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Abstract

The fatty acid composition of membrane glycerolipids is a major determinant of Staphylo-

coccus aureus membrane biophysical properties that impacts key factors in cell physiology

including susceptibility to membrane active antimicrobials, pathogenesis, and response

to environmental stress. The fatty acids of S. aureus are considered to be a mixture of

branched-chain fatty acids (BCFAs), which increase membrane fluidity, and straight-chain

fatty acids (SCFAs) that decrease it. The balance of BCFAs and SCFAs in USA300 strain

JE2 and strain SH1000 was affected considerably by differences in the conventional labo-

ratory medium in which the strains were grown with media such as Mueller-Hinton broth

and Luria broth resulting in high BCFAs and low SCFAs, whereas growth in Tryptic Soy

Broth and Brain-Heart Infusion broth led to reduction in BCFAs and an increase in SCFAs.

Straight-chain unsaturated fatty acids (SCUFAs) were not detected. However, when S.

aureus was grown ex vivo in serum, the fatty acid composition was radically different with

SCUFAs, which increase membrane fluidity, making up a substantial proportion of the total

(<25%) with SCFAs (>37%) and BCFAs (>36%) making up the rest. Staphyloxanthin, an

additional major membrane lipid component unique to S. aureus, tended to be greater in

content in cells with high BCFAs or SCUFAs. Cells with high staphyloxanthin content had a

lower membrane fluidity that was attributed to increased production of staphyloxanthin. S.

aureus saves energy and carbon by utilizing host fatty acids for part of its total fatty acids

when growing in serum, which may impact biophysical properties and pathogenesis given

the role of SCUFAs in virulence. The nutritional environment in which S. aureus is grown in

vitro or in vivo in an infection is likely to be a major determinant of membrane fatty acid

composition.
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Introduction

Staphylococcus aureus is a worldwide significant pathogen in the hospital and the community.
Antibiotic resistance has developed in waves [1] such that we now have methicillin-resistant S.
aureus (MRSA), vancomycin-resistant S. aureus (VRSA) and vancomycin-intermediate S.
aureus (VISA) [2,3]. Given the threat of multiply antibiotic-resistant S. aureus, various aspects
of staphylococcal biology including pathogenicity, antibiotic resistance, and physiology are
currently being investigated intensively, in part to support the search for novel anti-staphylo-
coccal agents.

The bacterial cytoplasmic membrane forms an essential barrier to the cell and is composed
of a glycerolipid bilayer with associated protein molecules, and is a critical determinant of cell
physiology. The biophysical properties of the membrane are to a large extent determined by
the fatty acyl residues of membrane phospholipids and glycolipids [4,5]. The lipid acyl chains
influencemembrane viscosity/fluidity, and impact the ability of bacteria to adapt to changing
environments, the passive permeability of hydrophobic molecules, active transport, and the
function of membrane-associated proteins [4–6]. Additionally, membrane fatty acid composi-
tion has a major influence on bacterial pathogenesis, critical virulence factor expression [7],
and broader aspects of bacterial physiology [8].

S. aureus membrane fatty acids are generally considered to be a mixture of branched-chain
fatty acids (BCFAs) and straight-chain fatty acids (SCFAs) [9–11], and for a comprehensive
review of earlier literature see [12]. In S. aureus the major BCFAs are odd-numbered iso and
anteiso fatty acids with one methyl group at the penultimate and antepenultimate positions of
the fatty acid chains, respectively (Fig 1). BCFAs have lower melting points than equivalent
SCFAs and cause model phospholipids to have lower phase transition temperatures [13], and
disrupt the close packing of fatty acyl chains [14,15].

