0.483
C-reactive protein (mg/L) 0.70 [0.1-3.5] 0.90 [0.1-4.0] 0.264
Urine protein (g/L) 1.91 [0.91-4.35] 2.09 [0.91-4.50] 0.298
Parathyroid hormone (ng/L) 46.76 [30.94-64.95] 48.76 [30.92-64.95] 0.324
25-(OH)2-D3 (μg/mL) 12.43 [6.17-16.40] 12.60 [6.35-16.77] 0.249
Glucose (mmol/L) 5.13 [4.65-5.71] 5.19 [4.70-5.76] 0.190
Uric acid (μmol/L) 428 [360-502] 425 [353-595] 0.375
Urea nitrogen (mmol/L) 23.4 [17.5-35.5] 23.6 [17.1-35.78] 0.659
Creatinine (mg/dL) 1.58 [1.20-2.48] 1.53 [1.16-2.63] 0.390
eGFR (mL/min/1.73 m2) 47.85 [27.39-67.47] 49.36 [25.97-68.98] 0.427
Cystatin C (mg/L) 1.87 [1.36-2.52] 1.79 [1.30-2.53] 0.287
Calcium phosphorus product (m2mol2/L2) 2.59 [2.23-2.98] 2.62 [2.28-3.05] 0.032

Data are presented as n (%) or mean± SD or median [25th, 75th percentile].
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highest AUC was LR (0.70, 95% CI: 0.63-0.77), the second
highest for SVM (0.65, 95% CI: 0.57-0.71), then for RF
(0.62, 95% CI: 0.55-0.69), and KNN (0.53, 95% CI: 0.45-
0.60). There was no significant difference in performance
when compared the reference LR with SWM (P= 0.2544)
and traditional LR prediction model (AUC: 0.70, 95% CI:
0.63-0.77; P= 0.982), but significantly outperformed the
RF (P= 0.021) and KNN (P= 0.023).

The feature ranks of the corresponding top 10 variants
derived by the corresponding 3 ML algorithms for the
prevalence of CAC (feature ranks are not available for
KNN) as shown in Figures 3A–C. Among the variables,
nondiabetes, creatinine, nonhypertension, and HDL were
protective factors, while age, CPP, male, oral calcium,
glucose, and PTH were related to higher risk for the
prevalence of CAC. The feature ranks of the corresponding
top 5 variables derived by the corresponding 2 ML algo-
rithms for the severity of CAC (feature ranks are not
available for SVM and KNN). Among the variants,
25-(OH)2-D3 was protective, while age, glucose, creatinine,
and urea nitrogen were related to higher risk for the
severity of CAC (Figs. 3D, E).

DISCUSSION
This study identified some novel risk factors, such as

glucose and creatinine, that were highly associated with the
prevalence and severity of CAC in nondialysis CKD
patients and built the prediction model using ML methods
based on a large Chinese cohort. The established 4 ML
models, especially LR had the best prediction ability in the
internal validation cohort, indicating the robustness of our
developed ML models. Moreover, ML-based methods (LR)
showed similar accuracy in predicting the prevalence and
severity of CAC versus conventional multivariable LR
analysis. This is the first large, retrospective cohort study to
investigate the predictive value of associated risk factors

TABLE 2. Baseline Characteristics of Participants According to CAC Score Categories

Calcification

Index Noncalcification All 1-299 ≥ 300 P1 P2

General information
Number, n (%) 2207 (74.6) 750 (25.4) 614 (81.9) 136 (18.1)
Sex (male), n (%) 1413 (64.0) 574 (76.5) 469 (76.4) 105 (77.2) 0.001 0.838
Age (y), n (%) 42.60± 12.82 55.45± 11.15 54.50± 11.08 59.74± 10.49 0.001 0.001
Diabetes (yes), n (%) 412 (18.7) 388 (51.7) 305 (49.7) 83 (61) 0.001 0.016
Hypertension (yes), n (%) 984 (44.6) 482 (64.3) 390 (63.5) 92 (67.5) 0.001 0.363
Oral calcium (yes), n (%) 727 (32.9) 386 (51.5) 308 (50.2) 78 (57.4) 0.001 0.129
Smoking (yes), n (%) 516 (23.4) 274 (36.5) 216 (35.2) 58 (42.6) 0.001 0.102
Body mass index 24.08± 3.71 24.98± 3.49 24.89± 3.45 25.34± 3.66 0.002 0.177