Fatty acids are major components of the S. aureus phospholipids, which are phosphatidyl
glycerol, cardiolipin and lysysl-phosphatidyl glycerol [16]. BCFAs are biosynthesized from the
branched-chain amino acids, isoleucine (anteiso odd-numbered fatty acids), leucine (iso odd-
numbered fatty acids), and valine (iso even-numbered fatty acids) via branched-chain amino-
transferase and branched-chain α- keto acid dehydrogenase [13]. The branched-chain acyl
CoA precursors thus formed are used for the biosynthesis of fatty acids by the dissociated bac-
terial fatty acid synthesis system (FASII) [5,17]. Phosphatidic acid is a key intermediate in the
biosynthesis of the S. aureus phospholipids [5]. Our current knowledge of the pathway of phos-
pholipid biosynthesis and the incorporation of exogenous and endogenous fatty acids is sum-
marized in Fig 2 [18]. Phosphatidic acid, the universal precursor of phospholipids, is
synthesized by the stepwise acylation of sn-glycerol-3-phosphate first by PlsY that transfers a
fatty acid to the 1-position from acyl phosphate. The 2-position is then acylated by PlsC utiliz-
ing acyl-ACP. Acyl-ACP is produced by the FASII pathway and PlsX catalyzes the interconver-
sion of acyl-ACP and acyl phosphate. When S. aureus is grown in medium that results in a
high proportion of BCFAs the major phospholipid, phosphatidyl glycerol, has, almost exclu-
sively, anteiso C17:0 at position 1 and anteiso C15:0 at position 2 [17].

Phosphatidic acid (PtdOH), the universal precursor of phospholipids, is synthesized by the
stepwise acylation of sn-glycerol-3-phosphate first by PlsY that transfers a fatty acid to the
1-position from acyl phosphate. The 2-position is then acylated by PlsC utilizing acyl-ACP.
Acyl-ACP is produced by the FASII pathway and PlsX catalyses the interconversion of acyl-
ACP and acyl phosphate. Exogenous fatty acids readily penetrate the membrane and are acti-
vated by a fatty acid kinase (FakB1 for SCFAs and FakB2 for SCUFAs) to produce acyl phos-
phate that can be utilized by PlsY, or that can be converted to acyl-ACP for incorporation into
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Fig 1. Structures of major fatty acids and staphyloxanthin of the S. aureus cell membrane.

doi:10.1371/journal.pone.0165300.g001

Fig 2. Pathway of phospholipid biosynthesis and the incorporation of exogenous and endogenous fatty acids in S.

aureus.

doi:10.1371/journal.pone.0165300.g002
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the 2-position by PlsC. Exogenous fatty acids can also be elongated by the FASII pathway.
Figure modified from Parsons et al. [18].

The membrane lipid composition of S. aureus is further complicated by the presence of sta-
phyloxanthin, a triterpenoid carotenoid with a C30 chain with the chemical name of α-D-glu-
copyranosyl-1-O-(4,4’-diaponeurosporen-4-oate)-6-O (12-methyltetradecanoate) [19](Fig 1).
Staphyloxanthin, as a polar carotenoid, is expected to have a significant influence on mem-
brane properties with the expectation that it rigidifies the membrane [20], and Bramkamp and
Lopez [21] have suggested that staphyloxanthin is a critical component of lipid rafts in S.
aureus incorporating the organizing protein flotillin. Staphyloxanthin has drawn considerable
attention in recent years as a possible virulence factor by detoxifying reactive oxygen species
produced by phagocytic cells [22,23], and as a potential target for antistaphylococcal chemo-
therapy [24].

In our laboratory, we are interested in the mechanisms of action of and resistance to novel
and existing anti-staphylococcal antimicrobials [25–27]. Becausemuch antibiotic work
employs Mueller-Hinton (MH) medium, [28] we had occasion to determine the fatty acid
composition of a S. aureus strain grown in this medium. The analysis was carried out using the
MIDI microbial identification system (Sherlock 4.5 microbial identification system; Microbial
ID, Newark, DE, USA), [29]. We were taken aback when the fatty acid profile came back show-
ing a very high percentage (84.1%) of BCFAs, and the organism was not even identified by
MIDI as a S. aureus strain. In a previous study where we grew S. aureus in BHI broth we found
that 63.5% of the fatty acids were BCFAs, and 32.4% were SCFAs [10]. This is a much more
typically observedbalance between BCFAs and SCFAs in previous studies of the fatty acid
composition of S. aureus [9–12].

A range of different media are used for cultivating S. aureus in studies from different labora-
tories [30]. These are mostly complex media such as Tryptic Soy Broth (TSB), BHI broth, MH
broth, Luria-Bertani (LB) broth, and, much more rarely, definedmedia [11]. Ray et al. [30] and
Oogai et al [31] have pointed out that different media have major, but largely unstudied and
ignored, effects on the expression of selected target virulence and regulatory genes. Although
seemingly prosaic at first glance, issues of choice of strain and medium are nevertheless critical
considerations in staphylococcal research [32]. These authors [32], in their recent protocol
publication on the growth and laboratory maintenance of S. aureus, have suggested that TSB
and BHI media are the media of choice for staphylococcal research. In light of recent literature
in various microorganisms, it is becoming evident that environment has a tremendous effect
on the physiology of different pathogens; hence cells from in vivo growth are significantly dif-
ferent from in vitro cultured ones. Such distinctions are likely important for studying antimi-
crobial susceptibilities, drug resistances and pathogenesis.

We decided to carry out a systematic study of the impact of growth medium on the fatty
acid and carotenoid composition of S. aureus given the large potential impact of these parame-
ters on membrane biophysical properties and its further ramifications. The BCFA: SCFA ratio
was significantly impacted by the laboratory medium used, with media such as MH broth
encouraging high proportions of BCFAs. However, strikingly, when cells were grown in serum,
an ex vivo environment, the fatty acid composition changed radically, with straight-chain
unsaturated fatty acids (SCUFAs) (Fig 1), which were not detected in cells grown in laboratory
media, making up a major proportion of the total fatty acids. This extreme plasticity of S.
aureus membrane lipid composition is undoubtedly important in determiningmembrane
physical structure and thereby the functional properties of the membrane. The alterations in
the fatty acid composition as a result of interactions of the pathogen with the host environment
may be a crucial factor in determining its fate in the host. Typically used laboratory media do
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not result in a S. aureus membrane fatty acid composition that closely resembles the likely one
of the organism growing in vivo in a host.

Materials and Methods

Bacterial Strains and Growth Conditions

The primary S. aureus strains studied were strain JE2 derived from strain LAC USA300 [33]
and strain SH1000. USA300 strain JE2 is a prominent community-acquired MRSA lineage,
which is a leading cause of aggressive cutaneous and systemic infections in the USA [1,34,35].
Strain JE2 has a well-constructeddiverse transposon mutant library [33]. S. aureus strain
SH1000, is an 8325-line strain that has been used extensively for many years in genetic and
pathogenesis studies [36]. The laboratory media used were MH broth, TSB, BHI broth and LB
from Difco. For growth and fatty acid composition studies cultures of S. aureus strains were
grown at 37°C in 250 ml Erlenmeyer flasks containing each of the different laboratory media
with a flask–to-mediumvolume ratio of 5:1. Growth was monitored by measuring the OD600

at intervals using a Beckman DU-65 spectrophotometer.

Growth of S. aureus in Serum

Sterile fetal bovine serum of research grade was purchased from Atlanta Biologics, USA. The
aliquoted serum was incubated in a water bath at 56°C for 30 min to heat inactivate the com-
plement system. S. aureus cells were grown for 24 hours in 50 ml of serum in a 250 ml flask at
37°C with shaking at 200 rpm.

Analysis of the Membrane Fatty Acid Composition of S. aureus Grown in

Different Media

The cells grown in the different conventional laboratory media were harvested in mid-expo-
nential phase (OD600 0.6), and after 24 hrs of growth in serum, by centrifugation at 3000 x g at
4°C for 15 minutes and the pellets were washed three times in cold distilledwater. The samples
were then sent for fatty acid methyl ester (FAME) analysis whereby the fatty acids in the bacte-
rial cells (30–40 mg wet weight) were saponified,methylated, and extracted. The resulting
methyl ester mixtures were then separated using an Agilent 5890 dual-tower gas chromato-
graph and the fatty acyl chains were analyzed and identified by the MIDI microbial identifica-
tion system (Sherlock 4.5 microbial identification system) at Microbial ID, Inc. (Newark, DE)
[29]. The percentages of the different fatty acids reported in the tables and figures are the
means of the values from three separate batches of cells under each condition. Some minor
fatty acids such as odd-numbered SCFAs were not reported.