Biochemical indicators
Triglycerides (mmol/L) 1.71 [1.25-2.47] 1.77 [1.21-2.51] 1.77 [1.19-2.54] 1.87 [1.33-2.34] 0.413 0.612
Total cholesterol (mmol/L) 5.05 [4.21-6.13] 5.20 [4.25-6.46] 5.19 [4.28-6.45] 5.34 [4.17-6.65] 0.020 0.977
Low-density lipoprotein (mmol/L) 3.09 [2.29-3.46] 3.14 [2.221-3.52] 3.14 [2.33-3.49] 3.03 [2.23-3.98] 0.489 0.840
High-density lipoprotein (mmol/L) 0.94 [0.70-1.07] 0.90 [0.68-1.00] 0.90 [0.69-0.98] 0.90 [0.66-1.09] 0.035 0.831
Calcium (mmol/L) 2.19 [2.06-2.30] 2.16 [2.01-2.28] 2.16 [2.00-2.28] 2.17 [2.01-2.28] 0.001 0.814
Phosphorus (mmol/L) 1.19 [1.02-1.36] 1.23 [1.08-1.41] 1.22 [1.08-1.40] 1.26 [1.09-1.45] 0.001 0.287
Alkaline phosphatase (U/L) 67 [53-74] 70 [58-80] 70 [58-80] 70 [58-84] 0.001 0.695
C-reactive protein (mg/L) 0.70 [0.10-3.30] 0.80 [0.10-4.00] 0.80 [0.10-4.00] 0.80 [0.10-4.00] 0.061 0.440
Urine protein (g/L) 1.79 [0.87-4.05] 2.25 [1.00-5.32] 2.16 [1.00-4.94] 2.92 [0.98-6.53] 0.001 0.081
Parathyroid hormone (ng/L) 44.96 [29.90-64.95] 53.66 [30.61-73.08] 49.26 [30.46-68.13] 64.95 [31.61-94.89] 0.003 0.004
25-(OH)2-D3 (μg/mL) 12.60 [6.53-17.02] 10.99 [5.17-14.68] 11.59 [5.33-15.19] 9.56 [4.29-12.60] 0.001 0.018
Glucose (mmol/L) 5.06 [4.62-5.54] 5.49 [4.80-6.46] 5.39 [4.77-6.31] 5.79 [5.16-7.65] 0.001 0.001
Uric acid (μmol/L) 427 [359-502] 432 [361-503] 431 [361-503] 436 [372-505] 0.496 0.668
Urea nitrogen (mmol/L) 22.30 [16.90-33.40] 27.00 [19.60-42.20] 26.10 [19.10-40.508] 31.50 [23.10-48.40] 0.001 0.001
Creatinine (mg/Dl) 1.53 [1.18-2.34] 1.78 [1.26-3.05] 1.72 [1.24-2.90] 1.99 [1.34-3.62] 0.001 0.018
eGFR (mL/min/1.73 m2) 50.11 [29.75-69.94] 39.12 [20.38-59.42] 40.28 [21.88-61.40] 31.75 [15.14-55.43] 0.001 0.009
Cystatin C (mg/L) 1.79 [1.32-2.37] 2.14 [1.54-2.83] 2.08 [1.52-2.79] 2.14 [1.63-3.45] 0.001 0.019
Calcium phosphorus product

(m2mol2/L2)
2.57 [2.21-2.96] 2.62 [2.30-3.02] 2.62 [2.29-3.01] 2.69 [2.36-3.13] 0.003 0.191

Data are presented as n (%) or mean±SD or median [25th, 75th percentile]. P1 refers to the statistic value between noncalcification and calcification groups,
while P2 refers to the statistic value between moderate and severe groups.

TABLE 3. Predictors for Presence and Severity of CAC in
Multivariable Analysis

Predictors Odds Ratio 95% CI P

Presence
Age 1.079 1.070-1.088 < 0.001
Sex (male) 1.904 1.512-2.397 < 0.001
Diabetes 2.177 1.759-2.694 < 0.001
Hypertension 1.393 1.137-1.707 0.001
Oral calcium agents 1.564 1.283-1.907 < 0.001
PTH 1.002 1.001-1.003 0.004
Creatinine 0.922 0.859-0.989 0.023
HDL 0.688 0.520-0.911 0.009
Glucose 1.107 1.052-1.165 < 0.001
CPP 1.582 1.320-1.897 < 0.001

Severity
Age 1.049 1.021-1.078 < 0.001
25-(OH)2-D3 0.971 0.943-0.999 0.044
Urea nitrogen 1.010 1.000-1.019 0.044
Glucose 1.140 1.067-1.219 < 0.001
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with the prevalence and severity of CAC based on ML
methods in nondialysis Chinese CKD patients.

ML methods use computer algorithms to identify pat-
terns in large data sets with a multitude of variables, and can

be used to build the prediction models. ML has shown the
potential to improve diagnostic accuracy and prognostic out-
comes compared with conventional statistical methods.19–21

The role of ML in building the prediction models for CVD has

FIGURE 2. ROC curves and AUCs for the prevalence and severity of CAC in training and internal validation sets for LR, RF, SVM, KNN, and
TS. A and B, ROC curves and AUCs for the prevalence of CAC in internal training (A) and internal validation (B) sets for LR, RF, SVM, and
MLP, respectively. C and D, ROC curves and AUCs for the severity of CAC in internal training (C) and internal validation (D) sets for LR, RF,
SVM, and MLP, respectively. TS indicates traditional logistic regression statistical.