Extraction and Estimation of Carotenoids

For quantification of the carotenoid pigment in the S. aureus cells grown in different media,
the warm methanol extraction protocol was followed as described by Davis et al. [37]. Cultures
of S. aureus were harvested at mid-exponential phase and were washed with cold water. The
pellets were then extractedwith warm (55°C) methanol for 5 min. The OD465 of the superna-
tant after centrifugationwas measured using a Beckman DU 70 spectrophotometer. Determi-
nations were carried out in triplicate. Significant differences between carotenoid content of S.
aureus grown in different media were determined by analysis of variance (ANOVA) using SAS
9.4 (SAS Institute, NC) with post hoc Tukey’s test.
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Measurement of the Fluidity of the S. aureus Membrane

The fluidities of the cell membrane of the S. aureus strains grown in different media were deter-
mined by anisotropic measurements using the fluorophore diphenylhexatriene (DPH) follow-
ing the protocol describedpreviously [38]. Mid exponential phase cells grown in respective
media and serum were harvested and washed with cold sterile PBS (pH 7.5). The pellets were
then resuspended in PBS containing 2 μM DPH (Sigma, MO) to an OD600 of about 0.3 and
incubated at room temperature in the dark for 30 min. Fluorescence polarization emitted by
the fluorophore was measured using a PTI Model QM-4 Scanning Spectrofluorometer at an
excitation wavelength of 360 nm and emission wavelength of 426 nm. The experiments were
performedwith three separate fresh batches of cells. Significant differences betweenmean
polarization values of S. aureus grown in different media were determined by analysis of vari-
ance (ANOVA) using SAS 9.4 (SAS Institute, NC) with post hoc Tukey’s test.

Results

The two main strains studied were USA300 strain JE2 and strain SH1000. The genome
sequences of both strains are known. The USA300 JE2 background represents the most promi-
nent community-associatedmethicillin resistance lineage in the US, and is the strain in which
the Nebraska Transposon Mutant Library is constructed [33]. Strain SH1000 is an 8325-line
strain in which the defect in SigB has been corrected [39], and for many years 8325-line strains
have been used as model strains in genetic studies of staphylococcal pathogenesis [36]. These
strains were chosen for their significance as pathogens, well-developed knowledge of their
genetics, physiology and virulence, and familiarity to the staphylococcal research community.

MH broth and LB Increase the Content of BCFAs and TSB and BHI

Broth Increase the Content of SCFAs

The fatty acid compositions of strain JE2 grown in different laboratory media are shown in Fig
3 and in more detail in S1 Table. Growth in MH broth and LB resulted in a high content of
BCFAs, 80.9% and 77.2% respectively, whereas SCFAs were 19.1% and 22.8% respectively.
However, in TSB and BHI broth the BCFAs contents were lower at 51.7% and 51.5% respec-
tively, and SCFAs were increased to 48.3 and 48.5% respectively. In MH broth anteiso odd-
numbered fatty acids were the major fatty acids in the profile (59.8%), followed by even-num-
bered SCFAs (16.6%), iso odd-numbered fatty acids (15.8%), with iso even-numbered fatty
acids making up only a minor portion (4.7%). Anteiso C15:0 was the predominant fatty acid in
the membrane lipids (39%). This particular fatty acid has a significant impact on fluidizing
membranes [40,41]. The anteiso fatty acids were significantly reduced in TSB-grown cells
(29.3%). The major SCFAs in TSB-grown cells were C18:0 and C20:0 at 19.1% and 18.6%
respectively. Overall, the fatty acid compositions were in line with many previous studies of S.
aureus fatty acid composition [9–12], but we are unaware of previous studies that have identi-
fied this impact of medium on the proportions of BCFAs and SCFAs in the membrane.

The results of a similar series of experiments with strain SH1000 are shown in Fig 4 and S2
Table. In strain SH1000 the BCFAs were higher than JE2 in all media- BHI 66.6%, TSB 68.5%,
with particularly high contents in MH broth, 90.2%, and LB, 89%. The proportion of SCFAs
was correspondingly smaller in all cases compared to strain JE2. Anteiso fatty acids were the
major class of fatty acids in all media, amongst which anteiso C15:0 was present in the highest
amount in all cases. However, the same phenomenon was noted where MH broth and LB
encouraged a high proportion of BCFAs, low SCFAs, and TSB and BHI had the opposite effects
on fatty acid composition. Two additional media were studied with this strain. Both Tryptone
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Broth [42] and definedmedium [43] resulted in high BCFAs (80.4% and 85% respectively),
and low SCFAs (19.7% and 15% respectively).

The Fatty Acid Composition of S. aureus Grown ex vivo in Serum is

Radically Different to Those of the Organism Grown in Laboratory Media

It was of interest to try and get an idea of the fatty acid composition of S. aureus grown in vivo.
Strain JE2 and SH1000 were grown ex vivo in serum,which resulted in major changes in the
fatty acid profile (Figs 3 & 4 and S1 and S2 Tables). Total BCFAs were reduced to 37.5% in JE2
and 36.3% in SH1000; SCFAs were at 37.8% in JE2 and 32.1% in SH1000, but 25% of the fatty
acid profile in the case of JE2 and 30.6% in SH1000 was accounted for by SCUFAs. Strikingly,
this type of fatty acid was not present in the profile of the organism when grown in laboratory
media. Interestingly, BCFAs and SCUFAs have similar effects in increasing fluidity of the
membrane [4].

Carotenoid Content of Cells Grown in Different Media

Staphyloxanthin is another significant membrane component that might impact the biophysi-
cal properties of the membrane. Accordingly, the carotenoid contents of cells grown in differ-
ent media were determined and the results are shown in Fig 5. Strain SH1000 cells grown in
MH broth had a much higher carotenoid content than cells grown in the other media. The pel-
lets of cells grown in this particularmedia were noticeably yellow. It is possible that the carot-
enoid content rises to counterbalance the potentially high fluidity of MH broth-grown cells
with their high content of BCFAs, specificallymainly anteiso fatty acids. MH broth (high

Fig 3. Membrane fatty acid composition of S. aureus strain JE2 cells grown in different media. Membrane fatty acid composition of log

phase S. aureus strain JE2 cells grown in BHI, TSB, MH broth, LB and fetal bovine serum were summarized into the various common classes of

fatty acids. Figure shows representative data from at least three independent experiments.

doi:10.1371/journal.pone.0165300.g003
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Fig 4. Membrane fatty acid composition of S. aureus strain SH1000 cells grown in different media. Membrane fatty acid composition of log

phase S. aureus strain SH1000 cells grown in BHI, TSB, MH broth, LB and fetal bovine serum were summarized into the various common classes

of fatty acids. Figure shows representative data from at least three independent experiments.

doi:10.1371/journal.pone.0165300.g004

Fig 5. Influence of growth environment on the carotenoid content of S. aureus. The strains, JE2 (red columns) and SH1000 (green

columns), were grown in different growth media and the carotenoid content was estimated after extraction by warm methanol. Different letters

indicate significant differences in the carotenoid content.

doi:10.1371/journal.pone.0165300.g005
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BCFAs) and serum (high SCUFAs)—grown cells had higher carotenoid contents than TSB or
BHI broth–grown cells as revealed by statistical analysis of the data (Fig 5), which demon-
strated that the carotenoid content of cells grown in MH broth was distinctly different from
cells grown in other media. In strain JE2 MH broth- and serum-grown cells also had higher
carotenoid contents than did cells grown in BHI broth, TSB or LB. In general, this strain was
less pigmented than strain SH1000. Statistical analysis of S. aureus strain JE2 carotenoid con-
tent showed that cells grown in MH broth and serumwere placed in the same group, and the
cells grown in BHI broth, LB and TSB were in a different group.

Membrane Fluidity of S. aureus Cells Grown in Different Media

The membrane fluidity of cells of strain SH1000 grown in BHI broth, LB and TSB were very
similar (0.185–0.19) as shown in Fig 6. The membranes of MH-broth and serum-grown cells,
0.25 and 0.248 were significantly less fluid than cells grown in the other media. Possibly the
higher carotenoid contents of cells grown in MH broth and serum rigidify the membrane.
Strain JE2 also showed a similar pattern of membrane fluidity in the different growth media
(Fig 6). The membrane fluidity of both strains was highest in cells grown in LB, consistent with
the high content of BCFAs. Furthermore, in this medium there was no accompanying increase
in staphyloxanthin content with its possible membrane rigidifying effect in contrast to what
was observed in MH broth or serum-grown cells. Statistical analysis showed that the fluores-
cence polarization values of both S. aureus strain JE2 and SH1000 grown in MH broth and
serumwere significantly different from the cells grown in BHI broth, TSB and LB as indicated
in Fig 5.