TABLE 4. Performance of 4 ML and Traditional Logistic Regression Models to Predict the Prevalence and Severity of CAC in the Training
and Internal Validation Data Sets

Training Set, n= 2957 Internal Validation Set, n= 744

Prevalence LR RF SVM KNN TS LR RF SVM KNN TS

AUC 0.82 0.80 0.82 0.78 0.82 0.80 0.78 0.80 0.76 0.80
95% CI 0.80-0.83 0.79-0.82 0.80-0.83 0.76-0.79 0.81-0.84 0.77-0.83 0.75-0.81 0.77-0.82 0.73-0.79 0.77-0.83
Sensitivity (%) 83.87 84.00 84.40 83.33 87.07 81.35 70.47 80.83 72.54 78.76
Specificity (%) 66.24 64.11 66.47 60.31 63.62 66.61 73.32 66.24 69.87 68.97
Delong test# — — — — — — 0.0476 0.0241 0.0020 0.2544

Severity Training Set, n= 750 Internal Validation Set, n= 193

AUC 0.67 0.70 0.69 0.67 0.70 0.70 0.62 0.65 0.53 0.70
95% CI 0.63-0.70 0.66-0.73 0.66-0.73 0.63-0.70 0.66-0.73 0.63-0.77 0.55-0.69 0.57-0.71 0.45-0.60 0.63-0.77
Sensitivity (%) 71.32 58.09 63.97 72.79 67.65 83.72 58.14 48.84 32.56 69.77
Specificity (%) 55.21 75.90 69.87 57.82 64.50 52.00 66.00 80.00 75.33 63.33
Delong test# — — — — — — 0.0208 0.2614 0.0234 0.9823

#P< 0.05 means a significant difference in the highest/lowest AUC of the ML and TS applied in the prevalence and severity internal validation set.
TS indicates traditional logistic regression statistical.
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been studied and compared with the traditional LR
method.22–24 However, inconsistent performance between the
ML methods and traditional LR method were obtained. For
example, Motwani et al25 reported that the prediction model
based on ML methods was better than that of the traditional
LR method in predicting 5-year all-cause mortality in patients
undergoing coronary CT angiography. However, Chen et al26

found that ML method-derived prediction model was inef-
fective in the prediction of a composite cardiovascular
outcome in the Cardiovascular Outcomes in Renal Athero-
sclerotic Lesions (CORAL) population. Frizzell et al27 found
that ML algorithms did not improve prediction of 30-day
heart failure readmissions compared with traditional pre-
diction models. Christodoulou et al28 found that the clinical
prediction models based on ML lead to better AUCs than that
based on LR. In this study, compared with the traditional
multivariable LR analysis, the ML model (LR) showed a
similar accuracy in predicting the presence and severity of
CAC nondialysis CKD patients.

In this study, older age, sex (male), diabetes, and
hypertension as independent predictors for the presence of
CAC in nondialysis CKD patients are consistent with the
Chronic Renal Insufficiency Cohort Study, while the findings
were inconsistent with the Russo et al report.29,30 In Chronic
Renal Insufficiency Cohort Study, serum calcium and phos-
phate were also independent predictor factors for the severity
of CAC in nondialysis CKD patients. In our prediction
model, neither serum calcium level nor phosphorus level was
an independent predictor factor for the severity of CAC. The
difference for the risk factors between our study and previous
studies can be interpreted as follows: (1) all previous risk
factors for prediction of the prevalence and severity of CAC
in nondialysis CKD patients were generated by traditional
multivariable LR, which has several limitations, such as the
nonlinear relationship between the factors and the outcome
and the interactions among variables; (2) the cohort in this
study was the Chinese population, and the former researches
were based on American or European population. Race/
ethnicity has been reported to be the independent risk factor
for the prevalence and extent of coronary calcification, due to
the lifestyle and economical variability. It was reported that

in CKD patients the Asian population presented with the
highest rates of CAC (64%, 95% CI: 54%-74%), followed by
North America (61%, 95% CI: 51%-72%), European (59%,
95% CI: 42%-75%), and South America (53%, 95% CI: 3%-
103%).31 The Multi-Ethnic Study of Atherosclerosis (MESA)
showed significant ethnic differences in CAC prevalence and
severity.32

The present study had some limitations. First, this was
a cross-sectional study which did not allow us to determine
whether prevention or treatment of a risk factor could lead
to an improvement in CAC prevalence and severity. Second,
this was a single-center cohort and the absence of an
external validation set. Although all samples were diagnosed
in a Chinese population and from the signal center, which
confirmed the examination used the standardized methods
and minimized the bias, the absence of an external vali-
dation set may reduce the generalizability of our developed
ML models. Third, our study was limited by the small
number of moderate (Agatston score= 1 to 299) and severe
(Agatston score ≥ 300) CAC patients. The low prevalence
may reduce the prediction model performance in theory.
For these subjects, a larger sample remains to be needed.
Finally, further follow-up of the cohort will allow refine-
ment of our risk estimates.

In conclusion, we developed the ML prediction models
for the prevalence and severity of CAC in nondialysis Chi-
nese CKD patients based on demographic information,
clinical data and biochemical parameter characteristics, and
we found that ML LR had the best predicting performance.
The model can provide reliable quantitative individual risk
assessments for the prevalence and severity of CAC in
Chinese nondialysis CKD patients.
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