Fig 6. Influence of growth environment on the membrane fluidity of S. aureus cells. The strains, JE2 (red columns) and SH1000 (green columns),

were grown in the different media to mid exponential phase and membrane anisotropy was measured by fluorescence polarization. Different letters

indicate statistically significant differences in the fluorescence polarization values.

doi:10.1371/journal.pone.0165300.g006
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Discussion

From numerous studies over the past several decades of S. aureus grown in vitro in various lab-
oratory media it is considered that the membrane fatty acid composition of the organism is a
mixture of BCFAs and SCFAs [9–12], and BCFAs have generally been found to be predomi-
nant. Through study of a range of different conventional growth media, we found that certain
media encouraged a higher proportion of BCFAs than others, whereas in some media the pro-
portion of SCFAs was increased. This may have significant physiological ramifications given
the opposing effects of BCFAs and SCFAs on membrane fluidity with BCFAs fluidizing and
SCFAs rigidifying the membrane [4]. However, there was a radical change in the entire fatty
acid composition when the organism was grown ex vivo in serum with SCUFAs appearing in
the profile in significant amounts accompanied by a decrease in BCFA content.

What Determines the Balance Between BCFAs and SCFAs in Cells

Grown in Laboratory Media?

MH medium leads to a high proportion of BCFAs in the staphylococcal cells, whereas growth
in TSB leads to an increase in the proportion of SCFAs. MH broth (Difco) is composed of beef
extract powder (2 g/l), acid digest of caseine (17.5 g/l), and soluble starch (1.5 g/l). Thus, by far
the major medium component is acid digest of caseine, and this is expected to be high in free
amino acids. TSB (Difco) is composed of pancreatic digest of caseine (17 g/l), enzymatic digest
of soybean meal (3 g/l), dextrose (2.5 g/l), sodium chloride (5 g/l) and dipotassium phosphate
(2.5 g/l). The major components then of TSB are a mixture of peptides formed by enzymatic
digestion of caseine and soybean meal. Payne and Gilvarg [44] fractionated Bacto Neopeptone
using gel filtration. They found that peptides with a molecular weight below 650 represented
about 25% of the mixture, and free amino acids were about 1% of the entire preparation. We
believe that the free amino acids from the acid digest of caseine can have a dominant effect on
the fatty acid composition. Inclusion of isoleucine, leucine, or valine in the growth medium of
Listeria monocytogenes results in large increases in fatty acids derived from the particular
amino acid in question [29,45]. The BCFA content of S. aureus is lower in S. aureus grown in
TSB, where pool amino acids are likely to be mainly derived from transported peptides [46],
than when grown in definedmedium, which probably gives rise to higher pool levels of amino
acids [47] and this work. Mutants of S. aureus in the transporters of leucine and valine lacked
odd- and even-numbered fatty acids derived from these amino acids when grown in defined
medium [47].

Growth in media such as TSB and BHI broth lead to higher proportions of SCFAs than
media such as MH broth, although SCUFAs were not detected. The origin of SCFAs is not
clear as to whether they originate from the medium or are biosynthesized. Typically, in bacteria
SCFAs are biosynthesized from acetyl CoA via the activities of FabH and the FASII system.
However, acetyl CoA was a poor substrate for S. aureus FabH [48], whereas the enzyme had
high activity for butyryl CoA, raising the possibility that butyrate is the primer for biosynthesis
of SCFAs in S. aureus. It is also possible that SCFAs that may be present in TSB and BHI may
be utilized directly for fatty acid elongation to the SCFAs in the membrane typical of growth in
these media.

The Underappreciated Ability of S. aureus to Incorporate Host Fatty

Acids From Serum

A striking finding in our paper is that S. aureus has the capacity to incorporate large propor-
tions of SCFAs and SCUFAs when grown ex vivo in serum. Earlier reports of fatty acid
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composition have not reported significant amounts of SCUFAs in S. aureus [9–12]. Indeed, it
appears that S. aureus lacks the genes necessary to biosynthesize unsaturated fatty acids [18].
An early report by Altenbern [49] showed that inhibition of growth by the fatty acid biosynthe-
sis inhibitor cerulenin could be relieved by SCFAs or SCUFAs, implying S. aureus had the abil-
ity to incorporate preformed fatty acids. Fatty acid compositional studies of the cells were not
reported though. Serum is lipid rich [50–52] and a comprehensive analysis of the human
serummetabolome including lipids has recently been published [53]. BCFAs are present, if at
all, in only very small amounts in serum. Bacterial pathogens typically have the ability to incor-
porate host-derived fatty acids thereby saving carbon and energy since fatty acids account for
95% of the energy requirement of phospholipid biosynthesis [54]. Exogenous fatty acids readily
penetrate the membrane and are activated by a fatty acid kinase to produce acyl phosphate that
can be utilized by PlsY for incorporation into the 1 position of the glycerol moiety of phospho-
lipids, or they can be converted to acyl-ACP for incorporation into the 2 position by PlsC (Fig
2) [18].

The FASII pathway has been considered to be a promising pathway for inhibition with anti-
microbial drugs. The viability of FASII as a target for drug development was challenged by
Brinster et al. [55] especially for bacteria such as streptococci where all the lipid fatty acids
could be replaced by SCFAs and SCUFAs from serum.However, Parsons et al. [17] showed
that exogenous fatty acids could only replace about 50% of the phospholipid fatty acids in S.
aureus and concluded that FASII remained a viable drug target in this organism.

Besides occurring in membrane phospholipids, fatty acids are present in staphyloxanthin,
glycolipids and lipoteichoic acid and in lipoproteins at their N terminus in the form of an N-
acyl-S-diacyl-glycerolcysteine residue and an additional acyl group amide linked to the cyste-
ine amino group [56]. It is estimated that there are 50–70 lipoproteins in S. aureus, and many
of them are involved in nutrient acquisition. The distribution of growth environment-derived
SCFAs and SCUFAs in these lipid molecules has not yet been examined.

Changes in Staphyloxanthin in Cells Grown Under Different Conditions

with Different Membrane Fatty Acid Compositions

The carotenoid staphyloxanthin is a unique S. aureus membrane component that affects mem-
brane permeability, defense against reactive oxygen species, and is a potential drug target. It
appeared that cells grown in media encouraging a high proportion of BCFAs or in serum
resulting in high SCUFAs, both of which would be expected to increase membrane fluidity,
tended to have higher staphyloxanthin contents. Cells grown in MH broth or serumhad cellu-
lar membranes that were less fluid that may be attributable to the higher content of staphylox-
anthin. However, this relationship is likely to be complex in that LB-grown cells that had high
BCFAs did not have high carotenoid levels, and the phenomenon is deservingof more detailed
investigation. Interestingly, in the biosynthesis of staphyloxanthin, the end step involves an
esterification of the glucose moiety with the carboxyl group of anteiso C15:0 by the activity of
the enzyme acyltransferase CrtO [19]. It is not known whether anteiso C15:0 can be replaced
by SCUFAs.

Plasticity of S. aureus Membrane Lipid Composition and its Possible

Ramifications in Membrane Biophysics and Virulence

Given the crucial role of the biophysics of the membrane in all aspects of cell physiology, such
radical changes in the membrane lipid profile can have significant but as yet undocumented
impacts on critical functional properties of cells such as virulence factor production, suscepti-
bilities to antimicrobials and tolerance of host defenses. It is important to assess the biophysical
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and functional properties of the membranes of the cells with such radically different fatty acid
compositions.

The susceptibilities of the strains to three antibiotics designated as hydrophobic, oxacillin,
vancomycin and rifampicin and three designated as hydrophilic, chloramphenicol, penicillin
G, and tetracycline [57], were determined on TSB, BHI, MH, LB and serum agar plates by disk
diffusion. There was no striking difference in antibiotic susceptibilities between the different
artificialmedia. Zones of inhibition were markedly lower in both strains on serum agar for
rifampicin, chloramphenicol, and tetracycline. However, membrane permeability studies
clearly need to be done in a more simplified system such as lipid vesicles of defined fatty acid
composition [58] to simplify the interpretation of any differences observed.Cells grown in
serumhad higher hemolytic activity, and MH broth and serum- grown cells had lower auto-
lytic activities than cells grown in the other media (unpublished observations).

Although BCFAs and SCUFAs both increase membrane fluidity, they do not yield cells with
identical morphologies [15], or fitness for tolerating cold stress [59]. Also a S. aureus fatty acid
auxotroph created by inactivation of acetyl coenzymeA carboxylase (ΔaccD) was not able to
proliferate in mice, where it would have access to SCFAs and SCUFAs [60]. Due to the ability
of a pathogen to adapt and undergo dramatic alterations when subjected to a host environ-
ment, there is a growing appreciation in the research community for the fact that the properties
of the organism grown in vivo are probably very different from when it is grown in vitro. This
distinctionmay have a huge impact on critical cellular attributes controlling pathogenesis and
resistance to antibiotics. Expression of virulence factors is significantly different in serum-
grown organisms [31], and there are global changes in gene expression when S. aureus is
grown in blood [61]. S. aureus grown in serumor bloodwill have different membrane lipid
compositions than cells grown in laboratory media and this may have a significant impact on
the expression of virulence factors and pathogenesis of the organism.

The relationship between S. aureus and long-chain SCUFAs and SCFAs is a complex one.
On one hand these fatty acids in the skin and other tissues form part of the innate defense sys-
tem of the host due to their antimicrobial activities [62–64]. Very closely related structures can
either be inhibitory to growth at low concentrations, or can have little effect on growth at rela-
tively high concentrations [42,65–67]. For example, C16:1Δ6 and C16:1Δ9 are highly inhibitory
whereas C18:1Δ9 and C18:0 are not inhibitory and are actually incorporated into the phospho-
lipids by this pathogen [42].

The enzyme fatty acid kinase (Fak) responsible for incorporation of extracellular fatty acids
into S. aureus phospholipids [18], is also a critical regulator of virulence factor expression [68],
and biofilm formation [69]. Fak phosphorylates extracellular fatty acids for incorporation into
S. aureus membrane phospholipids [18] (Fig 2). FakA is a protein with an ATP-binding
domain that interacts with FakB1 and FakB2 proteins that bind SCFAs and SCUFAs preferen-
tially respectively. Fak activity producing acyl phosphates was proposed to be involved in the
control of virulence gene expression. Interestingly FakB2 shows a high degree of specificity for
C18:1Δ9, a fatty acid not produced by S. aureus, that may act as a sensor for the host environ-
ment through its abundance in the host [18], which is subsequently incorporated into the
membrane lipids.

Additionally, fatty acids are important components of lipoproteins that contribute impor-
tant microbe-associatedmolecular patterns that bind to Toll-like receptors and activate innate
host defense mechanisms. Recently, Nguyen et al. [70] have shown that when S. aureus is fed
SCUFAs they are incorporated into lipoproteins and the cells have an increased toll-like recep-
tor 2- dependent immune stimulating activity, which enhances recognition by the immune
defense system.
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Concluding Remarks

We have demonstrated a hitherto poorly recognized growth environment-dependent plasticity
of S. aureus membrane lipid composition. The balance of BCFAs and SCFAs was affected sig-
nificantly by the variations in laboratory medium in which the organism grew. SCUFAs
became a major membrane fatty acid component when the organism was grown in serum.
These findings speak to the properties of pathogens grown in vitro versus in vivo. In 1960 Gar-
ber [71] considered the host as the growth medium and the importance of the properties of the
pathogen at the site of infection. There has been a renewed appreciation of this in recent years
[72]. Massey et al. [73] showed that S. aureus grown in peritoneal dialysate acquired a protein
coat. Krismer et al. [74] devised a synthetic nasal secretionmedium for growth of S. aureus.
However, Chaves Moreno et al. [75] determined the in vivo metatranscriptome of S. aureus by
RNAseq analysis of RNA isolated from the anterior nares of documented S. aureus carriers. In
vitro transcriptomes did not mimic in vivo transcriptomes. Citterio et al. [76] reported that the
activities of antimicrobial peptides and antibiotics were enhanced against various pathogenic
bacteria by supplementation of the media with blood plasma to mimic in vivo conditions.

S. aureus may be the most versatile of all pathogens causing diseases ranging from superfi-
cial skin infections to deep seated disseminated diseases of various organs and tissues. The
organism forms biofilms on tissues, intravenous catheters and prosthetic devices. S. aureus can
thrive in multiple heterogenous environments. We propose that the nutritional environment is
the main determinant of membrane fatty acid composition. If SCUFAs are present in the envi-
ronment these will be preferentially incorporated into the lipids to a tolerated extent, although
there appears to be a requirement for a significant proportion of biosynthesized anteiso odd-
numbered fatty acids. It is sobering to realize that the vast majority of studies of staphylococcal
biology utilizing organisms grown in artificialmedia have been carried out with cells lacking
SCUFAs in their membrane.
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